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Disclaimer 
The user of this software accepts and uses it at his/her own risk. 

The author does not make any expressed or implied warranty of any kind with regard to this 

software. Nor shall the author be liable for incidental or consequential damages with or 

arising out of the furnishing, use or performance of this software. 

PEST Control Variables 
See appendix A of part I of this manual for a complete specification of the PEST control file, 

including a list of all PEST input variables and a description of their roles. 

Bugs 
If you discover a bug in PEST or any of its utilities, please report it to me, John Doherty, at 

the following email address. 

pestsupport@ozemail.com.au 
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1. Introduction 
This document is the second in a two part manual that describes PEST and its ancillary 

software. The first part of this manual documents PEST (including Parallel PEST and 

BEOPEST), the very basic SENSAN sensitivity analyser, and the PEST-compatible 

CMAES_P and SCEUA_P global optimisers. This second part describes software that 

complements and supports PEST, and that is distributed with PEST itself.  

For the purpose of documentation, the utility programs described herein have been grouped 

according to function, with separate chapters being devoted to separate functions. Within 

each chapter programs are grouped according to similarity of task.  

In contrast to ensuing chapters, chapter 2 of this manual does not describe any utility 

programs. Instead it presents protocols for a number of files which are read and/or written by 

these utilities. 

Some of the programs described in this manual have been superseded by others but are still 

distributed with PEST. These programs to which this applies are identified as such in the 

description that follows. Their retainment in the PEST suite is based on the fact that newer 

programs may do things slightly differently, or may omit some of the functionality of the 

older programs which some users may find attractive. In one or two cases, incompatibilities 

of which I am unaware may exist between newer versions of PEST and these superseded 

utility programs. If you discover such incompatibilities, please notify me. 

As is the case for part I of this manual, little theory is presented in this document. Instead the 

reader is referred to the “PEST Book”; this is Doherty (2015), and is downloadable from the 

PEST web pages. The PEST Book presents and derives equations on which most of the 

utilities described herein are based. For those rare exceptions where the theory provided in 

Doherty (2015) does not completely describe the operation of a particular utility program, 

pertinent equations are presented in this manual.  

In addition to the programs described in this second part of version 6 of the PEST manual, 

two additional suites of utility programs can be downloaded from the PEST web pages at 

http://www.pesthomepage.org 

These are programs which expedite the use of PEST with groundwater and surface water 

models. Also downloadable from the above site is the parameter list processor PLPROC 

which supports parameterisation of complex spatial models. These all have their own 

documentation that, along with the software itself, is downloadable from the PEST web 

pages. 

http://www.pesthomepage.org/
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2. Files Types and Protocols 

2.1 General 

This chapter provides specifications for some of the files used by utility programs discussed 

herein. It is hoped that the collection of these specifications into a single chapter makes 

reference to these specifications easier, and thus facilitates their construction and 

manipulation. 

2.2 Parameter Value File 

The parameter value file is described in section 5.3.2 of part I of this manual. A parameter 

value file is written by PEST whenever an improved set of parameters is obtained. At any 

stage of the inversion process it thus contains the best set of parameters computed to date. 

The expected extension of a parameter value file is “.par”; however when PEST is 

conducting SVD-assisted inversion it also writes a parameter value file containing base 

parameter values, this having an extension of “.bpa”. 

A number of utility programs documented in this manual read and/or write parameter value 

files. There may be some occasions where you may need to write a parameter value file 

yourself for one of these programs to read. Fortunately this is easy, as its specifications are 

simple. An example of a parameter value file is shown below. 

single point 

   ro1     1.00         1.0        0.0 

   ro2     40.0         1.0        0.0 

   ro3     1.00         1.0        0.0 

    h1     1.00         1.0        0.0 

    h2     10.0         1.0        0.0 

Figure 2.1 A parameter value file. 

The first line of a parameter value file cites the PEST character variables PRECIS and 

DPOINT, the values for which are provided in the “control data” section of a PEST control 

file. Then follows a line for each parameter. Each line contains a parameter’s name, its 

current value and the values of the SCALE and OFFSET variables for that parameter as 

supplied in the PEST control file.  

Entries on all lines of a parameter value file must be separated by one or more spaces. 

If a utility program writes a parameter value file, it normally refers to a PEST control file to 

obtain values for PRECIS, DPOINT, SCALE and OFFSET. If you write this file yourself, 

suitable values for these variables are “single”, “point”, “1.0” and “0.0” as shown in the 

above figure. 

2.3 Observation Value File 

An observation value file contains two columns of data. The first is comprised of observation 

names; in accordance with PEST protocol, these names should be 20 characters or less in 

length and contain no spaces. The second column contains observation values. One or more 

spaces should separate entries in each column. 

Figure 2.2 illustrates an observation value file. 
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 ar1       1.21038     

 ar2       1.51208     

 ar3       2.07204     

 ar4       2.94056     

 ar5       4.15787     

 ar6       5.77620     

 ar7       7.78940     

 ar8       9.99743     

 ar9       11.8307     

 ar10      12.3194     

 ar11      10.6003     

 ar12      7.00419     

 ar13      3.44391     

 ar14      1.58278     

 ar15      1.10381     

 ar16      1.03085     

 ar17      1.01318     

 ar18      1.00593     

 ar19      1.00272     

Figure 2.2 An observation value file. 

2.4 Matrix File 

2.4.1 General 

Many of the utility programs documented in this manual read and/or write so-called “PEST 

matrix files”. Some convert Jacobian matrix files (i.e. JCO files) to and from this format so 

that the Jacobian matrix can be easily manipulated using various matrix manipulation 

utilities, and/or can be transferred between computing platforms that use different binary 

protocols. Vectors (which are one-dimensional matrices) also use this format; this applies 

particularly to predictive sensitivity vectors used in linear uncertainty and error analysis. 

2.4.2 Specifications 

The specifications of a matrix file are illustrated by example. A PEST-compatible matrix file 

holding a matrix with three rows and four columns is illustrated in Figure 2.3. 

   3   4   2 

3.4423    23.323    2.3232   1.3232 

5.4231    3.3124    4.4331   3.4442 

7.4233    5.4432    7.5362   8.4232 

* row names 

apar1  

apar2  

apar3 

* column names 

aobs1 

aobs2 

aobs3 

aobs4 

Figure 2.3 An example of a matrix file. 

The first line of a matrix file contains 3 integers. The first two integers (NROW and NCOL) 

indicate the number of rows and the number of columns in the following matrix. The next 

integer (named ICODE) is a code, the role of which is discussed shortly. 

Following the header line is the matrix itself. The matrix is read row by row, with each row 
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beginning on a new line. Entries within a line must be separated by one or more spaces; they 

can wrap to the next line if desired. Because matrix elements are read using FORTRAN list-

directed input, a compact option for representation of repeated numbers within a matrix row 

is available. Thus, for example, the line 

5*3.0, 3*2.4, 2*4.4 

is equivalent to the line 

3.0 3.0 3.0 3.0 3.0 2.4 2.4 2.4 4.4 4.4 

If ICODE is set to 2, the string “* row names” must follow the matrix. This string must be 

recorded on the line immediately after the last line of the matrix. On the following and 

ensuing NROW lines must be recorded NROW character strings; each of these strings is the 

name associated with the respective row of the matrix. Names must be 20 characters or less 

in length. The string “* column names” must follow that. NCOL column names must then 

follow in a similar format.  

For a square matrix ICODE can be set to “1”. This indicates that rows and columns are 

associated with the same names (as is the case for a covariance matrix or a resolution matrix). 

In this case the string “* row and column names” follows the matrix. The pertinent names are 

listed on the NROW lines following that. 

A special ICODE value is reserved for diagonal matrices. If NCOL is equal to NROW, then 

ICODE may be set to “-1”. In this case only the diagonal elements of the matrix need to be 

presented following the integer header line; these should be listed one to a line as illustrated 

in the figure 2.4. Following that should be the string “* row and column names” (for if 

ICODE is set to “-1” it is assumed that these are the same), followed by the names 

themselves. 

5  5  -1 

4.5 

4.5 

2.4 

7.53 

5.32 

* row and column names 

par1 

par2 

par3 

par4 

par5 

Figure 2.4 A matrix file containing a diagonal matrix. 

2.5 Uncertainty Files 

2.5.1 Introduction  

Many of the utility programs discussed herein require that you provide a file containing 

parameter uncertainties. These can be prior or posterior uncertainties, but are normally the 

former. Thus this file must contain the contents of the C(k) matrix which is referred to 

extensively in Doherty (2015). This matrix is fundamental to linear parameter and predictive 

error/uncertainty analyses implemented in utility programs documented in this manual.  

Some utilities also require that a C() matrix be provided for characterisation of measurement 

noise; others glean this matrix directly from a PEST control file. As is demonstrated below, 

for those utilities that require it, an uncertainty file can also be used to specify the stochastic 
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characteristics of measurement noise. 

All of the utility programs described herein which read an uncertainty file also read a PEST 

control file (and often the Jacobian matrix file associated with that PEST control file as well). 

This PEST control file defines the inversion or uncertainty analysis problem which respective 

utility programs must solve. The names of entities cited in an uncertainty file must refer to 

those cited in this PEST control file. Note, however, that it is not always necessary that all 

entities cited in an uncertainty file be also cited in the PEST control file. Redundancy of 

information presented in an uncertainty file is often allowed. 

2.5.2 Specifications 

Figure 2.5 illustrates an uncertainty file. 

# An example of an uncertainty file 

 

START STANDARD_DEVIATION 

  std_multiplier 3.0   

  ro9  1.0 

  ro10 1.0 

  ro4  1.0 

END STANDARD_DEVIATION 

 

START COVARIANCE_MATRIX 

  file "mat.dat" 

  variance_multiplier 1e-2 

END COVARIANCE_MATRIX 

 

START COVARIANCE_MATRIX 

  file "cov.mat" 

  variance_multiplier 1.0 

  parameter_list_file “list.dat” 

END COVARIANCE_MATRIX 

 

START COVARIANCE_MATRIX 

  file "cov1.mat" 

  first_parameter kpp1 

  last_parameter kpp129 

END COVARIANCE_MATRIX 

 

START PEST_CONTROL_FILE 

  file "te st.pst" 

  variance_multiplier 2.0e2 

END PEST_CONTROL_FILE 

Figure 2.5 Example of an uncertainty file. 

An uncertainty file allows the user some flexibility in characterising the uncertainty of a 

group of entities comprising a vector quantity (for example parameters k or measurement 

errors ). Three such options are presently available. These are 

1. a list of individual entity standard deviations;  

2. a covariance matrix file; and  

3. weights assigned to individual elements listed in the “observation data” section of a 

PEST control file.  

A single one of these options can be used to specify the entirety of a k or ε covariance 

matrix. Alternatively, different mechanisms can be used within the same uncertainty file to 

characterise different parts of the total covariance matrix. 
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An uncertainty file is subdivided into blocks. Each block implements one of the mechanisms 

of uncertainty characterisation described above. Collectively all the blocks characterise the 

uncertainty of a set of entities comprising a vector quantity (for example all parameters that 

are involved in an inversion or uncertainty analysis process). An uncertainty file can have as 

many blocks as desired. However the following rules must be observed. 

1. Any one uncertainty file can be used to characterize the uncertainty of either 

parameters or measurements (i.e. observations), but not both. 

2. Parameters and observations cited in an uncertainty file, and the files cited therein, are 

matched by name to those featured in a PEST control file which defines a particular 

inverse problem.  

3. The uncertainty of an individual element of an overall k or  vector can be 

characterised in only one way. Thus, for example, any particular element of a k or ε 

vector cannot be cited in a STANDARD_DEVIATION block of an uncertainty file if 

it is also cited in a matrix provided through a COVARIANCE_MATRIX block of the 

same uncertainty file. 

4. If a parameter is log-transformed in the current inverse or uncertainty analysis 

problem (as specified in the PEST control file which governs that problem), then 

specifications of variance, covariance or standard deviation provided in the 

uncertainty file must pertain to the log (to base 10) of the parameter. In general, the 

utilities described in this manual provide no checks for this, for they have no way of 

knowing the transformation status of parameter variances and standard deviations 

provided in an uncertainty file; it is thus the user’s responsibility to ensure that this 

protocol is observed. 

5. An uncertainty file used for the characterisation of C(k) cannot include a 

PEST_CONTROL_FILE block. 

6. As presently programmed, an uncertainty file used for characterisation of C() must 

not include a COVARIANCE_MATRIX block. Note however that most of the 

utilities described herein do not actually obtain C() specifications from an 

uncertainty file. Instead they obtain it directly from the PEST control file which 

defines the inverse problem. Hence rarely will you need to include a 

PEST_CONTROL_FILE block in an uncertainty file; uncertainty files are mainly 

used for specifying C(k) rather than C(). 

Each block of an uncertainty file must begin with a START line and finish with an END line 

is illustrated in figure 2.5; in both cases the type of block must be correctly characterised 

following the START and END designators. Within each block, data entry must follow the 

keyword protocol. Thus each line must comprise a keyword, followed by the value 

(numerical or text) associated with that keyword. Filenames must be surrounded by quotes if 

they contain spaces. With one exception (the std_multiplier keyword in the 

STANDARD_DEVIATION block), keywords within a block can be supplied in any order; 

some can be omitted if desired. Keywords and block names are case insensitive. 

Blank lines can appear anywhere within an uncertainty file. So too can comment lines; these 

are recognised through the fact that their first character is “#”. 

Each of the blocks appearing in an uncertainty file is now discussed in detail. 
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2.5.2.1 The STANDARD_DEVIATION Block 

In a STANDARD_DEVIATION block, entity names (individual parameters or observations) 

are listed one to a line followed by their standard deviations. As stated above, if a parameter 

is log-transformed in the parameter estimation process, then this standard deviation should 

pertain to the log (to base 10) of the parameter. Parameters/observations can be supplied in 

any order. Optionally a std_multiplier keyword can be supplied in the 

STANDARD_DEVIATION block; if so, it must be the first item in the block. All standard 

deviations supplied on ensuing lines are multiplied by this factor (the default value of which 

is 1.0). 

Parameters/observations cited in a STANDARD_DEVIATION block are assumed to be 

uncorrelated with other parameters/observations. Thus off-diagonal elements of C(k) or C() 

corresponding to these items are zero. Pertinent diagonal elements of C(k) and C() are 

calculated by squaring standard deviations (after multiplication by the std_multiplier). 

If a parameter is featured in a STANDARD_DEVIATION block but is not featured in the 

PEST control file which forms the basis of the current inverse problem, it is ignored.  

2.5.2.2 The PEST_CONTROL_FILE Block 

Only two keywords are permitted in this block, these being the file and variance_multiplier 

keywords; the latter is optional, the default value being 1.0.  

The name of a PEST control file should follow the file keyword. Programs such as 

PARAMERR which read this section of an uncertainty file only read the “observation data” 

section of the PEST control file cited in the PEST_CONTROL_FILE block. For any 

particular observation cited in this section that is also featured in the current inverse problem 

(as defined by the PEST control file read by utilities which use an uncertainty file for 

characterisation of measurement noise), its variance is calculated from the weight w cited in 

the PEST control file as (1/w)2. This variance is then multiplied by the variance_multiplier 

before insertion into the appropriate diagonal element of C(). Corresponding off-diagonal 

elements of C() are assumed to be zero. 

As stated above, in contrast to the PARAMERR utility, most utilities described in this manual 

calculate C() directly from the PEST control file which defines the inverse or uncertainty 

analysis problem which it is their task to solve. Hence for most linear analyses as 

implemented by utility programs documented herein, an uncertainty file does not need to 

contain a PEST_CONTROL_FILE block. 

2.5.2.3 The COVARIANCE_MATRIX Block 

Where a parameter uncertainty file provides one or more covariance matrices, each for a 

subgroup of k which shows within-group parameter correlation, all of these matrices are 

collectively included in a larger C(k) matrix, together with variances calculated from 

parameter standard deviations supplied in one or more STANDARD_DEVIATION blocks 

which may also be featured in the parameter uncertainty file. Optionally, all elements of a 

user-supplied covariance matrix provided through a COVARIANCE_MATRIX block can be 

multiplied by a factor. This factor (for which the default value is 1.0) is supplied following 

the variance_multiplier keyword. 

Different options are available for storage of the matrix housed in the covariance matrix file 

cited in a COVARIANCE_MATRIX block. Matrix storage may follow the PEST matrix file 

protocol described in section 2.4. If this is the case, then the first line of this file must include 
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3 integers, the first two of which (specifying the number of rows and columns in the matrix) 

must be identical. The third integer must be “1” or “-1”. The matrix itself must follow this 

integer header line. Elements within this matrix must be space-delimited; rows can be 

wrapped onto consecutive lines, but each new matrix row must start on a new line. This 

matrix must be followed by the string “* row and column names”. Following this must be the 

names of the parameters to which the matrix pertains. If the matrix file follows this protocol 

then the COVARIANCE_MATRIX block must be identical in format to the first of the 

COVARIANCE_MATRIX blocks shown in figure 2.5; it can only feature a file keyword and 

an optional variance_multiplier keyword.  

The PLPROC parameterization utility supplied with PEST writes matrix files whose format is 

slightly different from that described in section 2.4. This format retains a three-integer 

header. The first two numbers in this header must specify the number of rows and number of 

columns in the matrix. The third number must be “1” or “-1”; 1 indicates that the matrix is 

non-diagonal while -1 specifies a diagonal matrix. The matrix itself follows this header line. 

However the matrix is not followed by a list of row and column names; instead the end of the 

file coincides with the end of the matrix. In this case the COVARIANCE_MATRIX block 

must adopt either the second or third protocols illustrated in figure 2.5. For the second option 

the user provides a file in which parameters are listed one to a line. There must be as many 

such lines are there are rows/columns in the covariance matrix. This information links matrix 

rows and columns to parameters featured in the current inverse problem. Alternatively, the 

third protocol can be followed. In this case the COVARIANCE_MATRIX block must 

contain both of the first_parameter and last_parameter keywords. These refer back to the 

PEST control file which defines the current inverse problem. Parameters within this PEST 

control file between and including the user-nominated first_parameter and last_parameter 

parameters are then associated with rows and columns of the covariance matrix, with the 

ordering of parameters in the matrix file being the same as that in the PEST control file. 

Naturally, the number of parameters in this implied parameter list must be the same as the 

number of rows and columns in the covariance matrix.  

In all of the above cases the variance_multiplier keyword is optional. If omitted, it is 

assumed to be 1.0. 

The following should be noted. 

1. A covariance matrix must be positive definite. 

2. If the first or second of the above COVARIANCE_MATRIX block protocols is 

adopted, then the order of rows and columns of the covariance matrix (which 

corresponds to the order of parameters listed either within the matrix file itself or in a 

user-supplied parameter list file) is arbitrary. Any of the utility programs documented 

herein which reads a parameter uncertainty file will re-arrange matrix rows and 

columns so that they correspond to the order of adjustable parameters supplied in the 

PEST control file on which the current inverse problem is based. 

3. A user-supplied covariance matrix need not describe all of the parameters associated 

with the current inverse problem, for it need only pertain to a subset of these. Other 

parameters can be associated with other COVARIANCE_MATRIX blocks and/or can 

be cited in one or more STANDARD_DEVIATION blocks supplied in the same 

uncertainty file. However a covariance matrix must not be associated with any 

parameters which do NOT pertain to the current inverse problem. 

4. If a parameter is log-transformed, the variance and covariances pertaining to that 
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parameter as supplied in a covariance matrix file must in fact pertain to the log of that 

parameter. 

2.6 Run Results File 

PEST_HP writes a run results file if it is run with the “/f” switch, or if the RRFSAVE control 

variable is set to “rrfsave”. This file records the outcomes of a series of model runs. 

Parameter values, and the values of model outputs calculated using these parameter values, 

are recorded for all of these runs. 

The run results file is an ASCII (i.e. text) file; figure 2.6 illustrates its contents.  

* case dimensions 

       104        1445 

* parameter names 

k_ppt1 

k_ppt2 

.. 

* observation names 

well01_1 

well02_1 

.. 

* parameter set index 

    1 

* parameter values source 

file prandom1.par 

* parameter values 

  0.8218973 

   1.136450 

.. 

* model output values 

   4.106813 

   2.810568 

.. 

* parameter set index 

    2 

* parameter values source 

file prandom2.par 

* parameter values 

   1.694685 

   1.741825 

etc 

Figure 2.6 Part of a run results file. 

The first part of a run results file is its “header”. This is comprised of three subsections. Each 

subsection begins with a line on which is recorded the “*” character, followed by a space, 

followed by the name of the subsection. The first subsection (“case dimension”) list the 

number of parameters and observations that are featured in the run results file. (Note that 

prior information equations are not featured in a run results file.) Then, in the “parameter 

names” and “observation names” sections, the names of parameters and observations are 

listed.  

Following the header section, a series of sets of parameter values and corresponding model 

output values (i.e. the model-generated counterparts to observations) are provided. Each of 

these sets is endowed with a “parameter set index”. Run results file protocol dictates that 

these indices start at 1, and are incremented by 1 for each parameter and corresponding model 

output set. Parameter values are listed in the “parameter values” subsection, while model 
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output values are listed in the “model output values” subsection. A further subsection is 

entitled “parameter values source”. This section must contain a single entry; it allows the 

program which writes the run results file to record where the parameter values came from. 

This may assist later processing of the file. 

Two model output values have special meaning. If the value of any model output associated 

with a particular parameter set is -1.1E35, this is indicative of a failed model run. Meanwhile, 

a model output value of -1.22E35 indicates an abandoned model run. Normally all model 

outputs associated with a particular parameter set will be endowed with these values if even 

one of them is. 

2.7 PAROBS File 

The first part of a PAROBS file is identical to a parameter value file. It lists parameter names 

and values, together with parameter SCALE and OFFSET values; normally the later are 1.0 

and 0.0 for all parameters. As for a parameter value file, the first line of a PAROBS file 

contains values for the PEST control variable PRECIS and DPOINT. 

Immediately following parameter values are model-calculated values for observations. Each 

line in this section of the file has two entries. The first is an observation name; the second is 

the model-calculated value of that observation. Model output values of -1.11E35 and 

-1.22E35 have the same meaning as for a run results file. 

Figure 2.7 shows part of a PAROBS file. 

single point 

        k_ppt1     3.95511010         1.000         0.000 

        k_ppt2     3.49892220         1.000         0.000 

        k_ppt3    0.704972890         1.000         0.000 

        k_ppt4    0.658135090         1.000         0.000 

        k_ppt5     1.34603540         1.000         0.000 

.. 

      k_ppt103     2.20401640         1.000         0.000 

      k_ppt104    5.436436300E-02     1.000         0.000 

      well01_1     5.74087200 

      well02_1     5.56643400 

      well03_1     5.73060000 

      well04_1     4.14758000 

etc 

Figure 2.7 A PAROBS file. 
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3. Checking Utilities 

3.1 Introduction 

This chapter documents utility programs that can be used to test the integrity of a PEST input 

dataset, and/or various components of that dataset. They are normally used prior to running 

PEST, either during the initial stages of inverse problem definition, or later in the process 

when PEST datasets are manipulated with addition or subtraction of Tikhonov regularisation 

and/or in preparation for post-calibration linear or nonlinear uncertainty analysis. 

A utility for checking a SENSAN input dataset is also described in this chapter. 

3.2 TEMPCHEK 

Program TEMPCHEK checks that a PEST template file follows the correct protocol. 

Specifications and syntax for PEST template files are provided in chapter 2 of part I of this 

manual. 

If provided with a set of parameter values, TEMPCHEK can also be used to generate a model 

input file from a template file. It populates a model input file with parameter values in the 

same way that PEST does. Once a model input file has been built, the model can be run on 

the basis of this file. It can then be verified that the model experiences no difficulties in 

reading a model input file generated by TEMPCHEK, and therefore by PEST. 

TEMPCHEK is run using the command 

tempchek tempfile [modfile [parfile]] 

where 

tempfile is the name of a template file, 

modfile is the name of a model input file to be generated by TEMPCHEK 

(optional), and 

parfile  is the name of a PEST parameter value file (also optional). 

The simplest way to run TEMPCHEK is to use a command such as 

tempchek model.tpl 

When invoked in this way, TEMPCHEK simply reads the template file model.tpl, checking it 

for breaches of PEST protocol. It writes any errors that it finds to the screen. If desired, these 

errors can be redirected to a file using the “>” symbol on the TEMPCHEK command line. 

Thus to run program TEMPCHEK, directing it to write any errors found in the template file 

model.tpl to the file errors.chk, the following command should be used. 

tempchek model.tpl > errors.chk 

If no errors are encountered in the template file, TEMPCHEK informs you of this through an 

appropriate screen message. This message also informs you of the number of parameters that 

TEMPCHEK identified in the template file. TEMPCHEK lists these parameters in a file 

named file.pmt, where file is the filename base of the template file which it reads. If the 

template file has no extension TEMPCHEK simply adds the extension “.pmt” to the name of 

the template file. If desired, this file can be easily modified to become a parameter value file. 

TEMPCHEK can then be used to generate a model input file on the basis of parameter values 

which you provide in this modified file (see below). 
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If a parameter is cited more than once in a template file, the parameter is nevertheless written 

only once to file file.pmt; also, it is counted only once when TEMPCHEK sums the total 

number of parameters featured in the template file. 

If you wish to use TEMPCHEK to generate a model input file you must supply it with the 

name of the template file upon which the model input file is based, the name of the model 

input file which it must generate, and the values of all parameters named in the template file. 

To run TEMPCHEK in this fashion, enter a command such as 

tempchek model.tpl model.in 

or 

tempchek model.tpl model.in pestcase.par 

The name of the parameter value file is optional. If you don't supply a name, TEMPCHEK 

generates the name itself by replacing the extension used in the template filename with the 

extension “.par”; if the template file has no extension, “.par” is simply appended to the name 

of the template file. Hence the naming convention of the parameter value file is in accordance 

with that used by PEST which generates such a file at the end of every iteration of its 

inversion process. See section 2.2 of this manual for specifications of a parameter value file. 

TEMPCHEK writes a model input file in an identical fashion to the way that PEST writes a 

model input file. Thus the PRECIS, DPOINT and parameter-specific SCALE and OFFSET 

variables cited in a parameter value file have the same roles when this file is used by 

TEMPCHEK as they do when it is used by PEST. 

If TEMPCHEK finds a parameter in a template file which is not listed in the parameter value 

file which it is asked to read, it terminates execution with an appropriate error message. 

However the parameter value file can contain more parameters than are cited in the template 

file; these extra parameters are ignored when generating the model input file. This situation 

may occur if your model has a number of input files and each has a complimentary template 

file. A single parameter value file can be used to provide values for parameters cited in all 

template files. 

3.3 INSCHEK 

INSCHEK checks PEST instruction files. Like TEMPCHEK it can be used in two modes. In 

the first mode it simply checks that an instruction file has no syntax errors and respects the 

specifications set out in section 2.3 of part I of this manual. In its second mode of operation it 

is able to read a model output file using the directions contained in the instruction file; it then 

writes a file listing all observations cited in the instruction file together with the values of 

these observations as read from the model output file. In this way you can verify that not only 

is your instruction set syntactically correct, but that it reads a model output file in the way it 

should. 

INSCHEK is run using the command 

inschek insfile [modfile] 

where  

insfile   is a PEST instruction file, and 

modfile  is a model output file to be read by INSCHEK (optional). 

The simplest way to run INSCHEK is to use a command such as 

inschek myfile.ins 
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When invoked in this way, INSCHEK simply reads the instruction file myfile.ins, checking 

that every instruction is valid and that the instruction set is consistent. If it finds any errors it 

writes appropriate error messages to the screen. If you wish, you can redirect this screen 

output to a file by using the “>” symbol on the command line. Thus to run INSCHEK such 

that it records any errors found in the instruction file myfile.ins to the file errors.chk, use the 

command 

inschek myfile.ins > errors.chk 

If no errors are found in the instruction file myfile.ins, INSCHEK informs you of how many 

observations it identified in the instruction set and lists these observations to file.obf, where 

file is the filename base (i.e. the filename without its extension) of insfile; if insfile has no 

extension, the extension “.obf” is simply appended to the filename. 

For an instruction set to be useable by PEST it must do more than simply obey PEST 

protocol; it must also read a model output file correctly. You can check this by invoking 

INSCHEK with a command such as 

inschek myfile.ins modelout.dat 

When run in this way, INSCHEK first checks myfile.ins for syntax errors; if any are found it 

writes appropriate error messages to the screen and does not proceed to the next step. 

Alternatively, if the instruction set contained in myfile.ins is error free, INSCHEK reads the 

model output file modelout.dat using the instruction set. If any errors are encountered in this 

process, INSCHEK generates an appropriate error message and abandons execution; such 

errors may arise if, for example, INSCHEK finds a blank space where a number should be, 

encounters the end of the model output file before locating all observations, etc. However if 

INSCHEK reads the file without trouble, it lists all observations cited in the instruction set, 

together with their values as read from modelout.dat to file.obf, where file is the filename 

base of insfile; in the present example this is file myfile.obf. Figure 2.2 shows a typical 

INSCHEK-generated observation value file. 

3.4 PESTCHEK 

PESTCHEK should be used when all preparations for a PEST run are complete, i.e. when all 

template files, instruction files and the PEST control file which “brings it all together” have 

been prepared. PESTCHEK reads the PEST control file, making sure that all necessary items 

of information are present in this file and that every item is consistent with every other item 

(for example that logarithmically-transformed parameters do not have negative lower bounds, 

that RELPARMAX is greater than unity if at least one parameter is free to change sign during 

the inversion process, etc.). As PEST does not carry out consistency checks such as these, it 

is essential that PESTCHEK be used to check all input data prior to running PEST. 

PESTCHEK also carries out some of the tasks undertaken by programs TEMPCHEK and 

INSCHEK in that it checks all template and instruction files cited in the PEST control file for 

correct syntax. Unlike TEMPCHEK and INSCHEK however, PESTCHEK does not generate 

a model input file nor read a model output file; nevertheless it does check that all parameters 

and observations cited in the PEST control file are also cited in the template and instruction 

files referenced in the PEST control file, and that parameters and observations cited in 

template and instruction files are also listed in the PEST control file. 

PESTCHEK is run using the command  

pestchek case 



Checking Utilities 14 

 
 

where 

case is the filename base of a PEST control file.  

No filename extension should be provided here; an extension of “.pst” is added 

automatically. This is the same filename base as that which should be provided to PEST on 

its command line; see section 5.1 of part I of this manual. PESTCHEK reads an identical 

dataset to PEST. 

PESTCHEK writes any errors that it encounters to the screen. If you wish, error messages 

can be redirected to a file using the “>” symbol on the PEST command line. Thus to check 

the dataset contained in the PEST control file, calib.pst, and the template and instruction files 

cited therein, directing any error messages to the file errors.chk, invoke PESTCHEK using 

the command 

pestchek calib > errors.chk 

If PESTCHEK finds one or a number of errors in your input dataset it is important that you 

re-run PESTCHEK on the dataset after you have corrected the errors. This is because 

PESTCHEK may not have read all of your input dataset on its first pass; depending on the 

errors it finds, it may not be worthwhile (or possible) for PESTCHEK to read an input dataset 

in its entirety once an error condition has been established. Hence, once you have rectified 

any problems that PESTCHEK may have identified in your input dataset, you should submit 

it to PESTCHEK again, being content that the data is fully correct and consistent only when 

PESTCHEK explicitly informs you that this is the case. 

Optionally, PESTCHEK can be run using a command line switch. If PESTCHEK is run using 

the command 

pestchek case /s 

then PESTCHEK does not check any of the template and instruction files cited in the PEST 

control file for errors and for consistency with the PEST control file itself. In fact, it does not 

even check to see whether these files actually exist; instead it confines its checking to the 

PEST control file itself. Nor does PESTCHEK issue any warning messages, for these too are 

suppressed when it is run with the “/s” switch. 

3.5 SENSCHEK 

SENSAN, described in chapter 17 of part I of this manual, is a basic PEST-compatible 

sensitivity analyser. It has its own control file which cites template and instruction files which 

are used to respectively write model input files and read model output files. Parameter vales 

used as a basis for sensitivity analysis are provided to SENSAN through a parameter 

variation file. 

SENSAN checks the contents of a SENSAN control file, and all other files cited therein, for 

correctness and consistency. It is run using the command 

senschek sencase 

where sencase is the name of a SENSAN control file. If the latter possesses an extension of 

“.sns”, then this extension can be omitted from the filename. 

SENSCHEK writes its error messages to the screen. It is important to note that if it detects 

certain errors early in the SENSAN control file, it may not proceed with its checking of the 

remainder of this file, nor of the template and instruction files cited in the SENSAN control 

file, nor of the parameter variation file pertaining to the current case. Thus it is important to 
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ensure that once a SENCHEK-identified error has been rectified, SENSCHEK is run again. 

Only when SENSCHEK explicitly informs you that no errors have been detected in the entire 

SENSAN input dataset is it safe to run SENSAN. 

3.6 JCOCHEK 

Program JCOCHEK reads a PEST control file and a corresponding Jacobian matrix file (i.e. 

JCO file), checking that the two are compatible with each other. It is run using the command 

jcochek case 

where case is the filename base of the PEST control file. JCOCHEK reads case.pst as well as 

case.jco, checking that all adjustable parameters and observations cited in the first of these 

files are cited in the second, and that there are no observations or parameters cited in the JCO 

file that are not also cited in the PEST control file. 

It is important to note that special treatment is accorded to prior information. In particular 

1. If prior information is provided in the PEST control file, but is not cited in the JCO 

file, JCOCHEK declares the two files as being compatible, but issues a warning about 

the absence of prior information. 

2. If prior information is cited in both files, JCOCHEK does not check that sensitivities 

recorded in the JCO file are the same as respective prior information parameter 

coefficients recorded in the PEST control file; it issues a warning to this effect.
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4. Building and Altering a PEST Control File 

4.1 Introduction 

Some of the utility programs described in this chapter are used repeatedly during the 

parameter estimation and uncertainty analysis processes. PARREP, PWTADJ1, PWTADJ2, 

ADDREG1, SUBREG1 and WTFACTOR are examples of these. PESTGEN is an older 

program whose role has largely been supplanted by members of the PEST Groundwater and 

Surface Water Utility suites. The latter can build complex PEST input datasets which include 

spatial parameters such as pilot points, and time-series observations such as river flow and 

quantities derived therefrom. The OBSREP utility can be used in conjunction with PARREP 

to build a PEST input dataset comprised of calibrated parameters together with model-

calculated observations based on these parameters. This can provide a starting point for 

model-based hypothesis testing. PARAMFIX and SIMCASE are older programs that may 

still find some use in PEST input dataset manipulation. 

4.2 PESTGEN 

PESTGEN generates a PEST control file. In most cases this file will need to be modified 

before PEST is run, as PESTGEN generates default values for many of the PEST input 

variables recorded in this file; it is probable that not all of these default values will be 

appropriate for your particular problem. 

PESTGEN is run using the command 

pestgen case parfile obsfile 

where 

case  is the case name. No filename extension should be supplied; PESTGEN 

automatically adds the extension “.pst” to case in order to form the 

filename of the PEST control file which it writes. 

parfile  is a parameter value file, and 

obsfile  is an observation value file. 

Specifications of a parameter value file are provided in section 2.2 of this manual while 

specifications of an observation value file are provided in section 2.3. The former file must 

include all parameters used in the current case; these parameters may be cited in one or a 

number of template files. Similarly, the observation value file must provide the names and 

values of all observations used in the current problem; the observations may be cited in one 

or a number of instruction files. The observation values provided in this file may be 

field/laboratory measurements or, if PEST is being run on theoretical data, model-generated 

observation values. In the latter case INSCHEK may be used to generate the file; if there are 

multiple model output files, observation value files generated on successive INSCHEK runs 

can be concatenated to form an appropriate observation value file to provide to PESTGEN. 

PESTGEN commences execution by reading the information contained in files parfile and 

obsfile, checking this information for correctness and consistency. If there are any errors in 

either of these files, PESTGEN lists these errors to the screen and terminates execution. 

Alternatively, if these files are error-free, PESTGEN then generates a PEST control file. 

Files parfile and obsfile provide PESTGEN with the names of all parameters and 

observations which need to be listed in the PEST control file. They also provide PEST with 
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initial parameter values (these must be provided in the second column of the parameter value 

file), the SCALE and OFFSET for each parameter (in the third and fourth columns of the 

parameter value file), the laboratory or field measurement set (in the second column of the 

observation value file), and values for the variables PRECIS and DPOINT (on the first line of 

the parameter value file). For all other variables listed in the PEST control file, PESTGEN 

uses default values. 

For the parameter and observation value files shown in figures 2.1 and 2.2, the PESTGEN-

generated PEST control file is shown in figure 4.1. 

pcf 

* control data 

restart estimation 

    5    19     5     0    1 

    1     1 single point 1 0 0 

  5.0   2.0   0.3  0.03    10 

  3.0   3.0 0.001 

  0.1 

   30  0.01     3     3  0.01     3 

    1     1     1 

* parameter groups 

ro1  relative 0.01  0.0  switch  2.0 parabolic 

ro2  relative 0.01  0.0  switch  2.0 parabolic 

ro3  relative 0.01  0.0  switch  2.0 parabolic 

h1   relative 0.01  0.0  switch  2.0 parabolic 

h2   relative 0.01  0.0  switch  2.0 parabolic 

* parameter data 

ro1  none relative    1.00000   1.00000E+10   1.00000E+10 ro1   1.0000   0.00000 1 

ro2  none relative    40.0000   1.00000E+10   1.00000E+10 ro2   1.0000   0.00000 1 

ro3  none relative    1.00000   1.00000E+10   1.00000E+10 ro3   1.0000   0.00000 1 

h1   none relative    1.00000   1.00000E+10   1.00000E+10 h1    1.0000   0.00000 1 

h2   none relative    10.0000   1.00000E+10   1.00000E+10 h2    1.0000   0.00000 1 

* observation groups 

obsgroup 

* observation data 

ar1    1.21038      1.0  obsgroup 

ar2    1.51208      1.0  obsgroup 

ar3    2.07204      1.0  obsgroup 

ar4    2.94056      1.0  obsgroup 

ar5    4.15787      1.0  obsgroup 

ar6    5.77620      1.0  obsgroup 

ar7    7.78940      1.0  obsgroup 

ar8    9.99743      1.0  obsgroup 

ar9    11.8307      1.0  obsgroup 

ar10   12.3194      1.0  obsgroup 

ar11   10.6003      1.0  obsgroup 

ar12   7.00419      1.0  obsgroup 

ar13   3.44391      1.0  obsgroup 

ar14   1.58278      1.0  obsgroup 

ar15   1.10381      1.0  obsgroup 

ar16   1.03085      1.0  obsgroup 

ar17   1.01318      1.0  obsgroup 

ar18   1.00593      1.0  obsgroup 

ar19   1.00272      1.0  obsgroup 

* model command line 

model 

* model input/output 

model.tpl  model.inp 

model.ins  model.out 

* prior information 

Figure 4.1 A PEST control file generated by PESTGEN.  

Figure 4.1 shows the default values used by PESTGEN in generating a PEST control file. 
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The following features of this file, in particular, should be noted. 

• PESTGEN assumes that PEST will be run in “estimation” mode. Neither a “predictive 

analysis” nor a “regularisation” section is included in the PEST control file.  

• PESTGEN generates a separate parameter group for each parameter; the name of the 

group is the same as that of the parameter. For each of these groups derivatives are 

calculated using a relative increment of 0.01, with no absolute lower limit provided 

for this increment. At the beginning of the inversion process, derivatives will be 

calculated using forward parameter differences, switching to the three-point 

“parabolic” method on the iteration following that for which the objective function 

fails to undergo a relative reduction of at least 0.1 (this being the value that 

PESTGEN gives to the PHIREDSWH control variable). The derivative increment to 

be used in implementing the “parabolic” method is twice the increment used in 

implementing the forward difference method of derivatives calculation. 

• No prior information is supplied. 

• No parameters are tied or fixed; no parameters are log-transformed and changes to all 

parameters are relative-limited (with a RELPARMAX value of 3.0). The upper bound 

for each parameter is provided as 1.0E10, while the lower bound is -1.0E10. It is 

strongly suggested that you modify these bounds to suit each parameter. It is also 

recommended that you consider log-transforming some (or all) parameters for greater 

inversion efficiency. Note, however, that the lower bound of a log-transformed 

parameter must be positive and that its changes must be factor-limited. 

• All observations are provided with a weight of 1.0. 

• PESTGEN assumes that the model is run using the command “model”. It also 

assumes that the model requires one input file, namely model.inp, for which a 

template file model.tpl is provided. It further assumes that all model-generated 

observations can be read from one output file, namely model.out, using the 

instructions provided in the instruction file model.ins. You will almost certainly need 

to alter these names. If there are, in fact, multiple model input and/or output files, 

don’t forget to alter the variables NTPLFLE and NINSFLE in the “control data” 

section of the PEST control file. 

• The PESTGEN default values for all other PEST control variables can be read from 

figure 4.1. 

Once you have made all necessary changes to the PESTGEN-generated PEST control file, 

you should check that your input dataset is complete and consistent using program 

PESTCHEK. If PESTCHEK informs you that all is correct, then you can run PEST. 

4.3 PARREP 

Program PARREP replaces initial parameter values provided in a PEST control file by 

another set of values, the latter being supplied in a PEST parameter value file. See section 2.2 

of this manual for specifications of a parameter value file. 

Recall from Section 5.3.2 of part I of this manual that in the course of the inversion process 

PEST writes a parameter value file every time it improves its parameter estimates. After a 

PEST run has finished (either of its own accord or manually halted), optimised parameter 

values can be found in the parameter value file. The parameter value file possesses the same 
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filename base as the PEST control file but has an extension of “.par”. Because it has such a 

simple structure, a parameter value file can also be easily built by the user with the help of a 

text editor.  

PARREP is useful when commencing a new PEST run where an old run finished. An updated 

PEST control file can be produced by replacing parameter values in the old file with the best 

parameter values determined during the previous PEST run as recorded in the parameter 

value file written during that run. Recommencing a PEST run in this way, rather than through 

use of the “/r”, “/j”, “/s” or “/d” switches, allows you to alter certain PEST control variables, 

fix or tie certain parameters, or adjust PEST’s management of the parameter estimation 

process in other ways, prior to commencement of the new run. 

PARREP is also useful when undertaking a single model run on the basis of a certain set of 

parameters in order to calculate the objective function. Simply create a new PEST control file 

using PARREP as described above, and set NOPTMAX to zero in that file. 

PARREP is run using the command 

parrep parfile pestfile1 pestfile2 [new_noptmax] 

where 

parfile   is the name of a parameter value file, 

pestfile1   is the name of an existing PEST control file,  

pestfile2   is the name for the new PEST control file, and 

new_noptmax  optionally provides a new value for NOPTMAX. 

When PARREP replaces parameter values in the existing PEST control file by those read 

from the parameter value file, it does not check that each parameter value lies between its 

upper and lower bounds, that log-transformed parameters are positive, etc. Hence, especially 

if using a manually-created parameter value file, it is a good idea to run PESTCHEK before 

running PEST to ensure that all is consistent and correct. 

A special aspect of PARREP’s behaviour is worthy of note. If a parameter is tied or fixed in 

the existing PEST control file which PARREP reads, PARREP will not object if that 

parameter is omitted from the parameter value file that is provided to PARREP. The value of 

a fixed parameter is simply transferred from the existing PEST control file to the new PEST 

control file. The value of a tied parameter omitted from the parameter value file is calculated 

from the new value assigned to its parent parameter on the assumption that the ratio between 

the two remains the same in new PEST control file as it was in the old PEST control file. 

4.4 OBSREP 

OBSREP does for observations what PARREP does for parameters. OBSREP reads 

optimised model outputs corresponding to observations and prior information from a 

“residuals file” produced as an outcome of a previous PEST run. It then substitutes these 

values for “observed values” in the PEST control file. (It should be obvious from this that if 

both PARREP and OBSREP are run after completion of a PEST run, the objective function 

calculated on the basis of the new PEST control file should be zero.) 

OBSREP is run using the command 

obsrep resfile pestfile1 pestfile2 

where 

resfile  is the name of a “residuals file” written by PEST (extension “.res” or 
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“.rei”), 

pestfile1  is the name of an existing PEST control file, and 

pestfile2  is the name of the new PEST control file to be written by OBSREP. 

In most cases the residuals file resfile will have been produced by PEST on the basis of a run 

undertaken using pestfile1 as the PEST control file. However this does not have to be the 

case. OBSREP will work correctly as long as every observation and prior information 

equation cited in the pestfile1 PEST control file is also cited in the resfile residuals file. If 

resfile cites other observations and/or prior information items, and/or these are listed in a 

different order in resfile from that prevailing in pestfile1, OBSREP will not object. However 

if any observations or prior information items cited in pestfile1 are missing from resfile, 

OBSREP will cease execution with an appropriate error message. 

4.5 PARAMFIX 

4.5.1 General 

PARAMFIX can be used to modify complex PEST control files (such as may be constructed 

for the use of PEST in “regularisation” mode), saving you the time (and propensity for error) 

that would result from making such file modifications by hand. Alterations facilitated by the 

use of PARAMFIX are those associated with the introduction of “outside information” on 

parameter values to the inversion process. Two methods of using such information can be 

accommodated, the first being the fixing of certain parameters, and the second being 

introduction of preferred values for certain parameters through prior information. Where 

many parameters are being estimated, and where prior information equations pertaining to 

many or all of these parameters are already present within a PEST control file, alteration of 

an existing PEST control file to accommodate the use of this “outside information” can be a 

very tedious process if performed manually. PARAMFIX removes much of this tedium. 

Use of PARAMFIX is particularly convenient where PEST is being used to calibrate a spatial 

model (for example a groundwater model) and parameterisation of the model domain is 

undertaken through the use of pilot points (see manuals of the PEST Groundwater Data 

Utilities and PLPROC for more details). Thanks to the use of PEST’s regularisation 

functionality, many parameters can be estimated through this process (thus allowing the 

model to accommodate the spatial heterogeneity that is a fundamental part of most natural 

systems), numerical stability being maintained through the use of a set of “regularisation 

constraints”. The latter can be supplied as either observations or as prior information, and can 

take many forms. One form is as a series of “uniformity conditions” in which the parameter 

value assigned to each pilot point is linked to those of many or all of its neighbouring points 

through a set of prior information equations expressing the desire that pertinent parameter 

value differences are zero (heterogeneity is thus introduced to the model domain only where 

necessary to achieve model calibration). In some modelling contexts, prior information 

equations expressing this condition throughout the model domain can number in the 

thousands, with each such equation involving just two parameters. If the user then decides 

that a particular parameter should be fixed, all prior information equations citing that 

parameter must be either deleted or modified, for prior information cannot be supplied for 

parameters which are not adjusted through the inversion process. If the required 

modifications to prior information equations are done by hand, the chances of making a 

serious error are enormous. 

While PARAMFIX carries out limited checking of the PEST control file which it must 
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modify, its error checking is not complete; it simply assumes that the input PEST control file 

is correct. Hence PESTCHEK should be used to validate the input PEST control file before 

running PARAMFIX. If this is not done, and if there is a problem with the PEST control file 

read by PARAMFIX, the outcome of the control file modification process undertaken by 

PARAMFIX will be unpredictable. Similarly, after PARAMFIX has written its new PEST 

control file, the latter should also be checked with PESTCHEK for, under certain 

circumstances it is not impossible for PARAMFIX to introduce small inconsistencies into this 

file. 

4.5.2 The Parameter Fix File 

PARAMFIX requires two input files. One of these is an existing PEST control file (which it 

modifies and re-writes to a file of a different name); the other is a “parameter fix file” which 

contains the information required by PARAMFIX upon which to base its modifications of the 

existing PEST control file. The parameter fix file has a simple format, and can be prepared 

using a text editor. A parameter fix file is illustrated in Figure 4.2.  

ro5     fix_param     10.0   retain_prior 

ro2     fix_param     100.0  remove_prior 

ro7     fix_param     5.0    remove_prior 

ro6     fix_param     6.0    retain_prior 

thick1  prior_info    4.0    log         5.0   group1 

thick2  prior_info    4.0    none        5.0   group2 

Figure 4.2 A parameter fix file.  

Each line of a parameter fix file contains either 4 or 6 entries. The first entry must be the 

name of a parameter involved in the current parameter estimation process. This parameter 

must feature in the “parameter data” section of the PEST control file on which that process is 

based. If it does not, PARAMFIX will cease execution with an appropriate error message. 

As mentioned above, there are two ways in which “outside information” pertaining to a 

parameter can be introduced to the inversion process. The first is through prior information, 

while the second is through fixing a parameter at a certain value. In the former case, the 

second entry on the pertinent line of the parameter fix file should be “prior_info”; in the latter 

case the entry should be “fix_param”. 

The third entry on each line of the parameter fix file must contain the preferred value for the 

parameter whose name leads the line. This is the value at which the parameter will be fixed 

(for the “fix_param” option), or the “preferred value” assigned to the parameter through a 

prior information equation (for the “prior_info” option). Note that PARAMFIX checks that 

the value assigned to the parameter in this manner is between its upper and lower bounds as 

recorded in the PEST control file. If this is not the case, PARAMFIX will cease execution 

with an appropriate error message. 

A fixed parameter cannot feature in any prior information. If an existing PEST control file 

contains one or more prior information equations which include a parameter that is to be 

fixed, those equations must be modified. Two options exist for modifying such an equation. 

The first is simply to remove the equation from the PEST control file. The second is to 

remove only the terms of the prior information equation that pertain to newly-fixed 

parameters; the values of those terms are then subtracted from the right hand side of the prior 

information equation after substituting parameter values read from the parameter fix file. The 

first of these options is implemented if the fourth entry on the pertinent line of the parameter 

fix file is “remove_prior”. The second option is implemented if the fourth entry on the 
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pertinent line of the parameter fix file is “retain_prior”. 

If outside parameter information is introduced to the inversion process through the addition 

of new prior information equations (i.e. if the second entry on the pertinent line of the 

parameter fix file is “prior_info”), then a little extra information must be supplied. As has 

already been mentioned, the preferred value for the parameter must be supplied as the third 

item on the line. The fourth item on the line must be “log” or “none”. If it is supplied as 

“log”, the prior information equation written by PARAMFIX for that parameter will actually 

pertain to the log of the parameter rather than to the parameter itself. However PARAMFIX 

will only allow this if the parameter is already logarithmically transformed in the parameter 

estimation process as designated by an appropriate PARTRANS value for that parameter in 

the “parameter data” section of the PEST control file. Similarly, if the fourth entry on the 

pertinent line of the parameter fix file is supplied as “none”, indicating that the new prior 

information equation is to pertain to the native parameter rather than to the log-transformed 

parameter, this will only be allowed if the parameter is designated as untransformed in the 

parameter estimation process (PARTRANS value of “none”). Note that the parameter value 

supplied as the third entry on the pertinent line of the parameter fix file (the parameter’s 

preferred value) is log-transformed prior to being used in a prior information equation if the 

fourth entry is “log”. 

The fifth and sixth entries on any line of a parameter fix file which pertains to a new prior 

information equation must contain the weight to be assigned to the new prior information 

equation and the observation group to which the new equation should be assigned. The 

weight can be zero or positive. The observation group name may pertain to a group which 

already exists in the PEST control file to be modified by PARAMFIX, or it may pertain to a 

new observation group. In the latter case PARAMFIX will add the name of the group to the 

“observation groups” section of the PEST control file and increment the value of the 

NOBSGP variable accordingly. 

4.5.3 Running PARAMFIX 

PARAMFIX is run using the command 

paramfix fixfile pestfile1 pestfile2 

where 

 fixfile is the name of a parameter fix file, 

 pestfile1  is the name of an existing PEST control file, and 

 pestfile2  is the name of the PEST control file to be written by PARAMFIX. 

As mentioned above, it is important that the integrity of both the input and the output PEST 

control files are checked using PESTCHEK. 

4.6 ADDREG1 

ADDREG1 adds a simple set of regularisation prior information equations to a PEST control 

file. An equation is added for each adjustable (i.e. non-tied and non-fixed) parameter cited in 

this file. In each of these equations the parameter (or its log, depending on its transformation 

status) is assigned a value equal to its initial value (or the log of its initial value). Thus it is 

assumed (as is good practice in undertaking regularised inversion) that parameter initial 

values are preferred values. 

All prior information equations are assigned a weight of 1.0. Each is provided with a name 



Building and Altering a PEST Control File 23 

 
 

which is the same as the name of the parameter which it cites.  

Collectively, the prior information equations added to the PEST control file by ADDREG1 

comprise a Tikhonov regularisation scheme. ADDREG1 assigns each equation to a 

regularisation group whose name begins with “regul_”. ADDREG1 provides the second part 

of this name with the first six letters of the name of the parameter group to which the 

pertinent parameter belongs. With parameter regularisation prior information equations thus 

assigned to different regularisation groups, the IREGADJ variable in the “regularisation” 

section of the PEST control file is set to 1 to allow PEST to vary regularisation weights 

between groups, thus (hopefully) complimenting the information content of the calibration 

dataset as it pertains to parameters belonging to each parameter group. If such division of 

regularisation prior information equations into different groups is ether too restrictive or is 

insufficiently reflective of the different roles played by different parameter types, you should 

alter the groups to which parameters are assigned in the original PEST control file and re-run 

ADDREG1, or manually edit the ADDREG1-generated PEST control file. Note that the 

names of the new regularisation groups are added to the “observation groups” section of the 

new PEST control file; hence the ADDREG1-generated PEST control file should receive the 

approval of PESTCHEK. 

ADDREG1 is run using the command 

addreg1 case1 case2 

where  

case1 is the filename base or full name of an existing PEST control file, and  

case2  is the filename base or full name of the PEST control file which 

ADDREG1 must write. 

Regardless of the PESTMODE setting of the first PEST control file, ADDREG1 sets the 

PESTMODE control variable to “regularisation” in the PEST control file which it writes. It 

also writes a “regularisation” section to the new PEST control file. If a “regularisation” 

section is present in the old PEST control file, values for PHIMLIM and PHIMACCEPT are 

transferred from the old file to the new one. If not, ADDREG1 assigns PHIMLIM a value of 

1.0E-10 and PHIMACCEPT a value of 1.05E-10 in the new PEST control file; these may 

warrant alteration by the user. The FRACPHIM variable is assigned a value of 0.1 in the new 

PEST control file. Thus, during any iteration of the inversion process, the target objective 

function “seen” by PEST is 0.1 times its value at the beginning of that iteration. Also, as 

stated above, ADDREG1 assigns IREGADJ a value of 1. 

It is very good practice to restrict the names of parameter groups in an existing PEST control 

file to 6 characters or less (even though 12 characters are allowed). When ADDREG1 forms a 

regularisation group name by prefixing a parameter group name with the text string “regul_”, 

characters in the parameter group name after the sixth are lost. If two or more parameter 

group names are greater than six characters in length but have the first six characters in 

common, then the observation group names assigned to prior information equations which 

cite parameters from these different parameter groups will be the same. As well as this, there 

will then be duplication of observation group names in the “observation groups” section of 

the PEST control file as ADDREG1 adds these new observation group names to existing 

observation group names. PESTCHEK will detect this error so that you will then have the 

opportunity to rename observation groups and re-assign prior information equations to re-

named groups accordingly. However keeping parameter group names to 6 characters or less 

in length will forestall the occurrence of this error altogether.  
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4.7 ADDREG2 

ADDREG2 is very similar to ADDREG1. However, unlike ADDREG1, ADDREG2 requires 

that the user provide a value for the target measurement objective function (i.e. PEST 

variable PHIMLIM) for inclusion in the “regularisation” section of the new PEST control 

file. PHIMACCEPT is automatically set to 2 percent higher than this. Optionally, ADDREG2 

allows a user to supply values for the FRACPHIM and IREGADJ control variables. 

The only other difference between ADDREG2 and ADDREG1 is that ADDREG2 insists that 

the PEST control file which it reads has PESTMODE set to “estimation”. Of course, 

PESTMODE is set to “regularisation” in the PEST control file which it writes. 

ADDREG2 is run using the command 

addreg2 case1 case2 phimlim [fracphim] [iregadj] 

where  

case1 is the filename base or full name of an existing PEST control file,  

case2  is the filename base or full name of the PEST control file which 

ADDREG2 must write,  

phimlim is the value of the target measurement objective function, PHIMLIM, 

fracphim (optional unless a value is supplied for IREGADJ) is the value for the 

FRACPHIM regularisation control variable, and 

iregadj is the value for the IREGADJ regularisation control variable. 

If a value is not supplued for FRACPHIM, ADDREG2 sets it to 0.1. If a value is not 

supplued for IREGADJ, ADDREG2 provides its own value of 1. If a value of 4 is provided 

for IREGADJ through the command line, then ADDREG2 sets the NOPTREGADJ and 

REGWEIGHTRAT regularisation control variables to 1 and 20 respectively. If a value of 5 is 

provided for IREGADJ through the command line, then ADDREG2 sets the NOPTREGADJ, 

REGWEIGHTRAT and REGSINGTHRESH regularisation control variables to 1, 20 and 

1.0E-5 respectively. 

4.8 ADDCOVMAT 

Observation groups that are created for regularisation purposes by ADDREG1 and 

ADDREG2 are not ascribed any covariance matrices. There are many inversion contexts, 

especially those where parameters have spatial connotations, where a covariance matrix is 

required. If parameters pertain to pilot points, covariance matrices can be built using 

programs such as PPCOV, PPCOV3D, PPCOV_SVA and PPCOV3D_SVA from the PEST 

Groundwater Data Utilities suite. The names of the covariance matrices that are produced by 

programs such as these can be added manually to PEST control files written by ADDREG1 

and ADDREG2. Alternatively, this process can be automated using ADDCOVMAT. 

Automation can be of assistance where it must be repeated many times, possibly as part of a 

batch process that attempts to exert calibration constraints on a multiplicity of parameter 

fields. 

ADDCOVMAT is run using the command 

addcovmat case1 covmatfile case2 

where  
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case1 is the filename base or full name of an existing PEST control file,  

covmatfile  is a file which links the name of a covariance matrix file to an 

observation group, and 

case2  is the new PEST control file written by ADDCOVMAT. 

An example of a covmatfile file is provided in Figure 4.3. 

# observation_group_name  covariance_matrix_file 

  k1x_regul               k1x_cov.mat 

  k2x_regul               k2x_cov.mat 

Figure 4.3 An example of an ADDCOVMAT input file which links covariance matrix 

filenames to observation group names. 

Any line beginning with the “#” character is treated as a comment. The two entries on each 

non-comment line must be space-delimited, with the name of an observation group on the left 

and the name of a covariance matrix file on the right. The latter must be surrounded by quotes 

if it contains a space.  

Note that, as is discussed above, ADDREG1 and ADDREG2 provide names for observation 

groups used for regularisation purposes themselves. These names are based on the names of 

parameter groups; a “regul” suffix is included in the name. 

4.9 SUBREG1 

As the name suggests, SUBREG1 performs the opposite task to that of ADDREG1; it 

subtracts regularisation from a PEST control file. It is run using the command 

subreg1 case1 case2 

where 

case1  is the filename base or full name of an existing PEST control file, and 

case2  is the filename base or full name of a new PEST control file. 

SUBREG1 undertakes the following tasks when writing the new PEST control file. 

1. It alters the PESTMODE variable to “estimation”. 

2. It removes from the “observation groups” section of the PEST control file all 

observation groups whose names begin with “regul”; the value of the NOBSGP 

variable in the “control data” section of the new PEST control file is reduced 

accordingly. 

3. It removes from the “observation data” section of the PEST control file all 

observations that belong to observation groups whose names begin with “regul”; the 

value of the NOBS variable in the “control data” section of the new PEST control file 

is reduced accordingly. 

4. It removes from the “prior information” section of the PEST control file all prior 

information equations that belong to observation groups whose names begin with 

“regul”; the value of the NPRIOR variable in the “control data” section is reduced 

accordingly. 

SUBREG1 does not remove or alter any instruction files. Hence if observations are removed 

from the “observation data” section of the PEST control file, an incompatibility will exist 

between the new PEST control file and the names of instruction files cited in that file. The 

task of rectifying this incompatibility belongs to the user. Do not run PEST on the new PEST 

control file until PESTCHEK gives you the all-clear.  
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4.10 SIMCASE 

SIMCASE stands for “simplify case”. It reads a PEST control file and a corresponding 

Jacobian matrix file (i.e. JCO file). On the basis of information contained within these files it 

writes a new PEST control file and corresponding Jacobian matrix file. These files constitute 

a simplification of the original PEST input dataset, in that the following are omitted from it: 

1. regularisation observations and prior information equations; 

2. any parameters which are tied or fixed; 

3. any parameter groups which contain no members; 

4. any observation groups which contain no members; 

5. any observations whose weights are zero. 

In addition to this, PEST is instructed to run in “estimation” mode in the new PEST control 

file. Furthermore a dummy model command line is provided, as well as dummy template, 

instruction and model input/output filenames. (There is little use in retaining the names of the 

original template and instruction files if parameters and/or observations have been removed 

from the original PEST control file.) 

While SIMCASE cannot be used as a basis for parameter estimation, it and its corresponding 

SIMCASE-generated JCO file can be employed by utility programs such as GENLINPRED 

and members of the PREDVAR and PREDUNC suites for parameter/predictive error and 

uncertainty analysis. The fact that regularisation data has been removed from the PEST input 

dataset facilitates use of these utility programs. 

SIMCASE is run using the command 

simcase case1 case2 

where 

case1 is the filename base or full name of an existing PEST control file, and 

case2  is the filename base or full name of a new PEST control file.  

The integrity of a SIMCASE-produced PEST control file can be checked with the 

PESTCHEK utility; however PESTCHEK must be run with the “/s” switch. Correspondence 

between the newly-created PEST control and Jacobian matrix files can be verified using the 

JCOCHEK utility. 

4.11 WTFACTOR 

WTFACTOR reads one PEST control file and writes another. In doing this it multiplies all 

weights pertaining to a user-nominated observation group by a user-supplied factor. As is 

discussed in part I of this manual, both observations and prior information equations should 

be assigned to one or a number of observation groups. WTFACTOR carries out weights 

multiplication irrespective of whether items belonging to the user-specified observation group 

are observations or prior information equations. 

WTFACTOR is run using the command 

wtfactor pestfile1 obsgroup factor pestfile2 

where 

pestfile1  is the name of an existing PEST control file, 
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obsgroup  is the name of an observation group cited in that file, 

factor  is the weights multiplier for this group, and 

pestfile2  is the name of the new PEST control file written by WTFACTOR. 

For example, to write a new PEST control file named file2.pst in which weights assigned to 

the observation group regul in the PEST control file file1.pst are multiplied by a factor of 

1.0345, WTFACTOR should be run using the command 

wtfactor file1.pst regul 1.0345 file2.pst 

WTFACTOR carries out only minimal checking of the PEST control file which it reads. Thus 

it will overlook many types of errors or inconsistencies that may be present in this file, 

transferring these directly to the PEST control file which it writes. As always, the latter 

should be checked using PESTCHEK before being used by PEST. It is also a good idea to 

check the input PEST control file prior to running WTFACTOR, for WTFACTOR’s 

behaviour can be unpredictable if this file is internally inconsistent or incorrect. 

WTFACTOR is general in its application, being useable with PEST control files pertinent to 

all modes of PEST’s operation. However there is one situation in which it will not 

accomplish its goal of weight multiplication, and will instead cease execution after writing an 

appropriate message to the screen. This occurs where a prior information equation belonging 

to the user-specified observation group is spread over two or more lines of the PEST control 

file and the prior information weight and observation group name are not on the same line. 

An example of such a prior information equation is shown below. 

pi1 1.3 * log(ro1) + 3.2 * log(ro2) = 3.234 1.000 

& obsgroup1 

However WTFACTOR will have no problems if the equation is written as follows. 

pi1 1.3 * log(ro1) + 3.2 * log(ro2) = 3.234  

& 1.000 obsgroup1 

4.12 PWTADJ1 

4.12.1 General 

Prior to estimating parameters using PEST, you must decide what weights should be assigned 

to different observations. In some inversion situations it is wise to assign weights such that 

they are all proportional to the inverse of the standard deviation of measurement noise 

associated with measurements featured in the calibration dataset. In other cases, however, 

weighting strategies should be adopted which accommodate the “structural” nature of model-

to-measurement misfit born of model defects and imperfections of the model as a simulator 

of a real world system. This matter is extensively discussed by Doherty (2015).  

PEST allows observations and prior information equations to be divided into different 

groups. The contributions made to the total objective function by these different groups is 

written to both the screen and to the run record file at the beginning of the inversion process, 

and at the beginning of every iteration of the inversion process as it progresses. One practical 

means through which relative weighting of different observation groups can be established in 

such a way as to accommodate the imperfect nature of models as simulators of real-world 

systems is to undertake the following procedure. 

1. Assign observations to different groups on the basis of their differential information 

content and/or their different measurement types. For example in a groundwater 

model, borehole heads in layer 1 can be assigned to a different observation group 
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from borehole heads in layer 2, while observed head differences between these layers 

can be assigned to a third observation group. 

2. Build a PEST input dataset in which correct within-group weighting has been set for 

all observation groups, but for which the weighting strategy between groups is yet to 

be determined. 

3. Run PEST with the NOPTMAX control variable set to zero. PEST will run the model 

just once and print to the screen, and to its run record file, the contribution made to 

the objective function by each observation group. 

4. In the PEST control file, multiply all weights pertaining to each observation group by 

a group-specific factor such that the contribution made to the objective function by 

each observation group is about the same as that made by every other group after 

these factors are applied.  

If this procedure is followed then, at the beginning of the parameter estimation process at 

least, no observation group will dominate the objective function, nor will be dominated by 

other observation groups. The information contained in each observation group will thus, 

hopefully, be equally “visible” to PEST. 

PWTADJ1 was written to automate this weights adjustment strategy. 

4.12.2 Running PWTADJ1 

PWTADJ1 is run using the command 

pwtadj1 case1 case2 contribution 

where 

case1 is the filename base or name of an existing PEST control file, 

case2 is the filename name or name of a new PEST control file, and 

contribution is a real, positive, number designating the desired contribution of each 

observation group to the overall objective function. 

PWTADJ1 undertakes the following tasks. 

1. It reads the existing PEST control file, ascertaining the names of all observation 

groups cited in that file. 

2. It reads the corresponding run record file, ascertaining the contribution made to the 

objective function by each observation group after the first model run (this being 

based on initial parameter values). 

3. It writes a new PEST control file in which observation weights are adjusted such that, 

based on initial parameter values, the contribution made to the objective function by 

each observation group will be that desired by the user (i.e. the number supplied as 

contribution on the PTWTADJ1 command line). 

Note the following aspects of PWTADJ1 operation. 

1. PWTADJ1 reads files case1.pst and case1.rec, assuming that the latter is the run 

record file corresponding to the former. If these two files are incompatible 

(PWTADJ1 checks only observation group names) PWTADJ1 will cease execution 

with an appropriate error message. 

2. It is the user’s responsibility to run PEST on the basis of the existing PEST control 

file (preferably with NOPTMAX in that file set to zero) in order to generate a run 
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record file in which initial objective function contributions are recorded.  

3. If the PEST control file supplied to PWTADJ1 requests that PEST run in 

“regularisation” mode, PWTADJ1 will not adjust weights assigned to any 

regularisation group; that is, it will not adjust weights for any group whose name 

begins with “regul”. 

4. If a covariance matrix is assigned to a non-regularisation observation group, 

PWTADJ1 will not adjust weights for this group, as weights supplied in the PEST 

control file are not employed for this group; instead PEST calculates a weighting 

matrix for this group from the covariance matrix provided for the group. Because 

PWTADJ1 leaves this matrix untouched, it is the user’s responsibility to multiply all 

elements of this matrix by a pertinent factor if objective function equalisation is to 

take place; this can be achieved using the MATSMUL utility documented elsewhere 

in this manual. To help you in this endeavour, PWTADJ1 writes the required 

adjustment factor to the screen for each affected observation group. 

5. PWTADJ1 adjusts weights for both observations and (non-regularisation) prior 

information. 

6. If the PEST control file supplied to PWTADJ1 requests that PEST run in “predictive 

analysis” mode, PWTADJ1 will not adjust the weight assigned to the single member 

of the observation group named “predict”. (Be very careful when using PWTADJ1 on 

a predictive analysis PEST input dataset. You will certainly need to adjust the value 

of the PD0 predictive analysis control variable after using PWTADJ1. If 

PREDNOISE is set to 1, the weight assigned to the prediction may also require 

adjustment.) 

7. Before running PWTADJ1, you should check the case1 PEST input dataset using 

PESTCHEK. 

8. The PEST control file written by PWTADJ1 retains the same NOPTMAX setting as 

found in the original PEST control file. If NOPTMAX was set to zero in this original 

file, it is important to remember to set it to a higher number before undertaking 

parameter estimation on the basis of the new PEST control file.  

4.13 PWTADJ2 

4.13.1 General 

PWTADJ2 accomplishes post-calibration observation weights adjustment. The PEST control 

file written by PWTADJ2 can then be used in conjunction with linear analysis utilities such 

as GENLINPRED (and programs run by it) described elsewhere in this manual. 

PWTADJ2 is similar in many respects to PWTADJ1. Its task is to adjust weights in a PEST 

control file. However the target objective function for which weights adjustment is sought is 

different from that sought by PWTADJ1. Like PWTADJ2, PWTADJ1 reads the current 

objective function, and the contribution made to that objective function by different 

observation groups, from a run record file associated with a nominated PEST control file; 

objective function details corresponding only to the initial model run are read from this file. 

The aim of PWTADJ2 is to endow each observation with a weight that is the inverse of the 

standard deviation of noise associated with the corresponding measurement. On the 

assumption that the nominated PEST control file contains optimised parameter values (this 
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can be constructed using the PARREP utility if desired), the expected value of the objective 

function corresponding to the first model run should then be roughly equal to the number of 

non-zero-weighted observations comprising the calibration dataset. Similarly, the 

contribution to the objective function made by each observation group should then be roughly 

equal to the number of non-zero-weighted observations comprising the group. Similar 

considerations apply if a covariance matrix is supplied for an observation group instead of 

weights. In that case too, if the covariance matrix is correct in representing the statistics of 

measurement noise, the contribution made to the objective function by the observation group 

should be roughly equal to the number of observations in the group. 

Actually, the situation is a little more complicated than this. If parameter values have in fact 

been estimated by PEST when run in “estimation” mode, then the expected value of the 

objective function is n–m, where n is the number of non-zero-weighted observations and m is 

the number of estimated parameters. Thus an observation weights adjustment process which 

multiplies all observation weights by a factor such that this occurs will ensure that these 

weights approximate the inverse of respective measurement error standard deviations. If any 

observation group employs a covariance matrix instead of weights, then all elements of the 

covariance matrix should be multiplied by the inverse square of the factor by which weights 

are multiplied in order to ensure that the total objective function, and observation-group-

specific contributions to this objective function, achieve their desired values. 

In achieving a target objective function of n or n-m, PWTADJ2 allows the user two options. 

All measurement weights can be multiplied by the same factor to achieve this total. 

Alternatively, a different multiplier can be employed for each observation group such that the 

objective function contribution for each such group is equal to either ng, the total number of 

non-zero-weighted members of the group, or ng(n-m)/n; in the latter case the total objective 

function is n-m. Group-specific post-calibration weights adjustment may be employed in 

order to accommodate the fact that the parameter estimation process may encounter much 

more difficulty in fitting some observation types to field measurements than others. If this is 

taken as an indication of a greater-than-anticipated level of (measurement or structural) noise 

associated with the offending observation type, determination of a group-specific weight 

factor in this manner may allow calculated weights for that group to better approximate the 

inverse of noise standard deviation associated with measurements in the group. It should be 

noted however that while such a strategy may certainly prove useful, alteration of the relative 

weighting of different observation groups in this manner erodes the theoretical basis for 

selection of n-m (rather than simply n) as the expected value of the total objective function 

(though this matters little if m is small). 

A further problem with the n-m concept arises where regularised inversion is undertaken and 

the number of estimated parameters is high (as it often is when an inverse problem is solved 

through regularised inversion). In this case, even though values may be assigned to many 

parameters, the dimensionality of the solution space of the inverse problem may actually be 

quite small, so that the number of parameters that are effectively estimated may be little more 

than for a traditional well-posed parameter estimation problem. Where singular value 

decomposition is employed as a regularisation device, the dimensionality of the calibration 

solution space is equal to the number of pre-truncation singular values. Where Tikhonov 

regularisation, or SVD-assist with a Tikhonov component, is employed, the dimensionality of 

the solution space can only be guessed.  

Despite these limitations, PWTADJ2 can provide a very useful means of replacing weights in 

a PEST control file with those that are approximately inversely proportional to the standard 
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deviation of measurement noise. The “reference variance” or “standard error of weighted 

residuals” therefore becomes equal to 1.0. This can be a useful exercise to perform prior to 

running linear analysis utilities such as GENLINPRED and members of the PREDUNC and 

PREDVAR suites, or in building a PEST control file that is cited in an observation 

uncertainty file (see section 2.5 of this manual). 

4.13.2 Using PWTADJ2 

PWTADJ2 is run using the command 

pwtadj2 case1 case2 use_groups [parameter_correction] 

where 

case1 is the filename base or name of an existing PEST control 

file,  

case2 is the filename base or name of a new PEST control file,  

use_groups must be supplied as “g” or “ng” signifying “groups” or “no-

groups” (this will be further discussed below), and 

parameter_correction is the m of the n–m term; if this item is omitted from the 

command line, m is assumed to be zero. 

Upon commencement of execution, PWTADJ2 reads the nominated PEST control file. Then 

it reads the run record file associated with this PEST control file. It is thus assumed that 

PEST has been run using the nominated PEST control file. However PWTADJ2 only reads 

objective function information pertaining to the first model run from the run record file. 

Hence in most cases that PWTADJ2 is used, the NOPTMAX control variable in the PEST 

control file will have been set to 0 or -2; in the former case only one model run is carried out 

by PEST while in the latter case a Jacobian matrix is also calculated. Furthermore, as 

suggested above, on many occasions the PARREP utility will have been employed to install 

optimised parameter values as initial parameter values in the “parameter data” section of this 

PEST control file. 

As discussed above, PWTADJ2 has two options in performing observation weights 

adjustment. If the “ng” option is chosen for the use_groups control variable, then the 

adjustment factor by which PWTADJ2 multiplies all observation weights is the same for all 

observation groups. However if the “g” option is chosen, then different adjustment factors are 

computed for different groups. In both cases the total objective function after weights 

adjustment will be equal to n–m, where m is selected through the final variable on the 

command line; if this variable is omitted, m is assumed to be zero. If the “g” option is 

selected then, as stated above, PWTADJ2 adjusts weights such that the contribution made to 

the objective function by each group individually is equal to ng(n-m)/n where ng is the 

number of non-zero-weighted observations in a group, and n is the total number of non-zero-

weighted observations in the entire PEST input dataset. 

If, for any observation group, a covariance matrix is used instead of observation weights, 

PWTADJ2 does not alter that covariance matrix. Rather it writes to the screen the factor by 

which all elements of that matrix must be multiplied to achieve the objective function targets 

discussed above. If the covariance matrix is supplied in PEST matrix file format (see section 

2.4 of this manual), multiplication of this covariance matrix by a scalar can be implemented 

using the MATSMUL utility.  

The following aspects of PWTADJ2’s operations should be carefully noted. 

1. If the PEST control file nominated on the PWTADJ2 command line instructs PEST to 
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run in “regularisation” mode, PWTADJ2 does not adjust weights for observations that 

belong to any observation group whose name begins with “regul”. Thus only the 

measurement component of the total objective function is altered and not the 

regularisation component. 

2. If the PEST control file nominated on the PWTADJ2 command line instructs PEST to 

run in “predictive analysis” mode, PWTADJ2 does not adjust the weight assigned to 

the single member of the observation group “predict”, regardless of the setting of the 

PREDNOISE variable. Thus if the calibration process is informative of predictive 

noise, alterations to the weight assigned to the “prediction observation” through which 

this noise level is conveyed to PEST must be made by the user. 

3. Regardless of the NOPTMAX setting in the PEST control file read by PWTADJ2, 

this variable is set to 50 in the PEST control file written by PWTADJ2. (It has been 

found from experience that a user can very easily forget to alter this from its useful 

value of zero in the control file supplied to PWTADJ2, and not realize this until 

he/she returns to a computer expecting to find a completed PEST run, only to find a 

single completed model run.) 

4.14 PSTCLEAN 

From version 15.0 onwards, PEST, BEOPEST, PEST_HP and all commonly-used PEST 

utilities accommodate the presence of PEST++ input data in a PEST control file. As is 

explained in PEST++ documentation, control variables that are used by PEST++ are supplied 

in keyword format on lines that are embedded in a traditional PEST control file. These lines 

are easily identified, as they begin with the characters “++”; they can be placed anywhere 

within the PEST control file. 

A PEST control file can also include comments. These can be placed anywhere on any line of 

this file following the # character. If desired, PEST control variables can precede the # 

character which marks an ensuing comment.  

Ambiguity can arise if a filename that is featured in a PEST control file includes the “#” 

character. PEST-suite programs, including PSTCLEAN, avoid confusion by treating the “#” 

character as the precursor to a comment only if it occurs at the start of a line, or is preceded 

by a space and is not surrounded by matching quotes. Hence a # character that occurs within 

the name of a template, instruction or covariance matrix file or in the name of a model 

command, will not be interpreted as the start of a comment. (If the “#” character is, indeed, 

part of the name of a file and is preceded by a space, then presumably the filename will be 

surrounded by quotes.) 

PSTCLEAN is run using the following command. 

pstclean case1 case2 

where 

case1 is the filename base or name of an existing PEST control file, and 

case2 is the filename base or name of a new PEST control file.  

Note that if only the filename base of a PEST control file is supplied on the PSTCLEAN 

command line, then an extension of “.pst” is assumed. 

Note also that PSTCLEAN removes control variables that are specific to PEST_HP from a 

PEST control file. In particular, if it encounters any of the following variables in the “control 
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data” section of a PEST control file, it removes them: 

• ORR_NOT_FIRST 

• UPTESTLIM 

• RUN_SLOW_FAC 

• RUN_ABANDON_FAC 

• WIN_MRUN_HOURS 

• ZEROSENVAL 

• SOFTSTOPHOURS 

• HARDSTOPHOURS 

• RRFSAVE 
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5. JCO File Construction and Manipulation 

5.1 Introduction 

As is described in part I of this manual, PEST records a Jacobian matrix (i.e. a sensitivity 

matrix) in a Jacobian matrix file whose filename base is the same as that of the PEST control 

file and whose extension is “.jco”. This file (commonly referred to as a “JCO file” herein) has 

many uses. It can be used simply for acquiring knowledge of what model outputs are 

sensitive to what parameters. More commonly it provides a basis for calculation of post-

calibration statistics, for undertaking post-calibration linear error and uncertainty analysis, for 

setup of SVD-assisted inversion, and for implementation of null space Monte Carlo 

uncertainty analysis. 

Purposes for which utilities described in the present chapter are used include the following. 

• Viewing a Jacobian matrix (JACWRIT and JCO2MAT); 

• Transferring a JCO file between WINDOWS and UNIX platforms (JCO2MAT and 

MAT2JCO); 

• Construction of a JCO file from its parts (JCOPCAT and JCOORDER); 

• Matching a JCO file to a PEST control file when the latter is altered (JCO2JCO); 

• Extracting parts of a Jacobian matrix for use by other programs (e.g. JCO2VEC); 

• Creating a Jacobian matrix file for linear functions of model outputs (JCODIFF and 

JCOCOMB); 

• Creating a weighted Jacobian matrix file (WTSENOUT).  

As usual, the order in which programs are described in this chapter reflects similarity of 

function; programs that perform similar roles, or complementary roles, are documented in 

proximity to each other. 

5.2 JACWRIT 

JACWRIT rewrites a binary JCO file in ASCII (i.e. text) format. It is run using the command 

jacwrit jcofile textfile 

where 

jcofile  is the name of a binary Jacobian matrix file written by PEST, and 

textfile  is the name of a text file to which JACWRIT should write the Jacobian 

matrix in a form which is fit for human consumption. 

Note the following. 

• Parameter and observation names are listed in the text file written by JACWRIT; 

hence each sensitivity (i.e. partial derivative) that is recorded in this file can be linked 

to a particular parameter/observation pair. 

• Only adjustable parameters are represented in the file written by JACWRIT; fixed and 

tied parameters are not represented because they are not represented in the JCO file. 

• The sensitivity of a parameter to which another parameter is tied reflects the fact that 

this parameter “carries” at least one other parameter through the inversion process. 

• Derivatives reflect the transformation status of a parameter. Thus if a parameter is 
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log-transformed, the derivative with respect to the log of that parameter is stored in 

the JCO file and recorded in ASCII format by JACWRIT. 

• Rows of the Jacobian matrix are wrapped into successive lines in the JACWRIT-

produced text version of this matrix. 

5.3 JCO2MAT 

JCO2MAT reads a PEST-produced Jacobian matrix file. It re-writes the matrix contained 

therein in PEST matrix file format; this format is described in section 2.4 of this document. 

The Jacobian matrix is then amenable to processing using matrix manipulation utilities 

described elsewhere in this manual. 

JCO2MAT is run using the command 

jco2mat jcofile matfile 

where 

jcofile is the name of a Jacobian matrix file, and 

matfile is the name of the matrix file to which the Jacobian matrix is to be written. 

JCO2MAT can be useful in transferring a binary JCO file between a UNIX platform and a 

WINDOWS platform. (A binary file produced by software that is run on one of these 

platforms is often unreadable by software run on the other.) First convert the JCO file to 

matrix format using JCO2MAT. Next transfer the resulting ASCII file to the other platform 

(possibly running the DOS2UNIX or UNIX2DOS utility as appropriate after making the 

transfer). Then use the MAT2JCO utility on the target platform to write a binary JCO file for 

that platform. 

5.4 MAT2JCO 

MAT2JCO carries out the inverse of the operation carried out by JCO2MAT. It reads a 

matrix file and re-writes the matrix contained therein as a binary JCO file.  

MAT2JCO is run using the command 

mat2jco matfile jcofile 

where 

matfile is the name of a matrix file, and 

jcofile is the name of a new JCO file whose task it is for MAT2JCO to write. 

5.5 JROW2MAT  

JROW2MAT extracts a row of the Jacobian matrix from a JCO file and writes that row as a 

1×m matrix in PEST matrix file format, where m is the number of (adjustable) parameters 

featured in the JCO file.  

JROW2MAT is run using the command 

jrow2mat jcofile obsname matfile 

where 

jcofile  is the name of a Jacobian matrix file,  

obsname  is the name of an observation or prior information item featured in that 

file, and 
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matfile is the name of the matrix file to which the 1×m matrix is to be written. 

In the matrix file written by JROW2MAT, the row name given to the single matrix row is the 

name of the observation or prior information equation pertaining to the extracted row of the 

Jacobian matrix. Meanwhile recorded matrix column names are the names of adjustable 

parameters featured in the Jacobian matrix file. See section 2.4 of this manual for 

specifications of a PEST matrix file. 

5.6 JROW2VEC  

JROW2VEC performs the same function as JROW2MAT followed by MATTRANS (see 

elsewhere in this manual for documentation of the MATTRANS utility). That is, it extracts a 

user-nominated row from a Jacobian matrix housed in a JCO file. However instead of writing 

the extracted row in the form of a row matrix, it writes it as a column matrix. Recall that a 

matrix with one column is in fact a vector. 

Many of the linear error and uncertainty analysis utility programs documented elsewhere in 

this manual require that predictive sensitivities be supplied as a vector; this is the y vector 

featured in many of the equations describing linear analysis presented by Doherty (2015). 

Predictive sensitivities can be calculated using PEST if, in the pertinent PEST control file, 

predictions are presented to PEST as “observations”. If the PEST control file also contains 

real observations comprising a calibration dataset, then these predictions should be given a 

weight of zero; the “observed value” of predictions is therefore immaterial. Alternatively, if a 

PEST run is dedicated solely to evaluation of predictive sensitivities, and no members of a 

calibration dataset are represented in this PEST control file, weights and “observed values” 

for all “observations” featured in the “observation data” section of the PEST control file are 

of no relevance. In this case PEST can be run with NOPTMAX set to -2 simply for the 

purpose of evaluating predictive sensitivities. 

Matrix utility programs such as MATQUAD can also use predictive sensitivities extracted 

from a JCO file by the JROW2VEC utility; if used appropriately, MATQUAD can be used to 

evaluate predictive error variance. 

JROW2VEC is run using the command 

jrow2vec jcofile obsname matfile 

where 

jcofile  is the name of a Jacobian matrix file,  

obsname  is the name of an observation or prior information item featured in that 

file, and 

matfile is the name of the matrix file to which the extracted row of the Jacobian 

matrix is to be written as a vector. 

5.7 JCOL2VEC 

JCOL2VEC is similar to JROW2VEC. However instead of extracting a row from the 

Jacobian matrix, it extracts a column. Numbers in this column list the sensitivities of all 

observations to a single parameter.  

JCOL2VEC is run using the command 

jcol2vec jcofile parname matfile 

where 
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jcofile  is the name of a Jacobian matrix file,  

parname  is the name of a parameter featured in that file, and 

matfile is the name of the matrix file to which the extracted column of the 

Jacobian matrix is to be written as a vector. 

5.8 JCO2JCO 

Suppose that you have run PEST to calculate a Jacobian matrix. A JCO file then exists which 

complements the PEST control file. The Jacobian matrix may have been calculated for a 

number of reasons, these perhaps including preparation for SVD-assisted inversion, and/or 

preparation for linear analysis. Suppose now that you make some alterations to the PEST 

control file. These may include the following. 

• fixing some parameters; 

• tying some parameters to parent parameters; 

• changing the SCALE and OFFSET of some parameters; 

• removing some parameters from the PEST control file; 

• adding or removing prior information; 

• altering observation weights; 

• adding or removing observation groups; 

• adding or removing observations. 

Suppose that you would now like to obtain a JCO file that complements the new PEST 

control file. There is no need to run PEST again, for a new JCO file corresponding to this 

new PEST control file can be calculated from the original JCO file corresponding to the 

original PEST control file using the JCO2JCO utility. 

JCO2JCO reads an existing PEST control file and a corresponding JCO file. It then reads a 

second PEST control file, modified from the original PEST control file in some or all of the 

ways outlined above. It then calculates a Jacobian matrix and writes a corresponding JCO file 

for the second PEST control file. 

JCO2JCO is run using the command 

jco2jco case1 case2 

where 

case1  is the filename base of the PEST control file for which a JCO file exists, 

and 

case2  is the filename base of a second PEST control file for which a JCO file is 

required. 

The following should be noted. 

1. A parameter cited in the first PEST control file does not need to be cited in the second 

PEST control file; however the reverse is not true. 

2. An observation cited in the first PEST control file does not need to be cited in the 

second PEST control file; however the reverse is not true. 

3. If a parameter is tied to another parameter in the first PEST control file, it must be tied 

to the same parameter in the second PEST control file (JCO2JCO cannot “unravel” 

the derivatives of tied parameters). However a parameter can be tied in the second 

PEST control file, but not in the first. 
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4. If a parameter is fixed in the first PEST control file it must be fixed in the second 

PEST control file. However a parameter can be fixed in the second PEST control file 

but not in the first. 

5. The JCO file written by JCO2JCO does not cite any prior information present in 

either the first or second PEST control files. This should cause no problems for 

programs such as SVDAPREP or linear analysis utilities which use this file. 

6. The first JCO file must have been calculated using version 8 or later of PEST. If this 

is not the case it can be translated to the newer JCO file format using the JCOTRANS 

utility. 

JCO2JCO allows a parameter to have a different SCALE in the second PEST control file 

from that which it has in the first PEST control file provided the following conditions are 

met. 

1. The parameter is not log-transformed in either file; 

2. The parameter is not a tied parameter in either file; 

3. The parameter has no parameters tied to it in either file. 

Normally JCO2JCO issues a warning message if the initial value of any parameter differs 

between the first and second PEST control files. However it will not issue a warning message 

if a parameter’s initial value is different between these two PEST control files and the 

product of the parameter’s initial value and its SCALE is the same in both files. 

JCO2JCO’s handling of parameter SCALE may be such as to disallow certain complex 

alterations to parameter status between the old and new PEST control files. For example 

JCO2JCO will object if a parameter is given a different SCALE, and is simultaneously 

assigned a different transformation or tied status between PEST control files. If more 

complex changes in parameter SCALE and transformation status than those allowed on a 

single JCO2JCO run are required, this is not a problem, for JCO2CO can simply be run twice 

(or more) on the basis of more incremental changes between successively-altered PEST 

control files. Thus alteration of a parameter’s SCALE and tied/fixed/transformation status 

becomes a two-step process rather than a single-step process. 

5.9 JCOTRANS 

JCOTRANS translates a JCO file produced by version 7 or earlier of PEST to a JCO file 

compatible with version 8 or later of PEST. The latter file is recorded in more compressed 

form. 

JCOTRANS is run using the command 

jcotrans jcofile1 jcofile2 

where  

jcofile1  is the name of a Jacobian matrix file written in the old format, and  

jcofile2  is the name of the file to which the Jacobian matrix will be recorded in the 

new format. 

For both of these filenames, the “.jco” extension can be included or omitted; if it is omitted 

JCOTRANS appends it automatically. 
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5.10 JCOPCAT 

JCOPCAT concatenates two Jacobian matrices contained in two different JCO files. 

Concatenation is carried out with respect to parameter values rather than observations; that is 

the Jacobian matrices contained in the respective JCO files are concatenated “sideways” so 

that extra parameter columns are added to the file. (Recall that each column of a Jacobian 

matrix file pertains to a single parameter and each row pertains to a single observation.) 

JCOPCAT can be used to create a single JCO file from two JCO files created during two 

separate PEST runs. These runs must be based on different adjustable parameters but must 

feature the same observations. Use of JCOPCAT thus removes the need for re-calculation of 

sensitivities with respect to existing parameters if new parameters are added to a PEST 

control file, or if the status of these parameters changes from fixed to adjustable. It can also 

be used for calculation of partial Jacobian matrices on different machines prior to “stitching 

these matrices together” to form an entire Jacobian matrix. 

Use of JCOPCAT is predicated on the following assumptions regarding the two existing JCO 

files that are to be concatenated. 

1. Both Jacobian matrices must contain the same number of rows; 

2. Each row in each respective matrix must pertain to the same observation; 

3. The same parameter cannot be featured in both JCO matrices. 

Where these conditions are violated, it may be possible to prepare JCO files for concatenation 

using the JCOORDER utility. This may be required if, for example, prior information is 

featured in one JCO file but not in another. (Note that if JCO2JCO is then used to adapt a 

JCOPCAT-produced JCO file to another PEST control file, it ignores such prior information; 

thus prior information can be removed from one or both of the JCO files read by JCOPCAT 

before concatenation without any loss of information which may compromise further use of 

the resulting JCO file.)  

JCOPCAT is run using the command 

jcopcat jcofile1 jcofile2 jcofile3 

where 

jcofile1  is an existing Jacobian matrix file, 

jcofile2   is another existing Jacobian matrix file, and 

jcofile3   is a new concatenated Jacobian matrix file. 

JCOPCAT reads both the jcofile1 and jcofile2 JCO files, reporting any errors or 

inconsistencies between the two to the screen. It then writes the new, concatenated JCO file.  

5.11 JCOORDER 

JCOORDER reads a JCO file. It then writes another JCO file after performing one or more of 

the following tasks on the Jacobian matrix housed in the original JCO file. 

1. Removal of one or more rows of the Jacobian matrix (a row pertains to an 

observation); 

2. Removal of one or more columns of the Jacobian matrix (a column pertains to a 

parameter); 

3. Re-ordering of rows of the Jacobian matrix; 
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4. Re-ordering of columns of the Jacobian matrix. 

JCOORDER is run using the command 

jcoorder jcofile1 orderfile jcofile2 

where 

jcofile1  is an existing JCO file, 

orderfile  is a parameter/observation ordering file (see below) or PEST control file, 

and 

jcofile2  is a new JCO file written by JCOORDER. 

Figure 5.1 illustrates a parameter/observation ordering file. 

* parameters 

ro2 

ro3 

h1 

h2 

* observations 

ar3 

ar4 

ar5 

ar6 

ar7 

ar8 

ar9 

ar11 

ar12 

ar13 

Figure 5.1 Example of a parameter/observation ordering file. 

A parameter/observation ordering file must begin with the header line “* parameters”. 

Following that must be the names of one or more parameters, all of which must be cited in 

the first JCO file read by JCOORDER. However these parameters can be cited in any order; 

the order in which they are cited will be the order in which they will be represented in the 

final JCO file written by JCOORDER. Following parameter names, observation names must 

be presented in similar fashion. 

The following should be noted. 

1. A blank line can be inserted at any location within a parameter/observation ordering 

file. 

2. Any line beginning with the “#” character is ignored. Thus a comment can follow 

such a character. 

3. Parameters and/or observations cited in the first JCO file can be omitted from the 

parameter/observation ordering file. These parameters/observations will then be 

omitted from the JCO file written by JCOORDER. 

As an alternative to reading a parameter/observation ordering file, JCOORDER can read a 

PEST control file. It will recognise the fact that a PEST control file is supplied rather than a 

parameter/observation ordering file through the extension “.pst” provided for this file on the 

JCOORDER command line. Ordering of parameters and observations will then be the same 

as that in the nominated PEST control file. 

If using a PEST control file instead of a parameter/observation ordering file, the following 
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should be noted. 

1. Tied and fixed parameters in the PEST control file are ignored. 

2. Prior information in the PEST control file is ignored; however if prior information is 

detected in the PEST control file, JCOORDER asks the reader to confirm that it is 

alright to ignore it. 

3. Parameters/observations occurring in the JCO file can be absent from the PEST 

control file. However parameters and/or observations which are not cited in the JCO 

file must not be present in the PEST control file. 

Use of JCOORDER can complement the use of JCOPCAT in preparation for SVD-assisted 

inversion where PEST runs are undertaken for the purpose of obtaining sensitivities for 

subsets of base parameters. The Jacobian matrices produced through this process will need to 

be concatenated into one big base Jacobian matrix before running SVDAPREP to build the 

super parameter PEST control file. If these files contain different items of prior information 

JCOORDER can be used to remove prior information from both of these JCO files prior to 

concatenation using JCOPCAT.  

The easiest way to build a parameter/observation ordering file is to first run JCO2MAT on 

the Jacobian matrix requiring row/column removal and/or row/column re-ordering. Parameter 

and observation names are listed as column and row names respectively in this file. A little 

cutting and pasting with a text editor will soon result in a parameter/observation ordering file. 

Alternatively, a parameter/observation ordering file can be easily built from a PEST control 

file – perhaps a base PEST control file which the concatenated JCO file is being built to 

complement prior to running SVDAPREP. 

5.12 JCOADDZ 

JCOADDZ (the “Z” stands for “zero”) is in some respects similar to JCOORDER. It reads a 

Jacobian matrix file and a file whose format is very similar to that of a parameter/observation 

ordering file used by JCOORDER. Like JCOORDER, it writes a new Jacobian matrix file. 

However instead of a parameter/observation ordering file, the file read by JCOADDZ is 

referred to as a “parameter/observation addition file”; the option of reading a PEST control 

file in place of this file is not available for JCOADDZ as it is for JCOORDER. 

JCOADDZ is used for the purpose of adding additional rows (observations) and/or columns 

(parameters) to an existing Jacobian matrix. All additional rows and columns are zero valued. 

The names of parameters pertaining to extra columns are read from the parameter/observation 

addition file, as are the names of observations pertaining to added rows. 

JCOADDZ is run using the command 

jcoaddz jcofile1 addfile jcofile2 

where 

jcofile1  is an existing JCO file, 

addfile  is a parameter/observation addition file, and 

jcofile2  is a new JCO file written by JCOADDZ. 

Specifications for a parameter/observation addition file are identical to that of a 

parameter/observation ordering file; see figure 5.1. 

Note the following aspects of JCOADDZ’s operations. 
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1. It is not essential that both parameters and observations be added to an existing JCO 

file. Thus the parameter/observation addition file may cite no observations or no 

parameters. However, regardless of whether or not any parameters or observations are 

cited in each section of this file, the “* parameters” and “* observations” headers 

must still be featured in the file. 

2. As for a parameter/observation ordering file, blank and comment lines are allowed in 

a parameter/observation addition file. 

Extra parameters and observations are appended to the last column and row respectively of 

the Jacobian matrix housed in the existing JCO file. If it is desired that they occupy different 

rows and/or columns from the last, this can be accomplished through use of the JCOORDER 

utility. 

5.13 JCODIFF 

JCODIFF subtracts the contents of one Jacobian matrix file from that of another. It can be 

useful when conducting linear analysis. It facilitates construction of a JCO file which can 

provide the basis for exploration of uncertainties or error variances pertaining to predictive 

differences, rather than to predictions themselves. The former are often far smaller than the 

latter. 

JCODIFF is run using the command 

jcodiff jcofile1 jcofile2 jcofile3 

where 

jcofile1  is an existing JCO file, 

jcofile2  is another existing JCO file, and 

jcofile3  is a new JCO file, written by JCODIFF, containing a Jacobian matrix 

which is the difference between the Jacobian matrices housed in the above 

two JCO files. 

Note the following. 

1. The first and second JCO files cited on the JCODIFF command line must contain the 

same number of rows and columns; they must also cite the same 

parameters/observations in the same order. 

2. The matrix contained in the second JCO file is subtracted from that contained in the 

first in forming the Jacobian matrix written to the third JCO file. 

5.14 JCOSUM 

JCOSUM performs the weighted sum of two Jacobian matrices. It can be useful when 

updating a randomized Jacobian matrix calculated by RRF2JCO with a supplementary 

randomized Jacobian matrix calculated from the outcomes of new model runs; in this case the 

weights (i.e. the factors by which the contents of each Jacobian matrix are multiplied) should 

add to 1.0. 

JCOSUM is run using the command 

 jcosum jcofile1 factor1 jcofile2 factor2 jcofile3 

where 

jcofile1  is an existing JCO file, 
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factor1 is the factor by which all elements of the Jacobian matrix contained in this 

file are multiplied, 

jcofile2  is another existing JCO file,  

factor2 is the factor by which all elements of the Jacobian matrix contained in this 

file are multiplied, and 

jcofile3 is a new JCO file, written by JCOSUM. 

The matrix contained in the new JCO file is equal to factor1 times the first Jacobian matrix 

plus factor2 times the second Jacobian matrix. 

5.15 JCOCOMB 

5.15.1 General 

JCOCOMB reads one JCO file and writes another. Observations pertaining to the second 

JCO file are user-specified linear combinations of those recorded in the first JCO file. 

JCOCOMB combines sensitivities (i.e. elements of the Jacobian matrix) in the same 

proportions to produce a new Jacobian matrix pertaining to the combined observations.  

Use of JCOCOMB requires that a PEST control file and complimentary JCO file be already 

in existence. A second PEST control file must also have been prepared. This must cite the 

same parameters in the same order as the first PEST control file. Also, all parameters must 

have the same tied/fixed/transformation status in the second PEST control file as they do in 

the first PEST control file. However observations cited within the second PEST control file 

will be different. It is JCOCOMB’s task to compute the sensitivities of these observations to 

all parameters. 

The relationship between observations cited within the second PEST control file and those 

cited within the first PEST control file must be supplied by the user through an observation 

combination file. Figure 5.2 illustrates such a file.  

* composite_observation “car1” 

ar1  1.0 

ar2  2.0 

* composite_observation car2 

"ar17" 0.5 

ar18             

ar16 0.5 

* composite_observation car3 

pi1 0.2 

pi2 0.3 

Figure 5.2 Example of an observation combination file. 

An observation combination file is subdivided into sections. Each such section must begin 

with a string of the type “* composite_observation observation_name” where 

observation_name is the name of an observation cited in the second PEST control file. This 

name can be surrounded by quotes if desired. 

Each of the following lines within each section of the observation combination file should 

contain two entries. The first is the name of an observation cited in the first PEST control file 

(optionally surrounded by quotes). The second is the factor by which its sensitivities with 

respect to each parameter should be multiplied in forming the sensitivity of the composite 

observation to which that section of the observation combination file pertains. Each section of 

the observation combination file can have as many entries as desired. Sensitivities for each of 
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the observations cited within that section (as read from the JCO file associated with the first 

PEST control file) are simply multiplied by the pertinent factor and summed (for each 

adjustable parameter) to compute the sensitivity of the composite observation to each such 

parameter. Composite observation sensitivities are then recorded in a JCO file that 

compliments the second PEST control file. 

The following should be noted. 

1. All observations cited in the second PEST control file should be cited in the 

observation combination file. 

2. There is no requirement that all observations cited in the first PEST control file be 

cited in the observation combination file. 

3. An observation from the first PEST control file can be cited more than once in the 

observation combination file; that is, it can contribute to more than one composite 

observation. 

5.15.2 Using JCOCOMB 

JCOCOMB is run using the command  

jcocomb case1 case2 combfile 

where 

case1   is the filename base of the first PEST control file, 

case2   is the filename base of the second PEST control file, and 

combfile   is the name of an observation combination file.  

JCOCOMB reads the first PEST control file and corresponding JCO file. It then reads the 

second PEST control file and then the observation combination file. Finally it writes a JCO 

file corresponding to the second PEST control file. 

Note the following. 

1. JCOCOMB only reads the “control data”, “parameter data” and “observation data” 

sections of the second PEST control file. There is thus no requirement for instruction 

files to be cited within this file which inform PEST how model outputs corresponding 

to these observations are to be read from model output files. So while this file may not 

be useable for parameter estimation, it is nevertheless useable by utilities such as 

those which comprise the PREDVAR and PREDUNC linear analysis suites which 

also ignore the instruction and template files cited within a PEST control file. 

2. JCOCOMB makes no alterations to the second PEST control file. Also, the values 

assigned to these observations, and the weights that are assigned to them, are ignored 

by JCOCOMB. 

3. The first PEST control file may cite items of prior information. Composite 

observations listed in the observation combination file may indeed cite the names of 

these prior information equations as “observation names” within respective sections 

of that file. However no prior information must be cited in the second PEST control 

file. 

JCOCOMB can be useful prior to PREDVAR-suite and PREDUNC-suite processing, where 

it is desired that predictive errors and uncertainties be computed for averaged quantities and 

compared with those pertaining to individual quantities. In many circumstances the error and 
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uncertainty variances associated with averaged quantities are significantly less than for 

predictions pertaining to fine system detail. When used in this manner, the composite 

observations contained within the second PEST control file will actually be model 

predictions made under user-specified model input circumstances. Sensitivities written to the 

second JCO file by JCOCOMB will then be extracted for the use of the PREDVAR-suite and 

PREDUNC-suite utilities by the JROW2VEC utility prior to PREDVAR-suite and 

PREDUNC-suite processing. 

5.16 JCOSUB 

JCOSUB can be useful if you suspect that derivatives with respect to some parameters in an 

existing JCO file need improvement. Improvement of these derivatives may be accomplished 

using the following procedure. 

1. Create a new PEST control file in which all parameters but the worrisome ones are 

fixed. Employ settings in this new PEST control file which hopefully promulgate 

better derivatives of model outputs with respect to these parameters (e.g. use a three 

or five point finite-difference stencil). 

2. Run PEST using this new PEST control file with NOPTMAX set to -2 to create a 

corresponding JCO file.  

3. Run JCOSUB to substitute elements in the old JCO file with elements from the new 

JCO file.  

JCOSUB is run using the command 

jcosub jcofile1 jcofile2 jcofile3 

 where 

jcofile1  is the name of an existing JCO file, 

jcofile2  is the name of another existing JCO file, and 

jcofile3  is a new JCO file written by JCOSUB. 

Upon commencement of execution JCOSUB reads both the first and the second of the 

existing JCO files cited on its command line. If any element of the second pertains to a 

parameter and observation named in the first, then the respective element of the first is 

overwritten by that of the second. 

In order to save confusion, it is a good idea to remove all prior information from the second 

PEST control file. There is thus no danger of prior information sensitivities in the first JCO 

file from being overwritten by those in the second. 

5.17 JCOZERO 

JCOZERO allows a user to set individual elements, or groups of elements, of a Jaobian 

matrix to zero. The Jacobian matrix is housed in a JCO file. The altered Jacobian matrix is 

written to another JCO file. 

JCOZERO is run using the following command. 

jcozero jcofile1 zerofile jcofile2 

 where 

jcofile1  is the name of an existing JCO file, 

zerofile  is a file which denotes which Jacobian matrix elements are to be zeroed, 
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and 

jcofile2  is the new JCO file to be written by JCOZERO. 

Figure 5.3 shows a simple example of a file which JCOZERO reads in order to learn which 

Jacobian matrix elements it must set to zero. 

# Example of a Jacobian zeroing file 

 

* parameters 

k_ppt1 

k_ppt2 

* observations 

well01_1 

well02_1 

 

* parameters 

k_ppt10* 

storage?20 

* observations 

part* 

part_time 

 Figure 5.3 A file used for denoting which elements of a Jacobian matrix are to be 

zeroed. 

The “Jacobian zeroing file” is divided into blocks. Each block is comprised of a “parameters” 

sub-block and an “observations” sub-block. The former sub-block must begin with the string 

“* parameters” whereas the latter sub-block must begin with the string “* observations”. 

These sub-blocks must be provided in that order.  

Each line of both of these sub-blocks must contain a single entry. For the parameters sub-

block this must be the name of a parameter, or a string from which a group of parameter 

names can be constructed. In the latter case, “*” denotes one or more infilling characters 

while “?”denotes a single infilling character. The same applies to entries within the 

“observations” sub-block (except that individual observations or groups of observations are 

denoted instead of parameters). Note that parameter/observation names (or strings which 

identify a group of such names) must not be surrounded by quotes in ether of these sub-

blocks. 

Blank lines can appear anywhere within a Jacobian zeroing file. Any line beginning with the 

“#” character is treated as a comment and is thus ignored. 

5.18 JCOCHEK 

This utility is documented in chapter 3 of this manual. It is used to test compatibility between 

a PEST control file and a Jacobian matrix after either has been manipulated or altered. 

5.19 WTSENOUT 

5.19.1 General 

“WTSENOUT” stands for “weighted sensitivity and model outputs”. WTSENOUT 

undertakes the following tasks. 

1. It reads a PEST control file and corresponding JCO and RES files (these being the 

binary Jacobian matrix file and the ASCII residuals file respectively produced as an 
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outcome of running PEST). 

2. It calculates Q1/2J where Q is the weight matrix and J is the Jacobian matrix for the 

current problem. As is explained in part I of this manual, sensitivities comprising 

elements of the Jacobian matrix pertain only to adjustable parameters; the sensitivities 

associated with each particular parameter reflect the transformation status of the 

parameter, and whether or not any other parameters are tied to it.  

3. It computes Q1/2o where o is the model output vector corresponding to best-fit 

parameters. 

4. It records Q1/2J in a binary JCO file (from which an ASCII version can be obtained 

using the JACWRIT or JCO2MAT utilities). 

5. It writes the Q1/2o vector to an ASCII file in PEST matrix file format (see section 2.4 

of this manual for specifications of this format). 

The following features of WTSENOUT should be noted. 

1. WTSENOUT will cease execution with an appropriate error message if the PEST 

control file which it is asked to read does not inform PEST to run in “estimation” 

mode. (If the previous PEST run employed another mode, it is a simple matter to 

create a new PEST control file in which PESTMODE is set to “estimation”, and then 

use the PARREP utility to populate it with previously estimated parameters as initial 

parameters. The JCO2JCO utility can then be used to create a corresponding JCO file. 

PEST can then be run with NOPTMAX set to -1, and with the “/i” switch employed 

on the command line to compute a RES file pertaining to initial parameters; the 

existing Jacobian matrix is then read by PEST, this saving it the trouble of having to 

re-compute it.) 

2. It is possible that the best set of parameters, and the model outputs corresponding to 

these recorded in the residuals file, will have been calculated on the very last PEST 

upgrade attempt, immediately prior to cessation of PEST execution. The Jacobian 

matrix stored in the JCO file will then correspond to the iteration just prior to this, and 

hence will not correspond exactly to the optimised parameter set. If this is the case, 

and if you would like exact correspondence between the JCO file and the set of model 

outputs calculated on the basis of best-fit parameters, a new PEST control file can be 

created containing optimised parameters using the PARREP utility. PEST can then be 

run with NOPTMAX set to -1 to build the pertinent JCO and RES files. 

3. WTSENOUT will accommodate the provision of covariance matrices for one or more 

observation groups in the PEST control file which it is asked to read. 

5.19.2 Running WTSENOUT 

WTSENOUT is run using the command 

wtsenout pestfile matfile jcofile 

where 

pestfile  is the name of a PEST control file (a corresponding JCO and RES file 

must also exist), 

matfile  is the name of the weighted model matrix output file (i.e. the file which 

will contain Q1/2o), and 

jcofile  is the name of the weighted Jacobian matrix output file (i.e. the binary 
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JCO file which will contain Q1/2J). 

PEST reads the nominated PEST control file and the corresponding JCO and RES files. It 

obtains the names of these latter two files by affixing pertinent extensions to the filename 

base of the PEST control file. (You should ensure that the new JCO file written by 

WTSENOUT has a different name from that which WTSENOUT reads.) 
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6. Integrity of Finite-Difference Derivatives 

6.1 Introduction 

With modern regularisation devices forming essential components of its parameter estimation 

algorithms, PEST’s performance in highly-parameterized, ill-posed inversion contexts is 

generally good. While the time required for an inversion process to reach completion may be 

high if model run times are long, numerical stability of the inversion process is usually not a 

problem.  

The most likely reason for problematical PEST behaviour is lack of integrity of finite-

difference derivatives. This can be an outcome of model numerical granularity, so that small 

changes in the values of model outputs are not solely a function of small changes in the 

values of its parameters. Problematical finite-difference derivatives introduce numerical noise 

to the Jacobian matrix, thereby compromising PEST’s parameter upgrade calculations. 

During an inversion process, noise in the Jacobian matrix may express itself through an 

objective function which falls during the early stages of the process, but which then abruptly 

ceases to fall any further, or may even erratically rise and fall over subsequent iterations. 

As is discussed in part I of this manual, PEST provides a number of mechanisms which can 

ameliorate the effects of poor model performance on finite-difference derivatives. These 

include split slope analysis and the use of a five point finite-difference stencil. However if the 

numerical performance of a particular model is too bad, then even these measures will fail to 

prevent a severe deterioration in PEST’s performance. In that case, it may not be possible to 

use PEST with that model at all. The use of proxy or surrogate models for derivatives 

calculation may then be contemplated. Alternatively, a global optimiser may then be used 

instead of PEST. 

This chapter describes JACTEST and a supporting utility program which allows you to 

directly test the integrity of finite-difference derivatives. It also describes the MULJCOSEN 

utility which can provide some indications of problematical finite-difference derivatives. 

Assessing how bad finite-difference derivatives are likely to be allows you to develop an 

inversion strategy that can accommodate deficits in their integrity. 

6.2 JACTEST 

6.2.1 General 

JACTEST is used to test the integrity of derivatives calculated by PEST. It runs the model a 

number of times with incrementally varied parameters. It monitors the same model outputs as 

those for which sensitivities with respect to the varied parameter must be calculated. By 

plotting the values of these outputs against the values of the varied parameter the presence of 

numerical noise can be easily detected. 

6.2.2 Using JACTEST 

JACTEST is run using the command 

jactest case parname n outfile [/p] 

where 

case  is the filename base of a PEST control file, 
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parname  is the name of a parameter featured in this file, 

n  is the number of increments to test, 

outfile  is the name of the JACTEST output file, and 

/p  is an optional parallelisation switch. 

JACTEST reads a PEST control file. It then runs the model n+1 times, where n is the number 

of increments supplied through the command line (it runs the model once without any 

increment). For each but the first of these model runs the value of a user-specified parameter 

is varied incrementally; this is parameter parname supplied through the JACTEST command 

line. The increment is the same as that which PEST would use to compute derivatives with 

respect to this parameter during the parameter estimation process, the control variables for 

which are provided in the “parameter groups” section of the PEST control file. Model outputs 

calculated on the basis of the incrementally-varied value of the specified parameter are stored 

internally. Parameter values are symmetrically disposed about the pertinent initial parameter 

value supplied in the PEST control file; that is, this parameter value is both incremented and 

decremented for the purpose of carrying out the requested model runs. 

When all model runs are complete, JACTEST writes a table of model-generated observation 

values to its output file (i.e. to the file outfile specified through the JACTEST command line). 

The first row of this table contains values of the nominated parameter employed for each 

model run. Subsequent rows contain the values of all model-generated observations 

calculated during each such model run (with the name of each observation as the first entry of 

each row). If the values of selected observations are then plotted against parameter values 

(this being easily achieved once the JACTEST-written table is imported into a spreadsheet), 

problems with derivatives computation, if they exist, will be readily apparent. 

Note the following. 

1. Where a PEST control file specifies multiple command lines, JACTEST uses the first 

command to run the model. 

2. JACTEST will cease execution with an error message if the parameter nominated on 

the command line is tied or fixed. 

3. Where the user-specified parameter has other parameters tied to it, the tied parameters 

are varied such that their ratio to the parent parameter remains unchanged; that is, 

they are varied in the same way that PEST varies them. 

4. Parameter SCALEs and OFFSETs as provided in the “parameter data” section of the 

PEST control file are respected; their use is identical to that of PEST. 

5. JACTEST will not transgress parameter bounds. If the addition of n/2 times the 

derivative increment to a given parameter value causes that parameter to exceed its 

upper bound, JACTEST will undertake more model runs with subtracted parameter 

increments in order to complete its n+1 runs. The opposite action is taken if a lower 

bound is transgressed. If both bounds are transgressed, JACTEST will cease 

execution with an appropriate error message. 

6. In some circumstances the value of the user-specified parameter as recorded in the 

JACTEST output file may be slightly different from its expected incremented value. 

This is an outcome of the fact that, like PEST, JACTEST adjusts the value of a 

parameter slightly if the presence of a parameter space of limited width on one or 

more template files cited in the PEST control file requires that the parameter’s value 

be written with limited precision. 
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7. JACTEST does not list prior information values on its output file. (The derivatives of 

prior information outputs with respect to parameters always have integrity because 

they are simply the coefficients of respective parameters in the prior information 

equations.) 

6.2.3 Using JACTEST in Parallel Mode 

Model runs undertaken by JACTEST can be distributed across a network of computers by 

appending the “/p” switch to the end of its command line. The parallelisation protocol is the 

same as that of Parallel PEST; at the time of writing there is no BEOJACTEST. JACTEST 

thus reads a run management file, the filename base of which is the same as that of the PEST 

control file but whose extension is “.rmf”. See section 11.2 of part I of this manual for 

specifications of this file. 

As stated, operation of JACTEST in parallel mode is the same as that of Parallel PEST. 

Slaves (named PSLAVE) must be started in working directories on other machines (or on the 

same machine if it has multiple processors). Communication between the master program (in 

this case JACTEST) and its slaves is through message files – the same message files as used 

by Parallel PEST. It is the slave, and not JACTEST, which runs the model in each case. 

As for parallel PEST, slaves should be started before PEST. However, like parallel PEST, 

JACTEST will tolerate the late arrival of slaves. 

When run in parallel mode JACTEST writes two additional files. The first is a parallel run 

management file (with the same filename base as the PEST control file, but with an extension 

of “.rmr”); this documents the history of communication between JACTEST and its slaves. 

The second is a much shorter file which simply lists the number of runs completed at any 

time. This also has the same filename base as the PEST control file. However its extension is 

“.rcr” (for “run count record”). 

6.2.4 Stopping JACTEST 

If the PSTOP or PSTOPST command is run in the JACTEST working directory (i.e. folder), 

but from another window, JACTEST will cease execution. If run in serial mode, it will wait 

until the end of the current model run to do this. If run in parallel mode it will cease execution 

immediately, but cannot prevent orphaned model runs from reaching completion in their 

slave windows. All slaves will automatically shut down once their respective model runs are 

finished if the PSTOPST command is used to terminate JACTEST execution; however they 

will not shut down if the PSTOP command is employed. Meanwhile JACTEST writes all 

results that it has accumulated to the time of stoppage to its normal output file before it shuts 

itself down.  

As for PEST, JACTEST execution can be paused and unpaused by issuing the PPAUSE and 

UNPAUSE commands from another window which is opened in its working folder. 

6.3 POSTJACTEST 

As was described in the preceding subsection, JACTEST produces a large output file which 

can be used to assess the integrity of derivatives of all model outputs with respect to a 

parameter nominated on the JACTEST command line. The JACTEST output file is easily 

imported into a spreadsheet such as Microsoft EXCEL. Numbers along any row of this file 

can then be plotted. Ideally such a plot should reveal a straight line, or a smooth curve. 

However if the line is jagged, a potential problem in the finite-difference calculation of model 
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derivatives is indicated. 

In many circumstances, the number of observations represented in a JACTEST output file is 

daunting. Some methodology for flagging rows of this file that are worthy of plotting is 

therefore required. POSTJACTEST performs this role. 

POSTJACTEST is run using the command 

postjactest jactestfile thresh outfile 

where  

jactestfile  is the name of a JACTEST output file,  

thresh  is a threshold value whose role is explained below which must be set to a 

number greater than zero, and 

outfile  is the name of a file which POSTJACTEST writes.  

POSTJACTEST reads the JACTEST output file line by line. Recall that values provided on 

each line of the JACTEST output file are the values of model-generated observations 

computed using incrementally-varied parameters. For any such line, POSTJACTEST 

computes differences between successive numbers on the line. It then computes the 

difference between the maximum and minimum such model output difference as a fraction of 

the model output difference between the first and last entries on this line divided by the 

number of parameter increments giving rise to these outputs. This fractional difference is an 

indicator of parameter-dependent slope discrepancies. It is recorded on POSTJACTEST’s 

output file, together with the observation name to which this measure pertains. While a high 

value for this number may reflect nothing more than model nonlinearity, it may also reflect 

contamination of finite-difference derivatives by numerical noise. 

If the outer difference between model outputs, as well as differences between all 

neighbouring model outputs on any particular line of the JACTEST output file, are less than 

the threshold thresh specified on the POSTJACTEST command line, then that line is skipped 

by POSTJACTEST. The pertinent observation is thus not represented on the POSTJACTEST 

output file on the basis of its insensitivity to parameters. (Numerical granularity of these 

outputs would reflect truncation of all but the last couple of significant figures incurred by 

differencing rather than true model numerical granularity.) 

The POSTJACTEST output file is easily imported into a spreadsheet such as EXCEL. It 

should then be sorted such that higher slope discrepancies are listed first. You should then 

inspect lines of the JACTEST output file corresponding to observations listed early in this re-

ordered table, graphing the numbers listed on each such line in the manner described above. 

If an observation does not have a very low sensitivity, and if the plot is jagged rather than 

straight or smoothly curved, the integrity of finite-difference derivatives for this observation 

is questionable. PEST’s performance may therefore be degraded. 

6.4 MULJCOSEN 

MULJCOSEN reads a sequence of JCO files named case.jco.N where N represents a 

sequence of integers starting at 1. Such a sequence of JCO files is written by PEST if the 

JCOSAVEITN variable in the “control data” section of the PEST control file is supplied as 

“jcosaveitn”. Gross variations of sensitivities between iterations may provide an indication of 

questionable model numerical performance. 

MULJCOSEN is run using the command 

muljcosen case obspar aname outfile 
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where  

case  is the filename base of a PEST control file,  

obspar  must be supplied as either “obs” or “par”,  

aname  is the name of an observation or parameter featured in the nominated JCO 

files, and  

outfile  is a file to which MULJCOSEN records the outcomes of its calculations. 

MULJCOSEN computes the composite sensitivity of either an observation or parameter on 

the basis of each JCO file which it reads. The obspar command line variable determines 

whether the item of interest is in fact an observation or parameter, while the aname command 

line variable identifies the particular observation or parameter for which such computation is 

required. Formulas through which composite observation and parameter sensitivities are 

computed are provided in section 5.3 of Doherty (2015). Both of these formulas involve 

observation weights. Hence as well as reading the sequence of Jacobian matrix files 

corresponding to the PEST case supplied on its command line, MULJCOSEN also reads the 

corresponding PEST control file, as well as any observation covariance matrix files that are 

cited in this file. 

Composite sensitivities are written in tabular form to its output file. It is important to note 

that if PEST was run in “regularisation” mode, then regularisation observations/prior 

information equations are ignored in computation of composite parameter sensitivities. If 

PEST was run in “predictive analysis” mode, the prediction is likewise ignored. 
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7. Model Pre- and Postprocessing 

7.1 Introduction  

This chapter describes two utilities that perform similar, though different, roles. The first, 

PAR2PAR, is a “PEST-aware” model preprocessor while the second, OBS2OBS, is a 

“PEST-aware” model postprocessor. In normal usage, each would be run through a batch file 

which PEST runs as “the model”. PAR2PAR undertakes parameter transformations while 

OBS2OBS undertakes model output transformations. In both cases the transformations which 

they undertake can be expressed using equations of arbitrary complexity. 

7.2 PAR2PAR 

7.2.1 General 

On many occasions of model calibration there is a need to manipulate parameters before 

providing them to a model. There can be a number of reasons for this; two of them are now 

outlined. 

Parameter Ordering 

Suppose that a particular surface water or land use model has three parameters named infilt1, 

infilt2 and infilt3. For purposes of illustration, let it be assumed that these parameters govern 

infiltration of water into different parts of a catchment, in this case into subareas 1, 2 and 3 

respectively. Soil property data may suggest that infiltration increases with subarea index, 

that is that infilt1 < infilt2 < infilt3. Thus, during the parameter estimation process, it would 

be desirable for the lower bound of infilt2 to be the current value for infilt1, and for the lower 

bound of infilt3 to be the current value of infilt2. 

Unfortunately it would be very difficult to incorporate parameter-dependent bounds into the 

PEST inversion algorithm. However an alternative path can be taken which accomplishes the 

same thing. This alternative path consists of estimating infilt1 together with two other 

parameters named infiltrat2 and infiltrat3 (“infiltrat” stands for “infiltration ratio”). These 

latter two parameters are defined by the relationships 

infiltrat2 = infilt2/infilt1       (7.2.1a) 

and 

infiltrat3 = infilt3/infilt2       (7.2.1b) 

Desired infiltration parameter ordering relationships will be maintained if each of infiltrat2 

and infiltrat3 is provided with a lower bound of 1.0 in the parameter estimation process 

implemented by PEST.  

In using this device to ensure that correct infiltration parameter ordering relationships are 

maintained, PEST must work with parameters infilt1, infiltrat2 and infiltrat3, while the model 

must be provided with parameters infilt1, infilt2 and infilt3. The necessary parameter 

transformation process can be accomplished by running the utility program PAR2PAR as a 

model preprocessor contained in a “composite model” run by PEST as a batch file. 

PAR2PAR receives the current PEST-calculated values of infilt1, infiltrat2 and infiltrat3; it 

then transforms these into values for infilt1, infilt2 and infilt3. Then it writes one or more 

model input files (based on appropriate template files) containing the current values of these 
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native model parameters. Based on equations 7.2.1a and 7.2.1b, PAR2PAR must be 

programmed to calculate infilt2 and infilt3 using the relationships 

infilt2 = infilt1 * infiltrat2       (7.2.2a) 

infilt3 = infilt2 * infiltrat3       (7.2.2b) 

Seasonal Parameter Variations 

Some model parameters show seasonal variation. For environmental models which simulate 

water or crop-growth processes in agricultural areas, “crop factor” may be one such 

parameter. Crop factor is also a parameter that (together with other parameters) often requires 

adjustment through the calibration process in order that a land use model can replicate 

measured crop water usage, observed crop growth, or some other system response for which 

historical records are available.  

Many models require that the crop factor be provided on a monthly basis. However while 

monthly crop factors may indeed require estimation through the inversion process, it would 

generally be unwise to attempt to estimate each monthly crop factor independently of every 

other monthly crop factor, for this would ignore an inherent relationship between these 

parameters, this being the fact that variation of crop factor with season may show a regular 

(perhaps sinusoidal) pattern. To ignore this pattern in parameterising the model would be to 

ignore an important facet of system behaviour. Furthermore, in many model calibration 

contexts, it would be unlikely that 12 different monthly crop factors could be independently 

estimated with any degree of uniqueness because of the high degree of correlation that is 

likely to exist between these individual parameters (especially where the data available for 

model calibration is limited). 

For a case such as this, a suitable parameterisation strategy may be to estimate the mean 

monthly crop factor, together with the amplitude and phase of the seasonal variation of the 

crop factor about this mean. Thus twelve parameters are replaced by three. In implementing 

this strategy, PEST thus estimates three parameters while the model is provided with the 

twelve parameters which it requires. The task of transforming the three parameters estimated 

by PEST to the twelve parameters employed by the model can be accomplished using 

PAR2PAR as a model preprocessor, run by PEST just before the model on every occasion 

that the model is run. Once again, this can be accomplished by including both of the 

PAR2PAR and model executables in a batch file run by PEST as a “composite model”. On 

the basis of the three parameters adjusted by PEST (named, for example, mean, amplitude 

and phase), PAR2PAR will calculate the monthly crop factor parameters required by the 

model (named, for example, crop1, crop2…crop12) using a series of relationships such as 

crop1 = mean + amplitude * sin ((1 + phase)*2.0*3.142/12.0)  (7.2.3a) 

crop2 = mean + amplitude * sin((2 + phase)*2.0*3.142/12.0)  (7.2.3b) 

etc. 

In these equations phase is measured in months; as is explained below, the argument of the 

sin function must be supplied in radians, where 2 radians is equal to a full cycle. 

Seasonal parameter variation can be expressed in a number of different ways; use of the sin 

function is just one of them. Another method would be to use “seasonal ratios”; if this is 

done, then only one parameter may require estimation, this being the factor by which all such 

ratios are multiplied to achieve a good fit with the calibration dataset. 
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7.2.2 Using PAR2PAR 

Running PAR2PAR 

PAR2PAR is run using the command 

par2par infile 

where 

infile  is a PAR2PAR input file which must be prepared by the user. 

The PAR2PAR Input File 

The structure of the PAR2PAR input file is shown in figure 7.1. An example of such a file is 

provided in figure 7.2. 

* parameter data 

PARNME = expression 

PARNME = expression 

. 

. 

* template and model input files 

TEMPFLE INFLE 

TEMPFLE INFLE 

. 

. 

* control data 

PRECIS DPOINT 

Figure 7.1 Structure of the PAR2PAR input file. 

* parameter data 

infilt1 = 0.3456 

infiltrat2 = 1.0453 

infiltrat3 = 1.5432 

infilt2= infilt1 * infiltrat2 

infilt3 = infilt2 * infiltrat3  

* template and model input files 

model1.tpl model1.in 

model2.tpl model2.in 

* control data 

single point 

Figure 7.2 An example of a PAR2PAR input file. 

A PAR2PAR input file must contain at least a “parameter data” section and a “template and 

model input files” section. The “control data” section is optional; if it is omitted, the default 

values of “single” and “point” are supplied for the variables PRECIS and DPOINT.  

The “parameter data” section of the PAR2PAR input file provides the means whereby values 

are assigned to a set of parameters. These values can be provided either by the direct 

assignment of numbers, or through mathematical expressions. These expressions (which may 

be of considerable complexity) may cite parameters whose values were assigned in previous 

expressions. 

The “template and model input files” section of the PAR2PAR input file provides the names 

of template files together with the names of the model input files to which they correspond. 

Once it has determined values for all parameters appearing on the left sides of the expressions 

listed in the “parameter data” section of its input file, PAR2PAR writes these parameter 
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values to the nominated model input files using template files based on these model input 

files (just like PEST does).  

The following should be noted. 

• Any parameter appearing in any of the template files listed in the “template and model 

input files” section of the PAR2PAR input file must be assigned a value in the 

“parameter data” section of the PAR2PAR input file. 

• If there is more than one template/model input file pair listed in the “template and 

model input files” section of the PAR2PAR input file, any particular template file can 

be cited more than once if desired. However each model input file can be cited only 

once, for it would make no sense for a model input file generated on the basis of one 

template file to be overwritten by another model input file generated on the basis of 

the same or another template file. 

If either of these rules is violated, PAR2PAR will inform you of this through an appropriate 

error message.  

All template files cited in the “template and model input files” section of the PAR2PAR input 

file should be checked for correctness using TEMPCHEK. While PAR2PAR will detect and 

report any errors that it finds in these files, it will only report the first error that it encounters; 

then it will cease execution. TEMPCHEK, on the other hand, attempts to examine the entirety 

of a template file, reporting all errors to the screen. TEMPCHEK is documented elsewhere in 

this manual. 

Parameter Relationships 

The relationships through which parameter values are calculated from numbers, or from 

values previously assigned to other parameters, may be mathematical expressions of complex 

form. They can include any or all of the “*”, “/”, “+”, “-” and “^” operators as well as 

brackets. (Note that the “^” operator raises the number in front of the “^” symbol to a power 

equal to the number trailing the “^” symbol; this operation can also be designated using the 

“**” symbol as in the FORTRAN programming language.) Mathematical operations of equal 

rank are evaluated in the order “^” followed by “*” and “/”, followed by “+” and “-”, as is the 

usual convention. This order can be overridden by the use of brackets. 

The following mathematical functions are supported in expressions through which parameter 

values are calculated – sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, exp, log, log10, abs 

and sqrt. Note the following rules governing use of these functions. 

• As is the FORTRAN convention, the arguments of the trigonometric functions sin, 

cos and tan, and the values returned by their inverse functions asin, acos and atan, are 

assumed to be in radians. There are 2 radians in a circle; thus 2 radians are equal to 

360 degrees. 

• The log function is to base e; for logarithms to base 10, use the log10 function. 

• For some of the functions listed above, arguments must lie within a specific numerical 

range (for example the argument of the log function must always be greater than 

zero). If a function argument is provided which is outside of its legal range, 

PAR2PAR will often trap the error and cease execution with an appropriate error 

message. However in some rare instances the argument may “slip through” and a 

compiler-generated error message will be supplied upon termination of PAR2PAR 

execution. 
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The following rules apply when formulating mathematical expressions to calculate parameter 

values. 

• Expressions may contain both numbers and parameters. However where a parameter 

is used, its value must have been calculated (or supplied) in a previous expression. 

• As is the normal PEST convention, parameter names must be 12 characters or less in 

length. 

• Spaces can be placed next to operators, brackets and functions. However they cannot 

appear within numbers, parameter names or function names. 

Some examples of allowable mathematical expressions are provided in figure 7.3. 

trans5 = k5 * (top5 – bottom5) 

pi = 3.14159 

par3 = 3.4 * (4.5 + trans5 ^ (3 + sin(0.6))) 

par4 = par3 / (pi + exp(5.0 + par3/trans5)) 

par5 = -(par1 + par2) * cosh(pi * trans5) 

Figure 7.3 Examples of mathematical expressions supported by PAR2PAR. 

If an expression is long, it may be continued onto the next line by placing the “&” character 

at the beginning of that line. Thus the expression 

par5 = -(par1 + par2) * cosh(pi * trans5) 

is equivalent to 

par5 = 

& -(par1+par2) 

& * cosh( 

& pi * trans5) 

Generation of Model Input Files 

Once it has calculated values for all parameters, PAR2PAR writes these values to one or 

more model input files using templates of these files to govern parameter value placement. 

Use of template files for writing model input files is fully discussed in section 2.2 of part I of 

this manual. As is described in that section, slight variations of the way in which numbers 

representing parameter values are written to model input files can be effected through use of 

the PRECIS and DPOINT variables; values for these variables are supplied in the optional 

“control data” section of a PAR2PAR input file. If PRECIS is set to “single”, numbers are 

written to model input files using the “E” character for exponentiation. However if it is set to 

“double”, the “D” character is used; furthermore, if there is sufficient space, up to 23 

characters can be used to record the value of the parameter instead of the usual maximum of 

13. Setting the DPOINT variable to “nopoint” instructs PEST to write a parameter’s value to 

a model input file without the decimal point if this can be accomplished through numerical 

formatting, thereby gaining one extra significant figure of precision. (More will be said about 

precision shortly.) As is stated above, the “control data” section of the PAR2PAR input file is 

optional; if it is omitted, default values of “single” and “point” are supplied for PRECIS and 

DPOINT respectively. 

7.2.3 Using PAR2PAR with PEST 

The Composite Model 

As was discussed above, when used with PEST, PAR2PAR will normally be run as part of a 
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“composite model” encapsulated in a batch file. Thus whenever PEST runs the model, it first 

runs PAR2PAR (and any other model preprocessors cited in the batch file), followed by the 

model (followed by any model postprocessors cited in the batch file). 

As for any other model executable program which uses parameters which require estimation 

by PEST, a template file must be built, based on a PAR2PAR input file. Just before it runs 

the model, PEST will then write current parameter values to the PAR2PAR input file using 

the corresponding template file. An example of such a template file, based on the PAR2PAR 

input file shown in figure 7.2, is provided in figure 7.4. 

ptf $ 

* parameter data 

infilt1 = $infilt1  $ 

infiltrat2 = $infiltrat2$ 

infiltrat3 = $infiltrat3$ 

infilt2= infilt1 * infiltrat2 

infilt3 = infilt2 * infiltrat3  

* template and model input files 

model.tpl model.in 

* control data 

single point 

Figure 7.4 A template for the PAR2PAR input file of figure 7.2. 

Based on the template file of figure 7.4, before PEST runs the model it will replace the 

strings “$infilt1$”, “$infiltrat2$”, and “$infiltrat3$” with the current values of the respective 

parameters. Note that these parameters do not need to be named the same as the PAR2PAR 

parameters to which values are assigned in the pertinent expressions in the PAR2PAR input 

file. They could have been given any name at all; the same parameter names are used by both 

PEST and PAR2PAR in this example simply as a matter of convenience. Furthermore, 

parameter spaces in the template of a PAR2PAR input file do not need to be restricted in their 

location to the right side of expressions comprised of a “=” symbol followed by a single 

number. See, for example, the PAR2PAR input file and corresponding template file depicted 

in figures 7.5 and 7.6. These accomplish the same task as the files depicted in figures 7.2 and 

7.4. 

* parameter data 

infilt1 = 0.3456 

infilt2= infilt1 * 1.23983 

infilt3 = infilt2 * 1.53953 

* template and model input files 

model.tpl model.in 

Figure 7.5 A PAR2PAR input file. 

ptf $ 

* parameter data 

infilt1 = $infilt1  $ 

infilt2= infilt1 * $infiltrat2$ 

infilt3 = infilt2 * $infiltrat3$  

* template and model input files 

model.tpl model.in 

Figure 7.6 A template for the PAR2PAR input file of figure 7.5. 

It is apparent that when using PAR2PAR as part of a composite model run by PEST there are 

two sets of template files involved in the inversion process, namely that used by PEST to 

write a PAR2PAR input file, and those used by PAR2PAR to write model input files. These 
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should not be confused. PEST should never be instructed to use a template file to write a 

model input file that is also cited in the “template and model input files” section of a 

PAR2PAR input file. If this happens, the model input file generated by PEST will be 

overwritten by that generated by PAR2PAR.  

It often happens that only a few parameters required by a model need to be calculated by an 

expression cited in a PAR2PAR input file; other model parameters can be estimated directly 

by PEST. These latter parameters can simply be “passed through” PAR2PAR by assigning 

them numerical values in the pertinent expressions in the PAR2PAR input file. Figure 7.7 

shows a PAR2PAR input file in which only parameter par8 is calculated through 

manipulation of other parameters; figure 7.8 shows the corresponding template file of the 

PAR2PAR input file. Parameters par1 to par5 are passed directly to the model through the 

template file model.tpl of the model input file model.in. The template file model.tpl thus cites 

all of parameters par1 to par5 as well as parameter par8. (It may also cite par6 and par7.) 

* parameter data 

par1 = 1.583745e-4 

par2 = 5.395832e-1 

par3 = 4.583924e-2 

par4 = 5.389028e-5 

par5 = 4.389428e-2 

par6 = 3.559313e-1 

par7 = 5.395355e-2 

par8 = par6 * exp(-par7) 

* template and model input files 

model.tpl model.in 

Figure 7.7 A PAR2PAR input file. 

ptf $ 

* parameter data 

par1 = $par1      $  

par2 = $par2      $ 

par3 = $par3      $ 

par4 = $par4      $ 

par5 = $par5      $ 

par6 = $par6      $ 

par7 = $par7      $ 

par8 = par6 * exp(-par7) 

* template and model input files 

model.tpl model.in 

Figure 7.8 A template file for the PAR2PAR input file of figure 7.7. 

Numerical Precision 

As is explained in part I of this manual, when PEST writes a number to a model input file on 

the basis of a template file, it alters its internal representation of that number to account for 

the fact that the number may be written to the model input file with less than the maximum 

number of significant figures with which that number can be represented internally within the 

computer. Thus when PEST calculates derivatives of model outputs with respect to 

parameters using finite differences, the differences between incrementally-varied parameter 

values will be exactly correct because both PEST and the model use exactly the same 

parameter values. 

The ability for PEST to compensate for limited parameter space widths on model input files 

is lost when parameter values are written to those files using program PAR2PAR (because 



Model Pre- and PostProcessing 61 

 
 

PEST has no way of adjusting its internal representation of parameters based on PAR2PAR 

outputs). Thus unless the formatting requirements of the model input file are such that it 

allows model input parameters to be supplied with full numerical precision (which is 

normally about 7 significant figures), slight errors will be incurred in the derivatives 

calculation process. (Note that where a number is small or large enough for exponential 

notation to be required for its representation, up to 14 characters may be required for the 

representation of that number using 7 significant figures.) Imprecision in derivatives 

calculation can have a profound effect on the outcome of an inversion process. Thus you 

should make absolutely sure that the template files used by PAR2PAR to write model input 

files use parameter space widths which are as large as the model will tolerate (up to a 

maximum of 14 characters if using single precision arithmetic, or 23 characters if using 

double precision arithmetic). If model input file formatting requirements are too restrictive to 

allow a parameter value to be written without some loss of significance, then you should at 

least be aware of the fact that use of PAR2PAR under these circumstances has the potential to 

reduce the efficacy of PEST’s performance. 

Intermediate Files 

Before it runs the model, PEST deletes all model output files that it knows about (i.e. the 

model output files cited in the PEST control file). Hence if the model fails to run, PEST will 

not read old model output files produced on previous model runs, mistaking them for new 

ones. Thus if PEST generates an error message saying that it cannot find a particular model 

output file, this is a sure sign that, for some reason, the model failed to run. In most cases the 

matter is then easily rectified by taking some simple measure such as altering the contents of 

the “model command line” section of the PEST control file. 

Where a model is comprised of multiple executable programs listed in a batch file, similar 

considerations apply to “intermediate model files”, i.e. to files generated by one or more of 

the executable programs comprising the composite model and read by one or more 

succeeding executable programs cited in the model batch file. If, for some reason, an 

executable program which generates such an intermediate file fails to run, then later 

executable programs of the composite model may read old intermediate files, mistaking them 

for new ones. If this happens, model outputs will not reflect current parameter values; in fact, 

because they are independent of current parameter values, PEST will probably declare that at 

least some model outputs are insensitive with respect to some parameter values. This problem 

can be avoided if commands are included in the model batch file to delete all intermediate 

files before any of the executable programs comprising the model are run. If PAR2PAR is 

one such executable program, then all model input files cited in the “template and model 

input files” section of the PAR2PAR input file should be deleted prior to running PAR2PAR. 

Figure 7.9 shows an example of a model batch file in which this precaution is taken. 

rem Model input files written by PAR2PAR are deleted. 

del model1.in 

del model2.in 

rem PAR2PAR is run. 

par2par par2par.in 

rem The model is run. 

model 

Figure 7.9 A model batch file which includes PAR2PAR as one of the model executable 

programs. 

In the batch file depicted in figure 7.9, file par2par.in is the PAR2PAR input file. If it is 
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desired that screen output from all programs comprising the composite model (including the 

model batch file itself) be suppressed so that the model’s screen output does not interfere 

with that of PEST, the batch file shown in figure 7.9 could be altered to that shown in figure 

7.10. (Note that on a UNIX system “> nul” should be replaced by “> /dev/null”.) 

@echo off 

rem Model input files written by PAR2PAR are deleted. 

del model1.in > nul 

del model2.in > nul 

rem PAR2PAR is run. 

par2par par2par.in > nul 

rem The model is run. 

model > nul 

 Figure 7.10 The batch file of figure 7.9 with all screen output suppressed. 

7.3 OBS2OBS 

7.3.1 General 

The OBS2OBS utility does for model outputs what the PAR2PAR utility does for model 

inputs. OBS2OBS reads user-specified numbers from files written by a model; it does this 

using instruction files (just as PEST does). New variables (named by the user) can be 

calculated from these model outputs on the basis of user-supplied equations. The values of 

these new variables (and, if desired, the values of the original model outputs) can be saved to 

a tabular output file. These can then be read by PEST and included within an observation 

dataset used for model calibration. PEST’s reading of an OBS2OBS output file is made easier 

by the fact that OBS2OBS optionally generates an instruction set through which reading of 

this file can take place. 

7.3.2 OBS2OBS Input File 

Before running OBS2OBS an input file must be prepared. An example of an OBS2OBS input 

file is shown in figure 7.11. 

* model output 

model1.ins model1.out 

model2.ins model2.out 

* equations 

hd1=head2-head1 

cr1=log10(conc2/conc1) 

* output 

head1 

head2 

hd1 

conc1 

conc2 

cr1 

Figure 7.11 Example of an OBS2OBS input file. 

An OBS2OBS input file must possess three sections, these being the “model output”, 

“equations” and “output” sections. Each must begin with an appropriate header as shown in 

figure 7.11, this consisting of a “*” character, followed by a space, followed by the section 

name. 
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Blank lines can be inserted anywhere within an OBS2OBS input file; lines beginning with the 

“#” character are ignored, these being considered to be “commented out”. 

Sections within an OBS2OBS input file are now discussed in greater detail. 

“Model Output” Section 

This section is similar to the “model input/output” section of a PEST control file. Each line 

within the “model output” section of an OBS2OBS input file must contain two entries. The 

second is the name of a model output file, while the first is the name of an instruction file 

which has been designed to read that model output file. As many such pairs of files can be 

supplied as desired (up to a large internally-set limit). Where a filename contains a space, it 

should be enclosed in quotes. 

The same rules apply when supplying instruction files to OBS2OBS as apply when supplying 

them to PEST. These include the following. 

• An instruction filename cannot be repeated; 

• Observation names cited in instruction files must be unique; 

• Observation names must not contain spaces; their length is limited to 20 characters. 

“Equations” Section 

As the name implies, the “equations” section of an OBS2OBS input file must possess a set of 

equations. In each case the equation must be of the form 

new_variable=f(old_variables) 

In the above symbolic notation the symbol f( ) denotes a function. This function can feature 

any observation read from a model output file (such observations being named in the 

instruction files that read them), or a new variable whose value was assigned in a previous 

equation. However neither an old variable nor a new variable can be re-assigned using an 

equation. Like observations read from model output files, the name of each new variable 

must be 20 characters or less in length, and cannot contain a space. 

Examples of equations that can be used in definition of new variables are provided in 

documentation of PAR2PAR. Further examples are provided below. 

ave_head = (head1+head2+head3)/3 

penalty = max(head4-245.23,0,head5-324.5) 

Operators and functions which can be used in equations featured in the “equations” section of 

an OBS2OBS input file are listed in table 7.1.  

Operators ^, /, *, -,+, (, ) 

Functions abs, acos, asin, atan, cos, cosh, exp, log, log10, sin, sinh, sqrt, tan, 

tanh, neg, pos, min, max, mod 

Table 7.1 Operators and functions that can be included in OBS2OBS equations. 

The following should be noted. 

1. In contrast to the PAR2PAR protocol, OBS2OBS will not allow equations to be 

continued onto the next line using a continuation character. 

2. At the time of writing, an equation must not occupy more than 2000 characters of 
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text. 

3. Operators and variables can optionally be separated by spaces. 

“Output” Section 

The “output” section of an OBS2OBS input file must contain a list of variable names. These 

names can pertain to any variable read from a model output file (and hence named within an 

instruction file), or any variable calculated through equation evaluation. The names and 

values of these variables are written to the OBS2OBS output file in the same order as that in 

which they are listed in the OBS2OBS input file. An example of an OBS2OBS output file is 

provided in figure 7.12. 

 head1                    3.456755261693154     

 head2                    4.324500931552616     

 hd1                      0.000000000000000     

 conc1                    30.45670000000000     

 conc2                    53.23432315324721     

 cd1                      22.77762050136947     

Figure 7.12 Example of an OBS2OBS output file. 

The following features of an OBS2OBS output file are salient. 

• The OBS2OBS output file contains two columns. No column headers are provided.  

• The first item of data on each line of an OBS2OBS output file is the name of a 

variable while the second item is the value of that variable. 

• The value of each variable is recorded using 16 significant figures, this being the 

maximum allowed by double precision machine number representation. Use of full 

precision in representation of numbers mitigates the potential for corruption of finite-

difference derivatives.  

7.3.3 Running OBS2OBS 

OBS2OBS is run using the following command. 

OBS2OBS infile outfile [insfile] 

where 

infile  is the name of an OBS2OBS input file (as described in the previous 

subsection), 

outfile  is the name of an output file to be written by OBS2OBS, and 

insfile  is the name of an instruction file to be (optionally) written by OBS2OBS. 

The (optional) instruction file written by OBS2OBS reads the output file written by 

OBS2OBS, thus facilitating the addition of observed counterparts to OBS2OBS-generated 

quantities to a PEST calibration dataset. In this instruction file observations are given the 

same names as variables read by OBS2OBS from model output files or named in equations 

provided in the OBS2OBS input file. Adoption of this naming convention is not 

fundamentally necessary for use of OBS2OBS as part of a model run by PEST, as there is no 

need for PEST to use the same variable names as does OBS2OBS. The user is therefore free 

to alter an OBS2OBS-generated instruction file if he/she deems this to be necessary. 
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7.3.4 Some Uses of OBS2OBS 

Observation Postprocessing 

In many calibration contexts, model outputs and corresponding observations should be 

processed prior to being matched in formulation of separate components of an overall 

objective function. Steps should then be taken by the user to ensure that the contribution 

made by each component to the overall objective function neither dominates that of other 

objective function components, nor is dominated by them. Ideally processing should be 

undertaken in such a way as to “distil” from the observation dataset information pertaining to 

certain parameter combinations that would otherwise go unnoticed in the overall parameter 

estimation process. As described by Doherty (2015), this strategy can protect parameter 

estimates from calibration-induced bias if properly undertaken. Examples include the 

differencing of head measurements in aquifers separated by an aquitard in order to better 

inform the vertical hydraulic conductivity of the material comprising the aquitard, and 

temporal differencing of measurements comprising a time series in order to better inform 

storage parameters which govern temporal model output variations. 

Making Use of “Soft Data” 

In many instances it is known that model outputs should lie within a certain range. It may not 

matter to the user where in the range these outputs fall, as long as the parameter estimation 

process is formulated in such a way as to discourage model outputs from straying outside of 

this range. Enforcement of constraints of this type requires use of a nonlinear penalty 

function - a function that enforces zero or minimal constraints if a model output is within 

certain limits, but that enforces rapidly growing constraints to the extent that these limits are 

violated. 

OBS2OBS provides the user with a mechanism for achieving this aim. Suppose that it is 

desired that a model output op1 be discouraged from exceeding opmax or undercutting 

opmin. Suppose also that the user does not feel that it would serve the parameter estimation 

process well to “observe” that op1 is equal to the average of opmin and opmax. Two variables 

named penalty_high and penalty_low can then be defined within OBS2OBS as follows. 

 penalty_high = max(op1-opmax,0.0) 

penalty_low = max(opmin-op1,0.0) 

Each of these new variables will be zero unless the upper model output range is exceeded (in 

which case penalty_high will be non-zero), or unless the lower model output range is 

transgressed (in which case penalty_low will be non-zero). These two variables can then be 

matched to “observed” values of zero in the PEST control file. The weight given to these 

observations should then be such as to provide a strong disincentive for these bounds to be 

transgressed. 

Further sophistication can be added by raising penalty_high and penalty_low to an 

appropriate power (greater than unity) to strengthen the onset of penalty enforcement. 

Alternatively, if a discontinuous penalty function is not warranted, a continuous penalty 

function defined as follows for the upper bound may be better. 

 mean = (opmax+opmin)*0.5 

 meandiff = opmax-mean 

 penalty = ((op1-mean)/meandiff)^2 
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Penalty will be zero when op1 is equal to the mean of opmax and opmin. It will be equal to 

one when op1 is equal to opmax or opmin. It will rise rapidly if further bounds transgression 

takes place. (In some circumstances logarithmic transformation of model outputs and bounds 

may be warranted in implementing this procedure).  

Parameter Bounds Enforcement 

PEST allows “hard” bounds to be enforced on parameters; these bounds will not be 

transgressed during the parameter estimation process (unless they are applied to a child 

parameter that is tied to a parent parameter, with only the latter being estimated). Such rigid 

“on” or “off” bounds enforcement may not be appropriate in some modelling contexts. 

Furthermore a practical problem is encountered when undertaking SVD-assisted parameter 

estimation in that if a base parameter encounters its bound, it is stuck there for the remainder 

of the parameter estimation process. 

An appropriate response to these situations may be to employ soft bounds in addition to hard 

bounds. Prior information (in which a parameter is assigned a preferred value with a penalty 

incurred through deviation from this preferred value) could be used as a mechanism for 

imposition of soft bounds. An alternative approach may be to use parameter thresholds in the 

same manner as that shown above for observations instead of introducing a penalty as soon as 

the parameter deviates from some central value. The upper and lower parameter thresholds 

(both of which should be within the bounds associated with that parameter) can be used to 

define parameter values at which a linear (or nonlinear) penalty begins to be enforced in the 

manner shown above. Of course if PEST is still determined to send the parameter to its upper 

or lower bound notwithstanding the increasing disincentive to do so as that bound is 

approached, then bounds enforcement takes place in the usual way. 

To implement soft bounds, PEST should be asked to write an additional “model input file” on 

the basis of a new, user-supplied template file. This model input file should simply list 

current values for parameters for which soft bounds enforcement is to be applied. This file 

can then be read as a “model output file” by OBS2OBS using an appropriate instruction file. 

7.3.5 Some Notes on Using OBS2OBS 

OBS2OBS is normally used to supplement an existing PEST input dataset. Hence the model 

output file read by OBS2OBS may also be read by PEST. The OBS2OBS output file is then 

added to the list of model output files recorded in the “model input/output” section of the 

PEST control file (together with the instruction file which is used to read this OBS2OBS 

output file – possibly generated by OBS2OBS itself in the manner described above). 

Alternatively, the user can eliminate the need for PEST to read “raw” and OBS2OBS-

processed observations from two different files. This is made possible by the fact that 

OBS2OBS can record to its own output file the values of model outputs that it reads from 

model output files. Thus these, together with OBS2OBS-processed outcomes of these model 

outputs, can be read from the one file, this being the OBS2OBS output file. Model outputs 

thus “pass through” OBS2OBS, undergoing no change in the process. 

If OBS2OBS is used as a model postprocessor then the command to run OBS2OBS must be 

included in the model batch file (after the command to run the model). As was discussed in 

documentation of PAR2PAR, it is a good idea to delete the input file of any executable 

program that runs in a model batch file (using an appropriate deletion command early in the 

batch file) if that input file is written by another executable program cited in the batch file. 

Hence if, on the occasion of any model run, this input file does not get written because of 



Model Pre- and PostProcessing 67 

 
 

execution failure in the program that is supposed to write it, the program which is supposed 

to read it will crash. PEST will then detect a model failure condition instead of reading the 

outcomes of model component calculations that have taken place on the basis of files that are 

left over from a previous model run. This advice is just as salient when using OBS2OBS as it 

is when using PAR2PAR (or any other model batch file comprised of multiple executable 

programs), except under some circumstances. These include the following. 

1. If the model output file that is read by OBS2OBS is also read by PEST, then there is 

no need to delete this file using a batch file command as PEST will delete this file 

itself prior to running the model. 

2. The OBS2OBS input file must not be deleted if it contains parameter values directly 

written by PEST using a template file (this being done to enforce soft parameter 

bounds in the manner described above). Deletion of this file early in the model batch 

process will ensure its absence when OBS2OBS needs to read it. However if you feel 

uncomfortable in straying from the established principle of deleting all input files 

used by model postprocessors (this being a worthy principle), then you should include 

in the model batch file a command to copy the PEST-generated parameter list file to 

another file, and instruct OBS2OBS to read the latter file. The command to delete this 

file can then be included towards the top of the model batch file. 
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8. PEST Statistical Postprocessing 

8.1 Introduction 

This chapter describes a number of utilities that can be used after a PEST run in order to gain 

a better understanding of the information content of the calibration dataset, and of the 

estimability (or otherwise) of individual parameters. Some of these utilities (EIGPROC, 

PCOV2MAT, INFSTAT and INFSTAT1) are best suited for use in the well-posed inversion 

context, where all parameters are estimable on the basis of information contained in the 

calibration dataset. Others utility programs documented in this chapter (SUPCALC, 

IDENTPAR and SSSTAT) embrace the ill-posedness of an inverse problem; they calculate 

the dimensionality of the solution space, and the degree to which each parameter lies within 

or without of this space. 

Further insights can be gained into the well-posedness or otherwise of an inverse problem, 

and into the information content of the calibration dataset as it pertains to each parameter, 

through use of the GENLINPRED utility. However GENLINPRED is not documented in this 

section as its capabilities extend to analysis of the uncertainties of predictions, and not just of 

parameters. Predictive uncertainty and error variance analysis is the subject of another 

chapter of this manual. 

8.2 EIGPROC 

8.2.1 General 

EIGPROC reads a PEST run record file and a PEST sensitivity file. It extracts and 

summarises information from these files. Recall that a PEST run record file is always named 

case.rec where case is the filename base of the PEST control file; a sensitivity file is named 

case.sen.  

Use of EIGPROC (which stands for “eigenstuff processor”) is predicated on the following 

assumptions. 

• PEST has been run in “estimation” mode. 

• The ICOV, ICOR and IEIG variables in the “control data” section of the PEST 

control file are all set to 1. 

• PEST has run to completion, or has been stopped using the “stop with statistics 

option”. (This will happen if the PSTOPST program has been run in another 

window). 

• The parameter estimation problem is well posed so that the JtQJ matrix (often 

referred to as the “normal matrix”) inverted by PEST to obtain the parameter 

covariance matrix is not singular; thus a post-calibration covariance matrix (and 

associated correlation coefficient and eigendata matrices) are recorded at the end of 

the run record file. 

8.2.2 Using EIGPROC 

EIGPROC is run using the command 

eigproc case N exlim outfile 

where 
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case  is the filename base of the PEST control file, 

N  is the number of eigenvalues to be processed, 

exlim  is the eigencomponent exclusion limit, and 

outfile  is the EIGPROC output file. 

EIGPROC’s input requirements will now be explained in more detail. 

Where PEST is run in “estimation” mode, and where an inverse problem is well-posed, the 

post-calibration covariance matrix is computed using equations (5.2.13) and (5.2.18) of 

Doherty (2015). The largest eigenvalues of the post-calibration parameter covariance matrix 

are associated with eigenvectors that describe parameter combinations that contain most of 

the uncertainty of an inferred parameter set. By supplying an appropriate value for N (which 

should be equal to, or less than, the number of adjustable parameters), you inform EIGPROC 

how many eigenvalues you would like listed in the EIGPROC output file. Eigenvalues are 

counted starting from the highest. 

For a given eigenvalue, only those parameters whose components of the corresponding 

eigenvector which are significantly nonzero are of special interest, for these are the 

parameters which, by virtue of insensitivity and/or correlation, are estimated with larger 

uncertainty than other parameters. If the eigencomponent exclusion limit supplied on the 

EIGPROC command line is, for example, 0.1 then only parameters whose absolute 

eigenvector components are greater than 0.1 are listed with the information supplied for a 

particular eigenvalue in the EIGPROC output file. (Eigenvectors of the post-calibration 

covariance matrix are normalized so that their magnitudes are all 1.0). The name of the 

EIGPROC output file is supplied as the last of EIGPROC’s command line arguments. 

Once it has parsed its command line, EIGPROC reads the PEST run record file, followed by 

the PEST sensitivity file. For each eigenvalue (starting from the highest) it provides 

information such as that shown in figure 8.1. 

Eigenvalue number: 14     Value =  0.24990     --------> 

 

 Parameter    Eigenvector      Sensitivity 

              component 

  v3pp42         0.496          9.071E-03 

  v2pp42         0.487          1.060E-02 

 

 Correlation coefficient matrix for these parameters:- 

                v3pp42       v2pp42 

 v3pp42           1.0         0.84 

 v2pp42          0.84          1.0 

Figure 8.1 Part of an EIGPROC output file. 

For each eigenvalue, EIGPROC lists parameters in decreasing order of eigenvector 

component magnitude; the actual eigenvector component is also listed, together with the 

composite parameter sensitivity as read from the sensitivity file. (Note that these sensitivity 

values are extracted from the end of the sensitivity file where statistics related to optimised 

parameters are listed.) Parameters are only listed in this table if their eigencomponent 

magnitude is greater than the “eigencomponent exclusion limit” supplied on the EIGPROC 

command line. 

Underneath the eigendata a correlation coefficient matrix is recorded. This is a sub-matrix of 

the parameter correlation coefficient matrix listed in the PEST run record file, featuring only 

those parameters which appear in the above eigendata listing. 
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8.3 PCOV2MAT 

PCOV2MAT extracts a PEST-calculated post-calibration covariance matrix from files 

recorded by PEST. It re-writes this matrix in PEST matrix file format. Once in that format, it 

can be processed using matrix utilities documented elsewhere in this manual. 

Suppose that the filename base of the PEST control file is case. PEST records a post-

calibration covariance matrix file at the end of its run record file (named case.rec) and also in 

a file named case.mtt; the latter file is refreshed during every iteration of the inversion 

process. However PEST only records a post-calibration covariance matrix in either of these 

files if the following conditions are met. 

• PEST is run in “estimation” mode; 

• The ICOV variable in the “control data” section of the PEST control file is set to 1;  

• Neither singular value decomposition nor LSQR is employed in solution of the 

inverse problem; 

• The JtQJ matrix (where J is the Jacobian matrix and Q is the weight matrix) is 

invertible. 

See section 5.2.2 of Doherty (2015) for a discussion of the post-calibration covariance matrix 

produced through solution of a well-posed inverse problem. 

PCOV2MAT is run using the command 

pcov2mat pestfile matfile 

where 

pestfile  is the name of a PEST run record file or matrix file containing a 

covariance matrix, and 

matfile  is the name of the matrix file to which the matrix will be re-written; see 

section 2.4 for format specifications for this type of file. 

The following should be noted. 

1. Only adjustable parameters are cited in a post-calibration parameter covariance 

matrix; fixed and tied parameters are not cited. 

2. It is preferable to use the parameter covariance matrix from a run record file over that 

recorded in a matrix file as the former is calculated using sensitivities pertaining to 

optimised parameters, whereas the covariance matrix recorded in the latter file is 

calculated on the basis of sensitivities pertaining to the latest PEST iteration. 

Once the post-calibration parameter covariance matrix has been translated by PCOV2MAT to 

matrix file format, the error variance of a particular prediction can be calculated on the basis 

of equation 5.2.17 of Doherty (2015) using the MATQUAD utility documented elsewhere in 

this manual. Prediction sensitivities required for this calculation can be extracted from a 

Jacobian matrix file using the JROW2VEC or JROW2MAT utilities; in the latter case the 

MATTRANS utility must be used before MATQUAD is employed to calculate predictive 

error variance. 

8.4 INFSTAT 

8.4.1 General 

The INFSTAT utility computes a number of observation influence statistics, namely 
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observation leverage, Cook’s D, an influence statistic proposed by Hadi (1992), and 

DFBETAS. For a complete description of these, see Yager (1998), Hadi(1992), and 

references cited therein. See also section 5.3.3 of Doherty (2015) where the influence 

statistics computed by INFSTAT are defined, and where formulas for their computation are 

provided.  

INFSTAT should be used for computation of influence statistics where an inverse problem is 

well-posed. While it will tolerate usage of PEST in “regularisation” mode this is not 

recommended, as inverse problem ill-posedness compromises the theory on which 

computation of these influence statistics is based. Where an inverse problem is ill-posed, 

consider using INFSTAT1 in place of INFSTAT. Better still, consider using utility programs 

such as PREDUNC5 and PREDVAR5 (documented elsewhere in this manual) which 

accommodate the existence of a null space in assessing data worth. See also the SSSTAT 

utility. 

8.4.2 Using INFSTAT 

INFSTAT is run using the command 

infstat case outfile [nsig] 

where  

case  is the filename base of a PEST control file pertaining to a completed 

PEST run, and 

outfile  is the name of a file to which INFSTAT will write tabulated leverage, 

Cook’s D, Hadi, and DFBETAS statistics.  

INFSTAT reads the PEST control file case.pst, the Jacobian matrix file case.jco, and the 

residuals file case.res for a completed PEST run. Where the completed PEST run was in 

“regularisation” mode, INFSTAT also reads the PEST-produced resolution data file case.rdf 

in order to obtain optimised regularisation weights.  

Optionally, for purposes of testing the effect on calculated statistics of limited precision 

sensitivities, the number of significant figures employed for representation of elements of the 

Jacobian matrix in influence statistics calculations can be limited to nsig by the user. If 

omitted (which will normally be the case), then elements of the Jacobian matrix are 

represented with the precision with which they are read from the JCO file when INFSTAT 

calculates its influence statistics. 

The following should be noted. 

1. INFSTAT will cease execution with an appropriate error message if the previous 

PEST run was undertaken in “predictive analysis” or “pareto” modes. 

2. Observations and prior information equations with weights of zero are ignored. 

3. As noted in part I of this manual, it is possible that estimates of parameters may have 

improved slightly on the final iteration of the inversion process undertaken by PEST 

after calculation of the set of parameter sensitivities which occupy the Jacobian matrix 

file (i.e. the JCO file). If the resulting mismatch between parameter values and 

parameter sensitivities is seen as a problem, the PARREP utility can be employed to 

build a new PEST control file with optimised parameter values supplied as initial 

parameter values in this file. If NOPTMAX is set to -1 in this file, PEST will calculate 

a new Jacobian matrix using these parameters, record this matrix in a new JCO file, 

record some statistical information on its run record file, and then cease execution. (If 
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you wish, you can even ask PEST to calculate the Jacobian matrix using a higher 

order finite-difference stencil on this dedicated PEST run.) Note however that this 

procedure is inappropriate if PEST was run in “regularisation” mode as optimised 

regularisation weight factors are not transferred to the new PEST control file by 

PARREP. 

4. In recording observation names to its output file, an underscore is added to those 

observation names that belong to an observation group for which a covariance matrix 

is supplied instead of observation weights. In this case, the “observations” for which 

influence statistics are calculated are not really the nominated observations at all, but 

linear combinations j of the original observations h defined as 

j = C(ε)-1/2h        (8.4.1) 

where C(ε) is the user-supplied observation covariance matrix for the pertinent 

observation group.  

5. Where PEST is run in “regularisation” mode, calculation of influence statistics 

includes the effects of regularisation prior information and regularisation 

observations. However, due to the fact that weights for these observations and prior 

information equations are calculated by PEST on the basis of a user-supplied target 

measurement objective function instead of an optimised objective function, and do not 

reflect the uncertainty of these observations and prior information, Cook’s D and 

DFBETAS statistics do not have the same meaning in this context. In fact, it is 

difficult to know just what meaning they do have when PEST is run in 

“regularisation” mode. Nevertheless, they can still be calculated; their meaning is left 

to the user to interpret. 

6. Where singular value decomposition was employed for solution of the inverse 

problem, INFSTAT does not compute influence statistics. This is because it is not 

aware of the truncation point used for separation of solution and null spaces. If the 

PEST control file has a “singular value decomposition” section, and if SVDMODE is 

non-zero in that section, INFSTAT ceases execution with an appropriate error 

message. 

7. Where SVD-assist was implemented for solution of the inverse problem, INFSTAT 

does indeed compute influence statistics (provided singular value decomposition was 

not used to calculate values for super parameters). However you should bear in mind 

that these statistics pertain to the inverse problem as posed in terms of super 

parameters rather than base parameters; this is apparent from an inspection of the 

DFBETAS table produced by INFSTAT. To ascertain the base parameter composition 

of each super parameter, use the PCLC2MAT utility. 

8. As well as influence and DFBETAS statistics, INFSTAT presents a summary of 

important observations (and parameters which they influence), “importance” being 

established using the magnitude of these statistics with respect to thresholds as 

outlined in the references cited above. It should be noted that the establishment of a 

threshold is somewhat arbitrary (Hadis 1992); in the case of the Hadis statistic, the 

relative influence of observations can have a large effect on calculation of this 

threshold because the latter relies on the mean and standard deviation of influence 

values. If one or more observations are orders of magnitude more influential than the 

others, use of a thus-calculated threshold may remove observations that are 

nevertheless influential (Hadis, 1992). In addition to observations greater than the 
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Hadis threshold, INFSTAT provides the user with a report of influence that lists the 

90-100th percentile and 80-90th percentile for comparison.   

9. If, for some reason, a DFBETAS statistic for a particular parameter/observation 

cannot be calculated (as can sometimes occur because of a zero-valued denominator 

in the equation used for its calculation), a value of -1.0E35 is recorded at the pertinent 

location on the INFSTAT output file.  In many cases the zero-valued denominator is 

indicative of high influence, so these observations are listed as having DFBETAS 

influence. However, the value of DFBETA reported for these observations is not 

accurate.  

8.5 INFSTAT1 

8.5.1 General 

INFSTAT1 performs a similar function to that of INFSTAT. However it is better equipped to 

accommodate inverse problem ill-posedness than INFSTAT. In spite of this, its use does not 

overcome a fundamental problem with the type of influence statistics that INFSTAT and 

INFSTAT1 support. This is the fact that these statistics do not quantify the ability of data to 

reduce the dimensionality of the calibration null space. In many calibration contexts this is 

the best measure of the worth of data. As stated in documentation for INFSTAT in the 

previous subsection, utility programs such as PREDVAR5 and PREDUNC5 can overcome 

this problem. See also the SSSTAT utility which can likewise accommodate problem ill-

posedness while calculating indicators of data worth. 

Where an inverse problem is ill-posed, INFSTAT cannot invert the sensitivity-based matrices 

required for calculation of its information statistics. This situation can be remedied by 

introducing Tikhonov regularisation to the inverse problem, for example through the use of 

prior information expressing expert knowledge. As is discussed in part I of this manual, 

PEST calculates its own weights for observations and prior information equations comprising 

regularisation constraints. The INFSTAT utility described in the previous section tries to use 

these weights. INFSTAT1 does not.  

Instead of relying on Tikhonov regularisation that may have been used in a PEST inversion 

problem to achieve the matrix invertibility that calculation of its statistics requires, 

INFSTAT1 employs subspace methods as encapsulated in singular value decomposition to 

achieve this same end. In fact, if any prior information is contained within a PEST control 

file, INFSTAT1 ignores it. The user informs INFSTAT1 of the number of singular values at 

which singular value truncation should take place, and hence of the dimensionality of the 

calibration solution space. INFSTAT1 then reformulates sensitivity matrices so that 

parameter projections onto this space are estimated. If the dimensionality of the solution 

space is too large (INFSTAT1 decrees it to be too large if the ratio of the smallest to largest 

post-truncation eigenvalue is less than 5E-7), INFSTAT1 informs the user of this, and then 

ceases execution. Thus all matrices required for calculation of influence statistics are 

guaranteed to be invertible.  

The SUPCALC utility described below can be used to obtain estimates of optimal solution 

space dimensionality. Use the lower of the two values suggested by SUPCALC. 

As described by Doherty (2015), and as stated above, when singular value decomposition is 

employed as a regularisation device, the inverse problem is re-formulated to estimate the 

projection of a real-world parameter set onto the (often small-dimensional) solution space of 
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the calibration problem. In PEST parlance, the square of the direction cosine between an 

individual parameter and its projection into the calibration solution space is referred to as the 

“identifiability” of that parameter; this can be calculated using the IDENTPAR, SSSTAT and 

GENLINPRED utilities. In a typical calibration context the identifiability of many parameters 

may not be very high. Where this is the case, the estimated values of these parameters may 

have large errors due to their high projection onto the calibration null space. INFSTAT1 does 

not concern itself with this. Each parameter cited in its output file must be interpreted as the 

projection of the pertinent parameter into the calibration solution space. This, indeed, is the 

weakness of the statistics supported by INFSTAT and INFSTAT1 in assessing data worth.  

8.5.2 Using INFSTAT1 

INFSTAT1 is run using the command 

infstat1 case outfile nsing 

where 

case  is the filename base of a PEST control file, 

outfile  is the INFSTAT1 output file, and 

nsing  is the singular value truncation threshold. 

If NSING is supplied as greater than the number of adjustable parameters, or the number of 

non-regularisation observations cited in a PEST control file, it is automatically reduced to the 

lower of these two numbers. The eigenvalue ratio at the user-supplied truncation threshold is 

written to both the screen and to the INFSTAT1 output file.  

As for INFSTAT, PEST must have been run prior to using INFSTAT1 as a Jacobian matrix 

corresponding to the nominated PEST control file must exist (in a file named case.jco). If 

PEST is run specifically to obtain this matrix, then NOPTMAX must be set to -1 and not -2 

in the PEST control file so that PEST records a residuals file on termination of execution. 

INFSTAT1 uses these residuals in calculation of its influence statistics. 

8.6 SUPCALC 

8.6.1 General 

“SUPCALC” stands for “super parameter calculation”. It was originally written to assist in 

choosing the minimum number of super parameters to employ in SVD-assisted inversion. 

(Recall, however, from part I of this manual that the optimum – as distinct from minimum - 

number of super parameters to employ is “as many as possible”.) However its use extends 

beyond this. It is able to provide an indication of the optimal dimensionality of the solution 

space for a particular inverse problem. This can be loosely equated to the number of pieces of 

accessible information in a calibration dataset. Each of these pieces of information provides 

the basis for estimation of the scalar projection of a real world parameter set onto an 

orthogonal axis in parameter space formed though singular value decomposition of the 

weighted Jacobian matrix Q1/2J associated with the present inverse problem. 

The theory on which SUPCALC is based is described in section 6.2.5 of Doherty (2015). See 

in particular section 6.2.5.3. As described in that section, SUPCALC tries to determine the 

singular value at which estimation of the corresponding parameter solution space projection 

may introduce more potential for error than estimation of that projection on the basis of 

expert knowledge alone. As section 6.2.5 of Doherty (2015) shows, as singular values 

decrease in value, measurement noise is amplified in estimating corresponding parameter 
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solution space projections onto the columns of the V1 matrix discussed in that section, this 

contributing to a growing potential for estimation error. (This is the phenomenon of “over-

fitting”.) At some point it is amplified so much that there is smaller potential for error in 

estimating the parameter projection through expert knowledge alone than on the basis of the 

calibration dataset. This is the point that SUPCALC tries to determine. 

Actually, SUPCALC provides suggestions for both the upper and lower bounds of the 

singular value truncation point. The lower bound is calculated in the manner described above. 

The upper bound is marked by the singular value at which the ratio of highest to lowest 

squared singular value of the weighted Jacobian matrix is equal to 10-7. This is the point at 

which numerical noise associated with the Jacobian matrix is likely to be amplified to the 

point at which estimation of parameter projections is invalidated. (Selection of this truncation 

point assumes that finite parameter differencing incurs a relative error of between 10-3 and 

10-4 for estimates of partial derivatives embodied in the Jacobian matrix.) 

As is discussed by Doherty (2015), any estimate of post-calibration predictive or parameter 

error variance relies on two covariance matrices. These are C(k), the covariance matrix of 

prior expert knowledge of parameters, and C(ε), the covariance matrix of measurement noise. 

SUPCALC can read the former from a parameter uncertainty file. Alternatively, if you have 

not prepared such a file, it will calculate an approximation to this matrix by assuming the 

following. 

• All parameters are statistically independent from a prior point of view. 

• The standard deviation of each parameter is 0.3 times the difference between its upper 

and lower bound as recorded in the PEST control file; log-transformation status of 

pertinent parameters is taken into account in making this calculation. 

(Note that if you use this option then you may need to give more thought than you otherwise 

would to the bounds that you supply for parameters in a PEST control file.)  

SUPCALC attempts to make calculation of an approximate C(ε) matrix similarly easy. It asks 

for an estimate of the objective function (measurement objective function if Tikhonov 

regularisation is employed) that will be achieved through the inversion process. It divides this 

estimate by the number of non-zero-weighted, non-regularisation observations featured in the 

current inverse problem to obtain an estimate of the reference variance σ2
r for the current 

problem. Following equation 5.2.6 of Doherty (2015), C(ε) is then calculated as 

 C(ε) = σ2
rQ

-1         (8.6.1) 

Where Q is the weight matrix featured in the inverse problem. 

8.6.2 Using SUPCALC 

SUPCALC is run by typing its name at the screen prompt. Unlike many of the PEST utilities 

documented in this manual, it does not receive information through the command line. This is 

because the number of items of information that it requires would make this strategy 

somewhat cumbersome to implement. Instead, it communicates with the user through a series 

of prompts, to which appropriate responses must be supplied. 

SUPCALC’s first prompt is 

Enter name of PEST control file: 

Supply the name of an existing PEST control file for which a complementary Jacobian matrix 

file (i.e. JCO file) already exists. This control file may or may not include Tikhonov 

regularisation. If it does, all regularisation observations and prior information equations are 
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ignored by SUPCALC. 

Next SUPCALC asks 

Enter expected value of measurement objective function: 

If you have not as yet calibrated the model this will be a difficult question to answer. If you 

supply an answer which is too low, SUPCALC will probably inform you that the dimensions 

of the calibration solution space are greater than is actually sustainable by the data. If your 

answer is too high then SUPCALC may underestimate the dimensions of the calibration 

solution space. However, given the approximate nature of SUPCALC’s calculations, and the 

fact that in most modelling contexts the level of fit is determined more by so-called 

“structural noise” than by measurement noise, these considerations are probably of secondary 

importance. Furthermore, in many real-world modelling contexts the boundary between the 

solution and null spaces is “soft” because the minimum of the parameter projection error 

variance curve that SUPCALC seeks to find is difficult to establish; this is because the 

number of singular values over which near-minimal values are calculated is often quite broad. 

SUPCALC next asks 

To conduct SVD on Q^(1/2)X  - enter 1 

To conduct SVD on XtQX      - enter 2 

Enter your choice: 

In these questions X is the Jacobian matrix J. The outcome of SUPCALC’s deliberations 

should not depend on your choice; however SUPCALC execution time may depend on which 

of these options you select. If in doubt, choose the first option as it is often much quicker. 

SUPCALC’s next prompt is 

Use uncertainty file or bounds to specify parameter variability?  [u/b]: 

If you choose the “b” option, SUPCALC computes the prior standard deviation of every 

parameter as the difference between its bounds (as read from the PEST control file) 

multiplied by 0.3. This factor is somewhat arbitrary. For a uniform probability distribution 

the standard deviation is actually the range divided by √12 (which is equivalent to 

multiplication by 0.288). For a normal distribution, if the bounds interval signifies the 95 

percent confidence interval, the standard deviation is the range divided by 4 (which is 

equivalent to multiplication by 0.25). In implementing this option, SUPCALC assumes that 

all parameters are statistically independent, and thus that the C(k) matrix is diagonal.  

Alternatively, if the “u” option is chosen, the name of a parameter uncertainty file must be 

supplied in response to the following prompt 

Enter name of parameter uncertainty file: 

Specifications for a parameter uncertainty file are provided in section 2.5 of this manual. 

Through this means a C(k) matrix of arbitrary complexity can be provided. 

SUPCALC’s final prompt is 

Enter name for eigenvector gain/loss output file: 

The format of this file will be discussed shortly.  

Next, for each orthogonal unit vector represented in the V matrix obtained through singular 

value decomposition of Q1/2J or JtQJ, starting with the highest singular value, SUPCALC 

computes the loss of error variance accrued through inclusion of this eigencomponent in the 

calibration solution space, and the gain in uncertainty incurred through the effect of 



PEST Statistical Postprocessing 77 

 
 

measurement noise in estimating it. It then sums the two of these. If the summation is 

negative (indicating a net loss of estimability of the parameter projection onto this direction 

in parameter space), SUPCALC recommends that this eigencomponent should not be 

included in the calibration solution space. The recommended minimum number of super 

parameters to include in the parameter estimation process is then declared to be one less than 

the number of that singular value. 

Ideally, once a rise in estimated parameter error variance is encountered in this fashion as the 

singular value number is increased, the rise in total estimated parameter error variance will be 

even greater for eigencomponents corresponding to subsequent singular values. However 

where the C(k) matrix is non-diagonal, and where its diagonal elements are very different 

from each other, it is not impossible for falls in estimated parameter error variance to follow 

rises. Hence SUPCALC supplies its minimum recommended number of super parameters as 

the singular value number corresponding to the last eigencomponent for which inclusion in 

the solution space results in a net diminution of post-calibration parameter error variance. 

As well as providing a value for the minimum number of dimensions of the solution space, 

SUPCALC also provides a recommendation for the maximum possible dimensions of the 

solution space. As stated above, the latter corresponds to the number of the last singular value 

of JtQJ that is above 10-7 of the first singular value of this matrix. Both the minimum and 

maximum recommended number of super parameters are written to the screen by SUPCALC.  

SUPCALC records the outcomes of calculations pertaining to all eigencomponents to its 

“eigenvalue gain/loss output file”. An example of this output file follows. 

Singular_value   fall_in_null_space_term    rise_in_soln_space_term     total_fall 

    99.70827            1.183301              9.5014028E-03           1.173799     

    35.44050            1.154450              2.6731237E-02           1.127718     

    12.07416            1.084832              7.8462467E-02           1.006369     

    8.386447            1.079208              0.1129642              0.9662440     

    3.985802            1.035739              0.2376858              0.7980535     

    1.738295            0.9812030              0.5449986              0.4362043     

   0.7795562            0.9190415               1.215266             -0.2962249     

   0.2791684            0.8709510               3.393538              -2.522587     

   9.8457999E-02        0.8429289               9.622056              -8.779127     

   3.0268715E-02        0.8483459               31.29860              -30.45025     

Figure 8.2 A SUPCALC output file. 

The first column of the SUPCALC output file lists singular values of JtQJ; these are the 

squares of singular values of Q1/2J. They are listed in order of decreasing singular value. The 

fall in error variance of estimation of each parameter projection from its pre-calibration level 

(the latter is equal to its pre-calibration error variance determined by C(k) alone) is provided 

in the second column. The rise in error variance accrued from the fact that data on which 

basis this parameter projection is estimated is contaminated by measurement noise is 

provided in the third column. The final column contains the fall in error variance minus the 

rise in error variance; if this is negative, there is a net rise in error variance, from which it 

must be concluded that the value of the parameter’s projection onto the direction defined by 

the corresponding column of V is not worth including in the parameter estimation process. 

This defines the boundary of the calibration solution space. 

8.7 IDENTPAR 

8.7.1 General 

Doherty (2015) and Doherty and Hunt (2009) define the identifiability of a parameter as the 

square of the cosine of the angle between a parameter and its projection onto the calibration 



PEST Statistical Postprocessing 78 

 
 

solution space. It is also the magnitude of the diagonal element of the resolution matrix 

corresponding to that parameter. See section 7.2.1 of Doherty (2015) for details.  

If the identifiability of a parameter is 1.0, then that parameter is completely estimable on the 

basis of the current calibration dataset. This does not mean that its estimation is without error; 

however it means that measurement noise, and not an information deficit in the calibration 

dataset, is responsible for this error. Alternatively, if a parameter has an identifiability of 0.0, 

then the calibration dataset is completely uninformative of that parameter; thus the parameter 

is completely insensitive as far as the calibration dataset is concerned. On the other hand, if 

the identifiability of a parameter is between 0.0 and 1.0 then information within the 

calibration dataset that pertains to that parameter is shared between it and other parameters; 

the parameter can therefore not be resolved uniquely. 

The value calculated for the identifiability of a parameter may depend on the number of 

dimensions attributed to the calibration solution space. The boundary between calibration 

solution and null spaces is often a soft boundary. Calculation of the location of this boundary 

may be assisted through the use of programs such as SUPCALC, SSSTAT and PREDVAR1 

described elsewhere in this manual. The dependence of the identifiabilities computed for 

some parameters on the location of this often ill-defined boundary may erode the value of 

identifiability as a useful post-calibration statistic in some modelling contexts. In these 

contexts the relative parameter uncertainty variance reduction computed by GENLINPRED 

(which also varies between 0.0 and 1.0) may prove a superior statistic. 

In spite of its drawbacks, the concept of parameter identifiability has an intuitive appeal. 

Furthermore, as the following discussion shows, some ancillary data on flow of information 

from the calibration dataset to the parameter solution space is also available as a by-product 

of its use.  

8.7.2 Using IDENTPAR 

IDENTPAR is run using the command 

identpar case N vecfilebase matfile identfile [/s or /r] 

where 

case  is the filename base of a PEST control file, 

N  is the number of dimensions comprising the calibration solution space, 

vecfilebase  is the filename base to which eigencomponent sensitivity vectors are to 

be written (supply this as “null” if these are not to be written), 

matfile  is the name of a matrix file to which the V1 matrix is to be written 

(supply this as “null” if this is not to be written), 

identfile  is the name of a file to which parameter identifiability data is to be 

written (supply this as “null” if this file is not to be written), 

/s (optional)  instructs IDENTPAR to undertake singular value decomposition of 

JtQJ, (the default), while 

/r (optional)  instructs IDENTPAR to undertake singular value decomposition of 

Q1/2J.  

IDENTPAR begins execution by reading the PEST control file corresponding to the user-

supplied filename base. It reads parameter data and observation weights from this file (and 

any observation covariance matrices cited in the “observation groups” section of the PEST 

control file if these are employed for any observation groups instead of weights). It then reads 

the Jacobian matrix corresponding to this PEST control file. As usual, this file is assumed to 
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have the same filename base as the PEST control file but to possess an extension of “.jco”; it 

is thus assumed that this file exists and has been computed either on the basis of initial 

parameter values recorded in the PEST control file (set NOPTMAX to -1 or -2 to do this) or 

during a prior parameter estimation process. 

IDENTPAR next forms the JtQJ matrix (or Q1/2J matrix depending on the user’s choice of 

the “/s” or “/r” switch – where “s” stands for “square matrix” and “r” stands for “rectangular 

matrix”)  and carries out singular value decomposition of the chosen matrix. On the basis of 

N as supplied by the user on the IDENTPAR command line, it then records the following 

information. Note however, that any of the following three tasks can be disabled by providing 

a name of “null” for the pertinent filename base or filename in the IDENTPAR command 

line. 

First IDENTPAR writes a series of “vector files” containing the columns of V1 (see Doherty, 

2015). Suppose that the user-supplied basename for these files is vfile. Then the files will be 

named vfile1.vec, vfile2.vec…..vfileN.vec. Any of these files can be used as a predictive 

sensitivity file by any of the PREDVAR-suite or PREDUNC-suite utilities described 

elsewhere in this manual.  

If matfile in the IDENTPAR command line is set to a value other than “null”, IDENTPAR 

writes the columns of V1 to a single file in PEST matrix file format. 

If identfile in the IDENTPAR command line is set to a value other than “null”, IDENTPAR 

computes the identifiability of each parameter and records it to the nominated file. It also 

records the square of the magnitude of the projection of each unit parameter vector onto each 

eigencomponent comprising columns of the V1 matrix. These are the eigencomponent 

squared cosines defined by equation 7.2.5 of Doherty (2015). The pertinent element in the 

“identifiabililty” column in this same file is the square of the magnitude of the projection of 

each unit parameter vector onto the totality of this space as spanned by all solution space 

eigencomponent vectors. It is thus the sum of the preceding columns. 

Interesting and informative plots can be produced by importing identfile into a spreadsheet or 

graphing program. For example figure 8.3 shows a bar chart of parameter identifiabilities, 

with the contribution from each solution space eigencomponent demarcated by colour within 

each parameter-specific bar. It is apparent that some parameters (such as par3, par8, par9 

and par11 are very identifiable, whereas others (such as par13 to par17) are not. 
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Figure 8.3 Bar chart of parameter identifiabilities coloured by contributions made to 

total identifiability by different solution space eigencomponents. 

Plots such as that provided in figure 8.3 can be made even more informative if warmer 

colours (reds and yellows) are ascribed to projections onto eigencomponent vectors (i.e. unit 

vectors vi comprising columns of the V1 matrix) associated with high singular values and 

cooler colours (blues and greens) are ascribed to projections onto eigencomponent vectors 

associated with low singular values. As discussed by Doherty (2015), measurement-noise-

induced errors associated with estimated values of parameter eigencomponent projections 

increase as singular values associated with eigencomponents decrease. Warmer colours may 

therefore be indicative of smaller post-calibration error variance.  

The following should be noted. 

1. Weights used in computation of Q1/2J (or JtQJ) are those provided in the cited PEST 

control file. 

2. Use of the Q1/2J and JtQJ matrices should lead to identical identifiabilities. However 

if many parameters and/or observations are featured in the inversion process then the 

“/r” option should be used in running IDENTPAR as its execution will probably then 

be faster. 

3. If PEST is run in “regularisation” mode, observations and prior information equations 

belonging to regularisation groups are ignored by IDENTPAR. 

8.8 PARAMID 

8.8.1 General 

PARAMID is an old program whose use is no longer recommended. However it is still 

retained in the PEST suite as it may be useful to some. 

PARAMID stands for “parameter identifiability analysis”. It performs simple analysis of the 

contents of an “SVD file” written by PEST, listing the contributions made by adjustable 

parameters involved in the current inversion process to the eigenvectors spanning the 

calibration solution space. (The eigenvectors are the columns of the V matrix emerging from 
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singular value decomposition of the weighted Jacobian Q1/2J matrix.) 

Use of PARAMID is based on the following premises. 

1. A PEST run has just been carried out in which singular value decomposition was 

employed for solution of the inverse problem. 

2. The EIGWRITE variable was set to 1 in the “singular value decomposition” section 

of the PEST control file, thus ensuring that the full eigenvector matrix was recorded 

in the SVD file generated by PEST under these circumstances. 

3. The initial Marquardt lambda was set to zero (and NUMLAM set to 1) in the “control 

data” section of the PEST control file. 

4. At least one iteration was carried out before termination of PEST execution. Thus 

NOPTMAX was set to 1 or greater in the “control data” section of the PEST control 

file. 

Note that if model run times are long and a Jacobian matrix file already exists based on a 

PEST run in which a strategy other than singular value decomposition was used to solve the 

inverse problem, then there is no need to undertake a full PEST run in order to obtain the 

SVD file. Simply alter the PEST control file so that the above conditions are met (after using 

the PARREP utility to place optimised parameter values into this file). Then start PEST using 

the “/i” switch. PEST will then prompt the user for the name of an existing Jacobian matrix 

file rather than calculating the Jacobian matrix itself. 

8.8.2 Using PARAMID 

PARAMID is run using the command 

paramid case outfile 

where  

case  is the filename base of an existing PEST control file which meets the 

above requirements, and 

outfile  is the name of the file to which PARAMID must write the outcomes of its 

analysis. 

PARAMID reads the PEST control file and the SVD file written by PEST on its previous run. 

From the SVD file it determines the number of singular values before truncation; it assumes 

that this is the dimensionality of the calibration solution space. For each adjustable parameter 

listed in the PEST control file, PARAMID then determines the largest (absolute) contribution 

that this parameter makes to any of the solution space eigenvectors, as well as the smallest 

absolute contribution. It records these (as well as the corresponding eigenvector number) to 

its output file.  

Don’t forget the following. 

1. All eigenvectors computed by singular value decomposition are normalized; hence 

the largest contribution that any parameter can make to an eigenvector is 1.0. 

2. Eigenvectors are arranged in order of decreasing singular value. Therefore lower-

numbered eigenvectors correspond to parameter combinations of greater estimability. 

The following are some conclusions that it may be possible to draw from an inspection of the 

PARAMID output file. 

1. If the largest contribution that a parameter makes to a solution space eigenvector is 



PEST Statistical Postprocessing 82 

 
 

very low, then the parameter is unidentifiable through the inversion process (and is 

probably insensitive). 

2. If a parameter makes a moderate contribution to only one solution space eigenvector, 

then it may still not be completely unidentifiable, for it may be highly correlated with 

another parameter. 

3. If a parameter makes a significant contribution to a low-numbered eigenvector, then it 

can probably be well estimated on the basis of the current calibration dataset. 

8.9 SSSTAT 

8.9.1 General 

SSSTAT stands for “subspace statistics”. It can be used to study the outcomes of a parameter 

estimation process, highly parameterized or otherwise. Statistics pertaining to the information 

content of individual members of an observation dataset are calculated, as well as statistics 

pertaining to the estimability and post-calibration error variance of parameters. The user is 

also given access to the normalized sensitivity matrix through which model outputs 

corresponding to observations are calculated from parameters, and to the matrix though 

which estimated parameters are calculated from observations. 

For most of the utilities documented in this manual, reference is made to Doherty (2015) for 

the theory on which the respective algorithm is based. An exception is made for the SSSTAT 

utility so that all of this theory can be readily accessible in one place. That theory is now 

presented.  

8.9.2 Theory and Concepts 

Let the vector h represent measurements comprising the calibration dataset and let the vector 

ε denote errors associated with those measurements. In the calibration context this will 

include both measurement error and model structural error. Let k denote the parameter set 

employed by the model. Let the matrix X represent the action of the (linearized) model. Then 

 h = Xk + ε         (8.9.1) 

We now normalize both model outputs and model parameters. The former are normalized 

with respect to the measurement noise that is associated with them, while the latter are 

normalized with respect to their innate variabilities (an expression of expert knowledge). 

Define the weight matrix Q such that 

 Q = C-1(ε)         (8.9.2) 

where C(ε) is the covariance matrix of measurement noise. 

Let the vector j represent a transformed parameter set, calculated from k using the equation 

 j = F-1/2Etk         (8.9.3) 

so that 

 k = EF1/2j         (8.9.4) 

E and F are defined through singular value decomposition of the prior parameter covariance 

matrix C(k) (which also can be considered as the covariance matrix of innate parameter 

variability) through 

 C(k) = EFEt         (8.9.5) 
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Obviously 

 C(j) = I         (8.8.6) 

Hence the transformed parameters j are normalized with respect to their innate variabilities. 

That is, they have been subjected to so-called Kahunen-Loève (KL) transformation. Where 

normalization of model outputs and model parameters is undertaken in the manner described 

above, equation 8.9.1 can be written as 

 f = Zj + τ         (8.9.7) 

where 

 Z = Q1/2XEF1/2        (8.9.8) 

 f = Q1/2h         (8.9.9) 

and 

 τ = Q1/2ε         (8.9.10) 

Obviously 

 C(τ) = I         (8.9.11) 

SSSTAT bases its calculation of inversion statistics on equation (8.9.7).  

SSSTAT works at two levels, the hiatus between these levels being marked by whether or not 

singular value decomposition of the Z matrix is undertaken. Singular value decomposition of 

Z leads to calculation of matrices U, S and Vt defined through 

 Z = USVt         (8.9.12) 

Prior to undertaking singular value decomposition of the Z matrix, SSSTAT calculates the 

diagonal elements of the matrix ZZt and the diagonal elements of the matrix ZtZ. From 

equation (8.9.12) it follows that 

 ZZt = US2Ut         (8.9.13) 

and that 

 ZtZ = VS2Vt         (8.9.14) 

Note also that if measurement noise is ignored, then, from (8.9.7) 

 C(f) = ZC(j)Zt = ZZt        (8.9.15) 

Hence ZZt is the covariance matrix that denotes the variability of normalized model outputs f 

as this arises from the natural variability of normalized model parameters j. This can be 

compared with the variability of f induced by measurement/structural noise, of which the 

covariance matrix is I. The diagonal elements of ZZt thus mark the variability of individual 

model outputs (that correspond to observations) arising out of natural parameter variability. 

As such, it is a measure of their information content with respect to parameters, for high 

parameter-induced variability indicates high information content with respect to the 

parameters that induce that variability. 

ZtZ can be viewed in a number of ways. The diagonal elements of this matrix are the 

composite sensitivities of parameters, scaled by their innate variability. This is thus closely 

related to the CSS statistic of Hill and Tiedeman (2007), but is a little more theoretically 

based. If the inverse problem is well posed, (ZtZ)-1 is the post-calibration parameter 

covariance matrix. However if it is not well posed this matrix cannot be formed. Because the 



PEST Statistical Postprocessing 84 

 
 

diagonal elements of (ZtZ)-1 denote individual post-calibration parameter uncertainty, the 

diagonal elements of ZtZ can be seen as loosely denoting post-calibration “parameter 

certainty”. Low values of post-calibration “parameter certainty” denote low ability to be 

inferred through the calibration process. The post-calibration uncertainty of such parameters 

must therefore be constrained by expert knowledge rather than information that is resident in 

the calibration dataset. 

The diagonal elements of ZtZ can be viewed from another perspective. First consider the 

matrix V1V
t
1, where the “1” subscript indicates a partitioning of V based on removal of 

columns of V that correspond to non-zero (or non-near-zero) singular values. The vectors 

comprising the columns of V1 thus span the calibration solution space. Those comprising the 

orthogonal complement of V1, i.e. V2, span the calibration null space. Thus 

 V = [V1  V2]         (8.9.16) 

The matrix V1V
t
1 denotes an orthogonal projection operator of (unknown) real model 

parameters onto the inversion solution space. As such it comprises the so-called “resolution 

matrix” that emerges from inversion based on truncated singular value decomposition. The 

diagonal elements of V1V
t
1 are thus the diagonal elements of the resolution matrix. They are 

also the “parameter identifiabilities” of Doherty and Hunt (2009) and Doherty (2015) (which 

are also computed by the IDENTPAR utility). These range between 0 and 1. Parameters with 

an identifiability of zero are completely inestimable through the inversion process because 

they lie in the inversion null space. Parameters with an identifiability of 1 are completely 

estimable as they lie entirely in the inversion solution space. The identifiability of a 

parameter is in fact the square of the cosine of the angle between it and its projection onto the 

solution space. 

Based on these considerations, as well as the characterisation of ZtZ provided through 

equation (8.9.14), each diagonal element of the ZtZ matrix can be viewed as the weighted 

squared cosine between the real-world (but unknown) scaled parameter vector j and its 

projection onto each of the vectors vi comprising the columns of V. The weight in each case 

is the square of si, this being the singular value associated with vi. The higher is this singular 

value, the less is the estimation of that parameter contaminated by measurement noise. Zero 

values of si indicate no solution space projection; the parameter therefore projects entirely 

into the calibration null space. Nothing is then known of this parameter following the 

inversion process – not even its projection into the calibration solution space. 

Where inversion is undertaken through singular value decomposition, the calibrated scaled 

parameter set j is calculated through the equation 

 j = V1S
-1

1U
tf = Gf        (8.9.17) 

where G is defined by the above equation. Doherty (2015) shows that the post-calibration 

error variance of any parameter is the sum of two terms. The first is the null space 

contribution to error and the second is the solution space contribution to error. It is easily 

shown from (8.9.17) and (8.9.7) that  

 j = V1V
t
1j + Vt

1S
-1

1U
tτ       (8.9.18) 

so that 

 j – j = -V2V
t
2j  + Vt

1S
-1

1U
tτ       (8.9.19) 

Recalling that C(j) and C(τ) are both identity matrices, it follows that 

 C(j – j) = V2V
t
2 + V1S

-2
1V

t
1       (8.9.20) 
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After computing ZZt and ZtZ, SSSTAT undertakes singular value decomposition of Z. Using 

a method identical to that employed by the SUPCALC utility, it then evaluates the optimal 

SVD truncation point; that is, it computes the optimal dimensionality of the solution space. It 

does this by looking at the pre- and post-calibration error variances of each of the coefficients 

of the vectors vi comprising the columns of V estimated through the inversion process. The 

pre-calibration error variance of each of these coefficients arises from expert knowledge 

alone. This is easily shown to be 1.0 for each coefficient. The post calibration error variance 

of each coefficient is equal to the inverse of the square of the respective singular value. The 

solution space is deemed to end and the null space is deemed to begin where post-calibration 

error variance exceeds pre-calibration error variance. This occurs where singular values fall 

below 1.0. 

After determining the optimal truncation point, SSSTAT lists on its output file all of the 

singular values arising from singular value decomposition of the Z matrix. It then lists the 

diagonal elements of Vt
1V1 and Vt

2V2. As stated above, the former are the identifiabilities of 

the scaled parameters comprising the vector j. The latter complement these; these are the 

squares of the cosines of the angles between scaled parameters and their projections onto the 

calibration null space; Vt
1V1 and Vt

2V2 sum to I.  The diagonal elements of Vt
2V2 can also be 

considered as the post-calibration null space components of error variance associated with 

each parameter. See Doherty (2015). 

SSSTAT next computes and lists the diagonal elements of V1S
2
1V

t
1 and V1S-2

1V
t
1. As 

discussed above, if the solution space comprises the whole of parameter space, the former 

quantities are equal to the diagonal elements of ZtZ. If not, they are equal to or less than 

these. If the solution space comprises the entirety of parameter space, V1S-2
1V

t
1 is equal to 

(ZtZ)-1. If not, it is equal to the solution space component of the covariance matrix of post-

calibration scaled parameter error. Each diagonal element of this matrix is thus the post-

calibration solution space contribution to the error variance of the scaled parameter 

comprising the respective element of the vector j. For each scaled parameter the sum of this 

diagonal element and the respective diagonal element of V2V
t
2 is the total post-calibration 

error variance. SSSTAT lists these for all scaled parameters. 

Finally, SSSTAT computes the diagonal elements of the matrix U1S
2

1U
t
1. Where all non-zero 

singular values are retained in the inversion process (which occurs if the inverse problem is 

well posed), the U1S
2

1U
t
1 matrix is equal to the ZZt matrix. If not, the diagonal elements of 

U1S
2
1U

t
1 will be slightly less than those of ZZt

. These provide a measure of variability of 

weight-scaled model outputs arising from variability of solution space components of scaled 

parameters. As such the diagonal elements of U1S
2
1U

t
1 are the error variances of respective 

model outputs arising from solution space scaled parameter variabilities.  

8.9.3 Using SSSTAT 

SSSTAT is run by typing its name at the screen prompt. Typical prompts and responses are 

as follows. 

 

Enter name of PEST control file: pf12.pst 

Enter expected value of measurement objective function: 10030 

 

Use uncertainty file or bounds to specify parameter variability?  [u/b]: b 

 

Enter name for SSSTAT output file: temp.dat 

Enter name for G matrix output file: tempg.mat 

Enter name for Z matrix output file: tempz.mat 
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- reading PEST control file pf12.pst.... 

- file pf12.pst read ok. 

 

- reading Jacobian matrix file pf12.jco.... 

- file pf12.jco read ok. 

 

- transforming Jacobian matrix.... 

- carrying out singular value decomposition of Q^(1/2)XFE(1/2).... 

- optimal truncation point = 4 singular values. 

- forming G matrix.... 

 

- file tempg.mat written ok. 

- file tempz.mat written ok. 

- file temp.dat written ok. 

SSSTAT calculates C(ε) from observation weights and from any observations covariance 

matrices supplied in the PEST control file. Relativity of these is preserved, while a factor is 

applied to all of them such that a new objective function is calculated from that supplied by 

the user; this new objective function is equal to the sum of non-zero-weighted observations 

comprising the calibration dataset. This is approximately its expected value if the weight 

matrix Q is equal to C-1(ε). 

It is important to note that any regularisation observations or prior information equations 

appearing in the PEST control file are ignored by SSSTAT. Hence the analysis carried out by 

SSSTAT is based purely on subspace concepts. 

SSSTAT can obtain C(k) from a parameter uncertainty file (see section 2.5 of this manual). 

Alternatively, if instructed to do so, it can assume that C(k) is diagonal, and that its diagonal 

elements can be calculated from parameter bounds. Recall that the variance of a variable is 

the square root of its standard deviation. Like SUPCALC, SSSTAT assumes that the standard 

deviation of a parameter is equal to 0.3 of the distance between its lower and upper bounds. If 

a parameter is log-transformed then it is assumed to have a log-distribution, with the standard 

deviation of this distribution calculated in the same way from the logs of parameter bounds. 

SSSTAT records its calculated statistics (mainly the diagonal elements of matrices discussed 

above) to a file of the user’s choosing. It also records the Z matrix of equation 8.9.7 and the 

G matrix of equation 8.9.17 in separate files. Each row of the former matrix provides the 

means through which a scaled model output (to which field data is matched) is calculated 

from scaled model parameters. Each row of the latter matrix provides the means through 

which an estimated scaled parameter is calculated from scaled observations. Individual rows 

of these matrices can be read using the MATROW utility. MATROW outputs can be listed in 

column format for greater readability using the MATTRANS utility. To make a bar chart 

based on this file, use a text editor that supports column cut and paste functionality to paste 

parameter or observation names alongside the numerical values of vector elements before 

importation into an appropriate spreadsheet or graphing package. Both names and vector 

element values are recorded in MATROW and MATTRANS output files. 

When writing matrix diagonal elements to its output files, SSSTAT lists the names of the 

parameters and observations with which they are associated. It is important to note that 

parameter names are valid only if C(k) is diagonal. If C(k) is non-diagonal then at least some 

elements of j will actually be linear combinations of elements of k. In spite of this, the same 

parameter names are used by SSSTAT for convenience.  

8.9.4  Some Further Comments 

SSSTAT provides a comprehensive set of statistics as they pertain to parameters and model 
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outputs employed in the ill-posed parameter estimation context. Further useful subspace 

information can be obtained using the SUPOBSPAR1 utility. 

Finally, it is worth noting that formulation of an objective function and assignment of 

observation weights is as much of an art as it is a science. In formulating an objective 

function for use in the inversion process, some members of the calibration dataset may be 

processed in a number of different ways in formulation of the total objective function. As 

Doherty (2015) explains, this can provide some defense against the deleterious effects of 

model structural errors on the inversion process. SSSTAT allows a user to experiment with 

different objective function formulations and different weighting strategies. For any 

particular formulation/weighting strategy that he/she experiments with, SSSTAT allows a 

modeler to inspect the effects of this strategy on the dimensionality of the parameter solution 

space, on the estimabilities of individual parameters, and on the information content of 

various observations or groups of observations. 
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9. Super Parameters and Super Observations 

9.1 Introduction 

This section describes a number of utilities which facilitate estimation and viewing of super 

parameters and super observations.  

If the weighted Jacobian matrix Q1/2J is subjected to singular value decomposition we obtain 

 Q1/2J = USVt         (9.1.1) 

Super observations are combinations of observations comprising the orthogonal columns of 

U. Super parameters are combinations of parameters comprising the orthogonal columns of 

V. As is described by Doherty (2015), U and V are orthonormal matrices. Each vector 

comprising a column of one of these matrices has a magnitude of unity and is orthogonal to 

other vectors comprising other columns of the same matrix. The i’th column of V (i.e. vi) is 

uniquely and entirely estimable from the i’th column ui of U; the factor which links the two is 

the i’th singular value si comprising the i’th diagonal element of the matrix S. See section 

6.2.6.3 of Doherty (2015) for further discussion. 

The values of super parameters are estimated when PEST undertakes SVD-assisted inversion. 

The SVDAPREP utility constructs a PEST input dataset for use under these circumstances. 

At the time of writing, two uses of super observations can be suggested. However more uses 

may emerge in the future. 

The first use of super observations is in reducing the number of elements comprising the 

calibration dataset. For example in surface water model calibration, daily flow observations 

may be available at a number of gauging stations spread throughout a broad study area. Data 

from all of these gauging stations may be employed to underpin simultaneous estimation of 

parameters in watersheds upstream from all of them. Tikhonov regularisation may be used to 

constrain parameter values, and relationships between parameter values, to realistic values as 

assessed through expert knowledge of the study area. It is only through simultaneous, highly-

parameterised inversion of this kind that such relationships can be maintained over an entire 

study area at the same time as parameters are made to respect constraints on their values 

imposed by the necessity for the model to reproduce historical measurements of system state. 

A calibration process, formulated in this way, may feature hundreds of parameters, and 

possibly tens of thousands of observations. Experience in doing this has demonstrated that, 

even in data-rich environments, a relatively small number of parameter combinations 

(perhaps a few tens) can be estimated uniquely. Suppose that the calibration solution space 

has 50 dimensions. Equation 6.2.48 of Doherty (2015) informs us that, notwithstanding the 

size of the calibration dataset, only 50 linear combinations of observations house all 

information that can be extracted from the calibration dataset.  

PEST memory requirements may become impossibly large where observations number in the 

tens or hundreds of thousands. A suitable strategy for approaching a parameter estimation 

problem such as this may be to reformulate it in terms of super observations rather than in 

terms of native observations. The number of super observations must be no greater than the 

number of native model parameters (and considerably smaller than the number of elements 

comprising the calibration dataset). The enormous reduction in the size of the calibration 

dataset that is achieved through the use of super observations can then make PEST’s task 

much easier when undertaking either standard or SVD-assisted parameter estimation. The 
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SUPOBSPREP utility constructs a PEST input dataset in which super observations replace 

normal observations. 

A second use for super observations is in gaining insights into what elements of the native 

observation dataset are most informative of either individual model parameters, or of 

combinations of individual model parameters. Suppose, for example, that model calibration is 

taking place on the basis of a flow time series that is a few hundreds of elements long (say 

daily flows over a year or two). The calibration dataset may be comprised of the logs of these 

flows, or (what is almost equivalent), flows may be assigned weights that are inversely 

proportional to flow values. If U is calculated on the basis of the weighted Jacobian matrix 

arising from this calibration problem, the first few columns of U can be plotted as if they 

were flows. Those aspects of the flow time series that are most directly informative of 

different aspects of the system then become readily visible by inspecting the “orthogonally 

partitioned flow time series” corresponding to the first few columns of U. The “different 

aspects of the system” referred to above constitute different linear combinations of 

parameters which constitute the first few columns of V; coefficients of these columns can be 

estimated as so-called super parameters. Super observation/parameter pairs can be 

constructed using the SUPOBSPAR and SUPOBSPAR1 utilities. 

PCLC2MAT computes only super parameters – the same super parameters that PEST 

estimates when undertaking SVD-assisted inversion. Changes in composition of super 

parameters as base parameters hit their bounds can be tracked using PCLC2MAT. 

9.2 SVDAPREP 

The SVDAPREP utility writes the PEST input dataset for SVD-assisted inversion. Recall 

from part I of this manual that the so-called “SVD-assist” methodology implemented by 

PEST supports estimation of so-called “super parameters”. These are the scalar projections of 

real-world parameters onto a set of orthogonal vectors which collectively span the calibration 

solution space; see section 6.2.7 of Doherty (2015). As is described in part I of this manual, 

because PEST calculates sensitivities with respect to super parameters before calculating 

parameter upgrades, the computational savings achieved through SVD-assisted parameter 

estimation can be very high. 

When using SVDAPREP to create a PEST input dataset for SVD-assisted inversion, and 

when implementing SVD-assisted inversion itself, super parameters are “invisible” to the 

user. Normally, all that matters is the progress of the inversion process itself, and the speed 

with which it can be implemented. However, if you are interested, the parameter composition 

of super parameters can be inspected using utility programs documented below. 

SVDAPREP is not described in this part of the PEST manual. Instead it is extensively 

documented in part 1 of this manual where SVD-assisted inversion is described in detail. 

9.3 PCLC2MAT 

As described in part I of this manual, when PEST undertakes SVD-assisted parameter 

estimation, it estimates the values for a set of so-called “super parameters”. These are usually 

named par1 to parN where N is the total number of super parameters being estimated. These 

are back-transformed to base parameters before input files are written for the model on each 

occasion that the latter is run. The transformation process is undertaken by a utility named 

PARCALC which is run through the model batch file.  

On each occasion that it runs the model, PEST writes a PARCALC input file named 
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parcalc.in. This file contains current values for super parameters, as well as the current 

“definition” of super parameters in terms of base parameters. This definition consists of the 

first N vi vectors comprising the columns of the V matrix obtained through singular value 

decomposition of Q1/2J. Each component of a particular vi is actually the contribution that the 

respective base parameter makes to the respective super parameter. The ordering of base 

parameters in any vi vector is the same as the ordering of parameters provided to the base 

PEST control file upon which the SVD-assisted parameter estimation process is based. The 

names of these base parameter are also listed in file parcalc.in. 

PCLC2MAT is run using the command 

 

pclc2mat parcalcfile ipar matoutfile 

 

where 

  

parcalcfile  is a PARCALC input file (normally parcalc.in), 

ipar  is a super parameter number, and 

matoutfile  will contain the components of the ipar’th vi vector recorded as a 

single column matrix. 

As is apparent from the above command line syntax, the user-nominated column of the V 

matrix, i.e. the vi vector, is written in PEST matrix file format; see section 2.4 of this manual 

for specifications of this format. The second part of the matrix file written by PCLC2MAT 

lists the names of base parameters (as matrix row names) while the first section provides the 

contribution made by each of these base parameters to the nominated vi vector; the squares of 

these contributions sum to one as each vi is a unit vector. 

Alternatively, if ipar is supplied as a negative number in the PCLC2MAT command line, all 

of the first ipar super parameters are recorded in the matrix file written by PCLC2MAT. 

As pointed out in part I of this manual, the base parameter composition of super parameters 

may alter during the SVD-assisted inversion process. Such alterations occur if one or more 

base parameters hit their bounds. Such parameters are frozen at their bounds for the 

remainder of the inversion process and are therefore not included in the definition of any 

super parameters. Singular value decomposition of Q1/2J is then repeated on the basis of the 

reduced number of adjustable base parameters; super parameters are redefined accordingly. 

Hence the super parameter definition recorded by PCLC2MAT will be pertinent only to that 

stage of the SVD-assisted parameter estimation process at which the identified parcalc.in was 

recorded. If PCLC2MAT is run at the end of the parameter estimation process, then super 

parameter definition will correspond to the final super parameters employed by PEST. (If no 

base parameters have hit their bounds during this process then, of course, super parameter 

definition specified in parcalc.in will pertain to all base parameters.) 

9.4 SUPOBSPREP 

9.4.1 General 

SUPOBSPREP builds a new PEST control file from an existing PEST control file in which 

super observations replace normal observations.  
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9.4.2 Running SUPOBSPREP  

SUPOBSPREP is run by typing its name at the command line. It commences execution with 

the prompt 

Enter name of existing PEST control file: 

As requested, provide the name of a PEST control file. SUPOBSPREP checks that a 

corresponding JCO file exists. As is discussed in part I of this manual, this can be easily 

produced by running PEST with NOPTMAX set to -1 or -2 in the “control data” section of 

the PEST control file. Note that it is good practice to check the integrity of a PEST input 

dataset using PESTCHEK before providing it to SUPOBSPREP. 

Next SUPOBSPREP asks 

Enter number of super observations to build from this file: 

Provide a number greater than zero. However if this number exceeds the number of non-

regularisation observations present within the PEST input dataset, SUPOBSPREP will cease 

execution with an error message. It will also cease execution with an error message if this 

number exceeds the number of adjustable parameters pertaining to the current parameter 

estimation problem. 

Now SUPOBSPREP gets a little technical. First it asks 

Enter clipping-enforced pre-compression weights range (<Enter> if 1E6): 

The assignment of weights to super observations in the new PEST input dataset whose task it 

is for SUPOBSPREP to build is a multi-step process. In the first of these steps the weight 

assigned to a super observation is equated to the singular value of Q1/2J with which it is 

associated. However singular value magnitudes can diminish rapidly with increasing super 

observation number. Suppose the default value of 1E6 is accepted in response to the above 

prompt. SUPOBSPREP will then ensure that the weight assigned to any super observation is 

no less than 1E-6 of that assigned to the first super observation (which is always associated 

with the highest singular value) irrespective of the singular value associated with any super 

observation. 

The next questions posed by SUPOBSPREP pertain to subsequent steps in super observation 

weights calculation. 

Enable compression/expansion of super observation weights? (y/n): 

Suppose that, after weights equal to respective singular values have been assigned to super 

observations (together with an appropriate lower bound on these weights), the ratio of highest 

to lowest weight is 1E6. In many cases this range of weights is too large, as it may devalue 

the worth of all but the first few super observations. The ratio of highest-to-lowest super 

observation weight will be altered to a user-supplied value if the response to the above 

prompt is “y”. This new ratio may, in fact, be larger or smaller than that which has already 

been calculated on the basis of singular values alone.  

If the response to the above prompt is “y”, SUPOBSPREP first asks for a new ratio of 

maximum to minimum weight, 

Enter max/min super observation weight ratio: 

and for the way in which weights compression (or expansion) should take place. 

Undertake (n)atural or (l)ogarithmic compression to achieve this ratio: 

Enter “n” or “l” as appropriate in response to the above prompt. In some circumstances, the 
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latter approach may provide a more even spread of weights over large weight ranges than the 

former approach to weights compression/expansion. 

SUPOBSPREP’s final prompt in relation to weights computation is as follows. Note that the 

question below is posed whether or not weights compression/expansion takes place. 

Enter minimum super-observation weight: 

Suppose that a value of 1.0 is provided here. Then the minimum weight assigned to a super 

observation is 1.0, and all other weights are shifted upwards or downwards in proportion to 

this while maintaining ratios calculated through procedures discussed above. 

SUPOBSPREP then asks for the name of the PEST control file that it must write. The prompt 

is: 

Enter name for new super PEST control file: 

Provide the name of a PEST control file as appropriate. (Note that if this filename does not 

possess an extension of “.pst” it will be rejected by SUPOBSPREP.) 

Next SUPOBSPREP asks 

Enter name for super observation matrix file (<Enter> if none): 

If a filename is provided in response to the above prompt, SUPOBSPREP will record the U1 

matrix in PEST matrix file format (see section 2.4 of this manual). U1 has as many columns 

as there are super observations, and as many rows as there are non-regularisation 

observations in the original PEST input dataset. Individual columns can be extracted from 

this file using matrix utilities such as MATCOLEX. 

Finally SUPOBSPREP asks 

Enter name for super parameter matrix file (<Enter> if none): 

If a filename is provided in response to the above prompt, SUPOBSPREP will record the V1 

matrix in PEST matrix file format. V1 has as many columns as there are super observations, 

and as many rows as there are adjustable parameters in the original PEST dataset. The 

columns of V1 provide the parameter combinations which the columns of U1 respectively 

inform. 

9.4.3 What SUPOBSPREP Does 

SUPOBSPREP undertakes the following tasks. As it undertakes these tasks it informs the 

user, through its screen output, what it is doing. 

1. It reads the PEST control file and associated JCO file. 

2. It forms the matrix Q1/2J where Q is the weight matrix associated with the current 

inverse problem and J is the Jacobian matrix. (Note that native observations in the 

original PEST control file can be assigned individual weights, measurement 

covariance matrices, or a combination of these.)  

3. It undertakes singular value decomposition of that component of Q1/2J that is 

associated with non-regularisation observations. 

4. It writes a new PEST control file in which super observations replace native 

observations. Any observations and prior information equations assigned to 

regularisation groups in the original PEST control file are transferred directly to the 

new PEST control file. 
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5. It writes a Jacobian matrix file pertaining to the new PEST control file. This Jacobian 

matrix file features derivatives of super observations with respect to model parameters 

(as well as derivatives of regularisation observations with respect to model 

parameters). 

6. It writes a new model batch file (see below). 

7. It writes an input file for the OBSCALC utility that is run as part of the modified 

model (see below). 

8. Optionally it writes matrix files containing the U1 matrix and the V1 matrix (see 

above). 

9.4.4 The New Model 

As stated above, the new PEST dataset written by SUPOBSPREP features super observations 

instead of native observations (except where the latter belong to regularisation groups). 

Instruction files which instruct PEST how to read the model-generated equivalents of native 

observations from model output files are therefore absent from the new PEST control file. 

These numbers are actually read from model output files by a program named OBSCALC 

which is added to the model batch or script file by SUPOBSPREP. 

OBSCALC (which is to super observations what the SVD-assist PARCALC utility is to super 

parameters), undertakes the following tasks. 

1. It reads from model output files the model-generated equivalents to observations 

comprising the calibration dataset. It does this using the same instruction files as were 

provided in the original PEST input dataset. 

2. It subtracts measured values from their model-generated counterparts. 

3. It projects these differences into the columns of U1 as discussed above. 

4. It records these projected differences on its output file. (These are super observation 

residuals.) 

Because OBSCALC-calculates projected residuals, rather than projected observation values, 

the PEST control file written by SUPOBSPREP lists “observed” values of 0.0 for all super 

observations. Included in its “model input/output” section is an instruction file to read the 

OBSCALC output file. The latter is named obscalc.out; the associated instruction file is 

named obscalc.ins. 

OBSCALC’s input file (which contains the U1 matrix, as well as measurement values read 

from the original PEST control file) is named obscalc.in. This is written by SUPOBSPREP. 

When run in order to build the new PEST dataset, SUPOBSPREP will cease execution with 

an error message if the model command (in the “model command line” section of the PEST 

control file) does not possess an extension of “.bat”. SUPOBSPREP then assumes that this 

file is a batch file (in the PC environment) or a script file (in the UNIX environment). It 

modifies this file in the following ways. 

1. It adds the command to run OBSCALC to the end of this file. 

2. At the start of this file, it adds commands to delete model output files in which the 

model-generated equivalents to non-regularisation observations are recorded. Thus if 

for some reason the model fails to run, OBSCALC will not read old versions of these 

files, mistaking them for files just written by the model. 
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The new model batch or script file written by SUPOBSPREP is named supobsbatch.bat. This 

also constitutes the new model command recorded in the “model command line” section of 

the PEST control file written by SUPOBSPREP. 

9.4.5 Some Features of the New PEST Dataset 

Once a new PEST input dataset has been built by SUPOBSPREP, a calibration process based 

on super observations can be initiated by typing the command 

pest case 

at the command prompt, where case is the filename base of the new PEST control file. 

Alternatively, the need to run the model many times for the purpose of finite-difference 

derivatives calculation during the first iteration of the inversion process can be eliminated by 

running PEST using the command 

pest case /i 

The “/i” switch is discussed in part I of this manual. When started with this switch, PEST 

prompts for the name of a JCO file from which it reads derivatives for use on the first 

iteration of the parameter estimation process. In response to this prompt, supply the name of 

the JCO file written by SUPOBSPREP; this has the same filename base as that of the PEST 

control file, but possesses an extension of “.jco”. Note that, no matter whether it is started 

with or without the “/i” switch, the SUPOBSPREP-computed JCO file is overwritten by 

PEST during its first iteration. So if you wish to keep this file, copy it to another file before 

starting PEST. 

If PEST is being run in “regularisation” mode, a new value will be required for the 

PHIMLIM variable, this being the target measurement objective function. When writing the 

new PEST control file, SUPOBSPREP transfers all control variables from the old PEST 

control file (including those in the “regularisation” section of this file, if such a section is 

included) to the new one. Obviously, with super observations employed instead of native 

observations, and with a singular-value-based weighting strategy for these super observations 

being employed, the value of the target measurement objective function will need revision. 

Alternatively, set it to a suitably low value, possibly with a complementary FRACPHIM 

value of 0.1, and see what measurement objective function PEST can achieve when it runs on 

the basis of the super observation dataset. Having acquired this knowledge, a more 

appropriate target measurement objective function value can then be set for the next PEST 

run. 

9.4.6 Using SVD-Assist with Super Observations 

There is no reason why SVD-assisted parameter estimation cannot be conducted on a PEST 

input dataset which features super observations instead of native observations. This can be 

done simply through running SVDAPREP on the basis of the PEST input dataset written by 

SUPOBSPREP. 

There is also nothing to stop you from doing things the other way around. That is, 

SVDAPREP can be run on a native PEST input dataset to prepare a PEST input dataset for 

SVD-assisted parameter estimation. SUPOBSPREP can then be used to replace native 

observations appearing in this latter file by super observations. PEST can then be run on the 

basis of the PEST control file produced by SUPOBSPREP. If you do this, however, be sure 

to note the following. 

1. When running SUPOBSPREP, remember to ask for no more super observations than 
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there are super parameters defined in the SVD-assist PEST control file. 

2. Before running SUPOBSPREP, set NOPTMAX to -1 or -2 in the SVDAPREP-

generated super parameter PEST control file, and then run PEST. PEST will then 

generate a super parameter Jacobian matrix and cease execution. If functionality for 

computation of super parameter derivatives on the basis of native parameter 

derivatives has been activated in the SVD-assisted PEST control file, PEST will 

undertake only one model run before writing the super parameter JCO file. 

3. The super observation PEST control file produced by SUPOBSPREP will contain an 

identical “SVD-assist” section to that contained in the super parameter PEST control 

file written by SVDAPREP. This section will cite the original, pre-SVDAPREP, 

PEST control file (and associated JCO file) as the repository of native parameters 

(and their derivatives). Hence when PEST is run on the basis of this SUPOBSPREP-

generated PEST control file, the sequence of BPA (“best base parameter value”) files 

written by PEST that contain best native parameter values at all stages of the 

parameter estimation process, will possess a filename base which is the same as that 

of the original, pre-SVDAPREP, native parameter, PEST control file. 

9.5 SUPOBSPAR 

SUPOBSPAR makes calculation of super parameters and super observations relatively 

simple. In restricting its activities to computation only of these complimentary combinations 

of observations on the one hand, and the parameters which they inform on the other hand, 

SUPOBSPAR is easier to use than SUPOBSPREP and less restrictive in the demands it 

makes on the existing PEST input dataset. In particular, the number of parameters cited in a 

PEST control file which it reads can exceed the number of observations cited in that file; or 

the opposite may occur. 

SUPOBSPAR is run using the command 

supobspar case N obsmatfile parmatfile  

where 

case  is the filename base of an existing PEST control file, 

N  is the number of super observations and corresponding super 

parameters to compute, 

obsmatfile  is the name of a matrix file to which SUPOBSPAR will write super 

observations, and 

parmatfile  is the name of a matrix file to which SUPOBSPAR will write super 

parameters. 

A Jacobian matrix file (i.e. a JCO file) must accompany the PEST control file. If this is not 

the case, SUPOBSPAR will cease execution with an appropriate error message. The PEST 

control file may or may not instruct PEST to run in “regularisation” mode. If it does, 

SUPOBSPAR ignores regularisation prior information. (Regularisation devices such as these 

should not be included in the computation of super parameters and super observations as the 

latter should reflect the information content of the calibration dataset alone.) 

Observation and parameter vectors defining super observations and super parameters are 

recorded in PEST matrix file format; see section 2.4 of this manual for specifications of this 

format. Individual columns can be extracted from such files using the MATCOLEX utility. 

However if less than eight super observations/parameters are requested, then wrapping of 
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rows within these files will not occur and column extraction may not be necessary; in most 

cases a user will only be interested in the first few super observations and super parameters 

anyway.  

The format employed by PEST matrix files is such that the elements of the matrix are 

recorded first (with row-wrapping as necessary), followed by lists of row names and column 

names. Row names correspond to observation names (where super observations are recorded) 

or to parameter names (where super parameters are recorded). These names can be cut and 

pasted alongside column elements for easy linkage of element values to element names. Also, 

where parameters have a spatial or temporal connotation then, with a little cutting and pasting 

from other files, elements of super observations and/or super parameters can be plotted 

against space/time so that their patterns can define the spatial/temporal distribution of 

observation information content on the one hand, and the spatial/temporal distribution of 

parameter recipients of that information on the other hand. Alternatively, bar charts of the 

observation/parameter content of super observations and super parameters can be plotted as 

histograms in software such as Microsoft EXCEL. 

9.6 SUPOBSPAR1 

9.6.1 General 

SUPOBSPAR1 is a variant of SUPOBSPAR in that it calculates vectors comprising super 

parameters and super observations through undertaking singular value decomposition of the 

weighted Jacobian matrix. However it automatically applies a Kahunen-Loève (KL) 

transformation to parameters prior to undertaking singular value decomposition on this 

matrix. The weighted Jacobian matrix on which singular value decomposition is performed is 

altered as a consequence, as it effectively operates on KL-transformed parameters rather than 

native model parameters. Once super observations and super parameters have been 

calculated, SUPOBSPAR1 back-transforms the latter to native model parameters. 

Theoretically, KL-transformation of parameters prior to their estimation ensures optimality of 

inversion undertaken though singular value decomposition as it leads to minimum error 

variance estimates of their values, and to minimum error variance predictions made by a 

calibrated model. Inversion based on KL-transformed parameters takes account of the 

information content of expert knowledge as encapsulated in a prior parameter covariance 

matrix. Super observations and super parameters calculated in this KL-transformed context 

therefore constitute the “natural” super observations and super parameters that best express 

information transfer from a calibration dataset to parameters on the one hand, and the 

blending of that information with expert knowledge on the other hand. 

9.6.2 Theory 

Let C(k) represent the covariance matrix associated with the prior probability distribution of 

a parameter set k. Through singular value decomposition, the E and F matrices (the latter 

being diagonal) can be defined through the equation  

 C(k) = EFEt         (9.6.1) 

The KL-transformed parameter set j is defined through 

 j = F-1/2Etk         (9.6.2) 

so that 
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 k = EF1/2j         (9.6.3) 

Applying the classical formula for propagation of covariance readily shows that 

 C(j) = I         (9.6.4) 

Let the action of a linear model be represented by the matrix Z; where the model is nonlinear 

this is replaced by the Jacobian matrix J arising from local linearization of the model. Let 

observations comprising the calibration dataset be represented by h, and let ε represent 

measurement noise. Then 

 h = Zk + ε         (9.6.5) 

From the above it follows that 

 h = ZEF1/2j + ε        (9.6.6) 

Let a weight matrix Q be selected such that 

 Q = C-1(ε)         (9.6.7) 

Selection of such a weight matrix promulgates optimal inversion in that it minimizes the 

contribution that measurement noise makes to the error variance of estimated parameters and 

of predictions which are sensitive to them. Pre-multiplying the model equation by Q1/2 we 

obtain 

 Q1/2h = Q1/2ZEF1/2j + η       (9.6.8) 

where 

 η = Q1/2ε         (9.6.9) 

Obviously 

 C(η) = I         (9.6.10) 

In most circumstances of practical interest Q is a diagonal matrix, with elements equal to the 

squares of weights supplied in the PEST control file. Now let us perform singular value 

decomposition on the modified model matrix such that 

 Q1/2ZEF1/2 = USVt        (9.6.11) 

If measurement noise is ignored, it follows from equation 9.6.2 that 

 Q1/2h = USVtF-1/2Etk =USWtk      (9.6.12) 

where W is defined by the above equation. “Super observations” computed by 

SUPOBSPAR1 are the columns of U, while super parameters computed by SUPOBSPAR1 

are the rows of Wt. Each of the former directly and completely inform each of the latter. 

9.6.3 Running SUPOBSPAR1 

SUPOBSPAR1 is run using the command 

supobspar1 case uncertfile N obsmatfile parmatfile  

where 

casename is the filename base of an existing PEST control file, 

uncertfile  is the name of a parameter uncertainty file, this defining the C(k) 

matrix, 

N  is the number of super observations and corresponding super 
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parameters to compute, 

obsmatfile  is the name of a matrix file to which SUPOBSPAR1 will write super 

observations, and 

parmatfile  is the name of a matrix file to which SUPOBSPAR1 will write super 

parameters. 
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10. Linear Error and Uncertainty – Part I  

10.1 Introduction 

This chapter documents a suite of programs that form a basis for parameter and predictive 

error and uncertainty analysis, as well as ancillary analyses such as assessment of data worth 

and quantification of bias introduced to a defective model through the calibration process. At 

the heart of these programs are the PREDVAR utility suite and the PREDUNC utility suite 

“PREDVAR” stands for predictive error variance while “PREDUNC” stands for “predictive 

uncertainty. The GENLINPRED utility, which runs programs of the PREDVAR and 

PREDUNC suites automatically, is also documented in this chapter. 

The chapter following this one also discusses utility programs that can be used for parameter 

error variance analysis. In general, the programs discussed in the present chapter should be 

used instead of those discussed in the next chapter as they are newer, more general, more 

flexible, and provide a greater a greater range of options. 

10.2 SCALEPAR 

10.2.1 General 

SCALEPAR was written primarily to assist in the use of programs such as PREDVAR1 to 

PREDVAR5. However there is no reason why it cannot also be employed in normal 

parameter estimation.  

SCALEPAR re-formulates an inverse problem in terms of scaled parameters rather than 

native parameters, with parameters scaled according to their standard deviations. This can 

result in smaller predictive error variance when undertaking regularised inversion. Note that 

where a parameter is log-transformed in the inversion process, SCALEPAR takes this into 

account.  

Once it has re-formulated the inverse problem, SCALEPAR writes a complete PEST input 

dataset for the new problem. In the new PEST control file scaled parameters have an initial 

value of zero and are permitted to vary between -3.0 and 3.0. Because parameters are scaled 

by their standard deviations, they are thus allowed to vary by three standard deviations either 

side of their most likely value of zero, this corresponding to a native parameter value also 

equal to its most likely value. It is assumed that the most likely value of each native 

parameter corresponds to its initial value as supplied in the original PEST control file. Thus, 

when writing this PEST control file, you should ensure that initial parameter values are 

indeed “most likely” parameter values; that is, you should ensure that they are the “expected 

values” of these parameters in the statistical sense.  

If a parameter is log-transformed in the original PEST control file, scaled parameters defined 

in the SCALEPAR-generated PEST control file are actually the scaled logs of such 

parameters. Once again, a scaled parameter value of zero corresponds to a native 

untransformed parameter value equal to the parameter’s initial value as supplied in the 

original PEST control file. 

Whether parameters are log-transformed or not in the original parameter estimation problem, 

back transformation from scaled parameter values (as seen by PEST) to native parameter 

values (as seen by the model) is undertaken by the PAR2PAR utility; this is run as part of the 

model ahead of any other components of the model in the new PEST input dataset generated 



Linear  Error and Uncertainty – Part I 100 

 
 

by SCALEPAR. The new PEST control file written by SCALEPAR cites only one template 

file, this corresponding to a PAR2PAR input file. After it has “de-scaled” parameter values, 

PAR2PAR writes native parameter values to all model input files which require them 

according to specifications set out in the original PEST control file.  

Optionally, SCALEPAR writes a Jacobian matrix file (i.e. JCO file) corresponding to the new 

PEST control file. Sensitivities which occupy the elements of the new Jacobian matrix are 

computed from sensitivities occupying corresponding elements of a Jacobian matrix 

corresponding to the original PEST control file (if such a Jacobian matrix file exists). 

Another option offered by SCALEPAR is the writing of a new parameter uncertainty file (see 

section 2.5 of this manual for specifications of this type of file), this pertaining to scaled 

parameters. By definition, the standard deviation of each scaled parameter is one. 

10.2.2 Running SCALEPAR 

SCALEPAR is run by typing its name at the command prompt. No command line arguments 

are required because SCALEPAR asks the user specifically for each item of information that 

it requires. 

SCALEPAR begins execution with the prompt 

Enter name of existing PEST control file: 

Supply the name of an existing PEST control file in response to this prompt. SCALEPAR 

requires that this file meet the following specifications. 

1. No prior information must be cited in this file. 

2. The SCALE associated with each parameter (in the “parameter data” section of the 

existing PEST control file) must be 1.0, while each parameter OFFSET must be 0.0. 

3. The model command line must cite a batch or script file. This command must have an 

extension of “.bat”. 

4. Only a single command must be employed to run the model for finite-difference 

calculation of derivatives with respect to all adjustable parameters; thus PEST’s 

multiple command line functionality must not be invoked, and the control variable 

NUMCOM must be set to 1, or omitted. 

5. Derivatives must be calculated by finite differences and not supplied by the model 

through an external file. Thus the JACFILE control variable must be set to zero or 

omitted. 

If any of these conditions are violated, SCALEPAR will cease execution with an appropriate 

error message. 

SCALEPAR’s next prompt is 

Enter name of parameter uncertainty file: 

The format of this file is described in section 2.5 of the present document. Prior parameter 

uncertainties (i.e. the contents of the C(k) matrix discussed extensively in Doherty 2015) 

must be supplied in this file. A prior uncertainty must be supplied for each adjustable (i.e. 

non-fixed and non-tied) parameter cited in the original PEST control file. As usual, if a 

parameter is log-transformed, pertinent elements of C(k) must pertain to the log of that 

parameter. 

SCALEPAR next asks 
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Enter name for new PEST control file: 

in response to which the name of the PEST control file which SCALEPAR must write should 

be provided. 

Once it has been provided with this name, SCALEPAR issues a series of prompts, to which 

you can respond simply by pressing the <Enter> key in each case to accept the SCALEPAR 

default. The prompts are as follows. 

Enter name for PAR2PAR input file (<Enter> if p2p###.dat): 

Enter name for template of this file (<Enter> if p2p###.tpl): 

Enter name for parameter value file (<Enter> if p###.par): 

Enter name for template of this file (<Enter> if p###.tpl): 

Enter name for scaling matrix file (<Enter> if scale.mat): 

Enter name for inverse scaling matrix file (<Enter> if iscale.mat): 

Run model in silent or verbose mode  [s/v] (<Enter for "s"): 

As discussed above, parameter “de-scaling” is actually undertaken by the PAR2PAR utility. 

Prior to each model run, the modified PEST control file informs PEST that it must write a 

PAR2PAR input file in which scaled parameter values are listed. PAR2PAR then computes 

native parameter values from these scaled values (and performs inverse log transformation if 

necessary) before writing them to appropriate model input files. SCALEPAR ensures that the 

PAR2PAR input file that PEST writes contains the names of all model template and 

corresponding input files involved in the inversion process as listed in the original PEST 

control file. In fact SCALEPAR writes a template file of the PAR2PAR input file for the use 

of PEST, and informs PEST of the name of the PAR2PAR input file to which this template 

file corresponds. The names of the PAR2PAR template file and corresponding PAR2PAR 

input file can be supplied in response to the first two of the above set of prompts. 

As is documented in part I of this manual, as PEST carries out the parameter estimation 

process, it records currently estimated parameter values in a “parameter value file”. If PEST 

is run on the basis of the SCALEPAR-generated PEST control file, optimised scaled 

parameter values are indeed recorded in this file. This is of limited use to the modeller, 

however, who is normally more interested in optimised native parameter values than scaled 

parameter values. Unfortunately, native parameter values are known only to PAR2PAR, and 

not to PEST. To overcome this difficulty, PAR2PAR is instructed to write, on each occasion 

that it runs, a file that has the same format as a PEST parameter value file (and can thus be 

used by utility programs such as PARREP), containing native parameter values employed on 

that model run. The name of this file can be supplied by the user in response to the third of 

the above prompts. SCALEPAR provides PAR2PAR with a template file through which it 

can write this file; the name of this template file can be supplied in response to the fourth of 

the above prompts. 

It is important to note that, unlike the parameter value file recorded by PEST, the parameter 

value file recorded by PAR2PAR does not contain parameter values which are optimised up 

to the stage of the parameter estimation process at which it is written. Because PAR2PAR 

writes model input files on the basis of template files on each occasion that the model is run, 

the PAR2PAR-generated parameter value file contains native parameter values employed 

only on the last model run. However, depending on its control settings, if PEST has 

completed the parameter estimation process (or is halted using the “stop with statistics” 

option), it may undertake a final model run employing optimised parameter values. If this is 

the case then, at the end of the parameter estimation process, the PAR2PAR-generated 

parameter value file will, in fact, contain optimised native parameter values. 

As stated above, SCALEPAR generates matrix files (see section 2.4 for specifications of this 
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type of file) containing the scaling and inverse scaling matrices. The names of these matrix 

files can be supplied in response to the fifth and sixth of the above prompts. 

The model as run by the modified PEST control file must itself be modified so that 

PAR2PAR can be run ahead of the actual model in order to generate native parameters from 

the scaled parameters employed by PEST, and write these to model input files. SCALEPAR 

adds the command to run PAR2PAR to the batch or script file which was originally 

employed for running the model. The name of this modified batch file is always 

scalebatch.bat. If the “silent” option is selected in response to the last of the above prompts, 

PAR2PAR will direct its screen output to the “null” file instead of to the screen, thus 

preventing PEST’s screen output from being scrolled away out of sight. 

SCALEPAR’s next prompt is 

Write a JCO file for this case [y/n] (<Enter> for "n"): 

If the response to this prompt is “y”, and if a Jacobian matrix file complementary to the 

original PEST control file exists, SCALEPAR will write a Jacobian matrix file which 

complements the new PEST control file. This can then be used in conjunction with members 

of the PREDVAR suite to examine predictive error variances. Alternatively, it can be used in 

the first iteration of a PEST run undertaken on the basis of the new PEST control file if that 

run is initiated with the “/i” switch. (In the latter case it will eventually be overwritten by 

PEST.) 

Next SCALEPAR asks 

Write scaled uncertainty file? [y/n]: (<Enter> for "n"): 

If the response to this question is “y”, SCALEPAR prompts for a suitable name for this file. 

Enter name for scaled uncertainty file: (<Enter> if p###.unc): 

If the original uncertainty file cites no covariance matrices, this is all that SCALEPAR needs 

to know. Uncertainties are recorded as a list of parameter standard deviations, all of which 

are 1.0. However if at least one covariance matrix was cited in the original parameter 

uncertainty file, SCALEPAR asks 

Enter name for cov mat file cited therein (<Enter> if p###.cov): 

In this case, all parameter uncertainty is recorded as a single covariance matrix, the diagonal 

elements of which are 1, the off-diagonal elements being zero, or scaled in accordance with 

the original covariance submatrices provided in the parameter uncertainty file. 

10.2.3 The New PEST Control File 

Certain features of the control file generated by SCALEPAR are worthy of mention.  

Scaled parameters cited in the SCALEPAR-generated PEST control file are given the same 

names as their unscaled counterparts in the original PEST control file. Only adjustable 

parameters are cited in this file. Tied and fixed parameters are still involved in the modified 

inversion process; however the values of fixed parameters, and the multipliers through which 

tied parameters are linked to their parent parameters, are recorded in the SCALEPAR-

generated PAR2PAR template file. Hence PAR2PAR, and not PEST, accommodates the 

assignment of values for these parameters to the model. 

It was mentioned above that scaled parameters are provided with an initial value of zero, and 

with upper and lower bounds of -3.0 and 3.0. A value of zero for a scaled parameter 

corresponds to a native parameter value equal to its initial value as supplied in the original 
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PEST control file; the parameter offsetting required to achieve this is taken care of by 

PAR2PAR through the pertinent equations written by SCALEPAR to the PAR2PAR 

template file. An inspection of the SCALEPAR-generated PEST control file will reveal, 

however, that scaled parameters themselves are actually offset by 10.0 from zero, and 

provided with lower bounds of 7.0 and upper bounds of 13.0. This circumvents problems that 

are sometimes encountered with the imposition of relative change limits on parameter 

upgrades through use of the RELPARMAX control variable for parameters that are close to 

zero. In short, relative-limited parameters can be upgraded towards zero very rapidly; 

however they can only move back from zero relatively slowly because any change in the 

value of a near-zero parameter is large relative to its current value. This can slow the 

parameter estimation process considerably in some circumstances. 

All scaled parameters in the SCALEPAR-generated PEST control file are declared as 

relative-limited; RELPARMAX is provided with a value of 0.1 (this being relative to their 

offset values of 10.0). This, and parameter OFFSET values, can be altered if desired by direct 

editing of the SCALEPAR-generated PEST control file. 

All parameters are assigned to a single parameter group in the SCALEPAR-generated PEST 

control file. This group is assigned an absolute increment for the purpose of derivatives 

calculation, this increment being 0.01. This, and any other aspect of the PEST control file 

generated by SCALEPAR, can also be altered by direct editing of this file if desired. 

10.2.4 Calculating the Resolution Matrix of Native Parameters 

The contents of the present subsection may be of interest to some, but will not be of interest 

to most. It is included anyway. 

Suppose that unscaled parameters cited in the original PEST control file are designated by the 

vector k and that their scaled counterparts are designated by the vector j. Thus 

 j = Sk          (10.2.1) 

where S is a diagonal “scaling matrix” whose elements are the inverse of the standard 

deviations of the parameters to which they pertain. Note that offsets (i.e. parameter initial 

values) are ignored in this equation for the sake of simplicity; however they are included in 

the actual SCALEPAR transformation process. 

Suppose that explicit or notional (for example using PREDVAR-suite programs) regularised 

inversion has been carried out, and that a resolution matrix R has been calculated linking 

estimated scaled parameters j to their real-world (but unknown) counterparts j. Thus 

 j = Rj          (10.2.2) 

Using 10.2.1, together with the relationship 

 k = S-1j         (10.2.3) 

derived from 10.2.1, it is possible to compute the relationship between estimated native 

model parameters and their real-world counterparts as 

 k = S-1j = S-1Rj = S-1RSk       (10.2.4) 

Thus the resolution matrix R´ linking k to k is 

 R´ = S-1RS         (10.2.5) 

As already stated, SCALEPAR records the S and S-1 matrices in matrix file format. The 

utility program MATPROD can then be employed to implement the matrix multiplications 
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depicted in equation 10.2.5 if desired. 

10.3 PREDVAR1 

10.3.1 General 

PREDVAR1 calculates the post-calibration error variance of a prediction without requiring 

that a model be actually calibrated to do so. It employs a slightly modified form of equation 

6.1.25 of Doherty (2015) under the assumption that a notional calibration exercise has been 

completed using singular value decomposition. The equation used by PREDVAR1 is 

presented below. 

 2
s-s = yt(I – R)C(k)(I – R)ty + σ2

ry
tGGty     (10.3.1) 

Items appearing in equation 10.3.1 are as follows. 

2
s-s  is the error variance of a prediction; 

s  is the true value of that prediction; 

s  is the value of that prediction made by the calibrated model; 

y  is the sensitivity of the prediction to parameters k employed by the model; 

C(k) is the prior parameter covariance matrix; 

σ2
r is the measurement reference variance (see below); 

G  is the matrix from which the calibrated parameter set is calculated from 

the measurement dataset (see below); 

R  is the resolution matrix calculated as GZ where Z represents the 

linearized action of the model under calibration conditions (represented by 

the Jacobian matrix); and 

I  is the identity matrix. 

The measurement reference variance is a proportionality constant linking the weights matrix 

Q used in the inversion process with the covariance matrix of measurement noise C(ε). The 

following equation is thus assumed to describe the relationship between weights and 

measurement noise. 

C() = σr
2Q-1         (10.3.2) 

σr
2 is roughly equal to the (measurement) objective function divided by the number of non-

zero-weighted, non-regularisation measurements featured in the inverse problem. 

Where calibration is achieved using singular value decomposition, R and G are calculated as 

follows. 

 G = V1S
-1

1U
t
1Q

1/2h        (10.3.3) 

 R = V1V
t
1         (10.3.4) 

where matrices U, S and V appearing in the above equations are obtained from singular value 

decomposition of the weighted “model matrix” Q1/2Z as 

 Q1/2Z = USVt         (10.3.5) 

(Actually PREDVAR1 undertakes singular value decomposition of ZtQZ rather than Q1/2Z; 

however the outcomes of its calculations are the same.) The “1” subscript on the U, S and V 
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matrices featured in equation 10.3.3 and 10.3.4 signify truncation of the singular value 

decomposition process at a user-specified number of singular values.  

The action of the linearized model under calibration conditions is represented by the 

following equation. 

 h = Zk + ε         (10.3.6) 

See Doherty (2015) for full details. As explained in that text, one of the charms of linear 

analysis is that it can represent the calibration and prediction processes, and 

errors/uncertainties associated with the outcomes of these processes, without actually having 

to undertake these processes. All that it requires are sensitivities of model outputs used in the 

calibration and prediction processes to parameters employed by the model, as well as the 

C(k) and C(ε) matrices cited above. Ideally, sensitivities should be calculated using calibrated 

parameters. However this is not essential. In fact if a model is truly linear, then sensitivities 

would not change with parameter value; hence parameter values used in calculation of 

sensitivities would not matter at all. 

If a model has not been calibrated, then the error variance of a prediction made by this model 

is the same as the prior uncertainty of this prediction. It is given by 

2
s = 2

s-s = ytC(k)y        (10.3.7) 

Uses of equation 10.3.1 include the following. 

1. A rapid assessment can be made of the reduction in predictive error variance that can 

be achieved through the calibration process, given the number and type of 

measurements comprising the calibration dataset, the noise C() associated with these 

measurements, the innate variability C(k) of model parameters as this reflects the 

heterogeneity of the system, and the number of singular values used in estimation of 

parameters. By comparing post-calibration predictive error variance with pre-

calibration predictive error variance, the worth of the calibration process in reducing 

the potential for error of one or a number of model predictions can thereby be 

computed. 

2. Because the calibration exercise undertaken by PREDVAR1 is notional rather than 

actual, the reduction in uncertainty achieved through including one or a number of 

hypothetical extra observations in the calibration dataset can be rapidly assessed. This 

can form a sound basis for optimisation of data acquisition, based on the premise that 

the worth of acquiring a certain type of data over that of acquiring another type of 

data is greater if acquisition of the former results in a greater reduction in predictive 

error variance than acquisition of the latter. This type of analysis is facilitated using 

the PREDVAR5 utility. (See also the PREDUNC5 utility which uses a linearized 

form of Bayes equation to conduct a similar analysis.) 

3. By varying the terms of C(k) in accordance with an improvement in direct knowledge 

of system properties that may be gained through direct measurement of these 

properties, an assessment of the worth of such measurements in reducing the 

uncertainties of one or more predictions can be made. Various data acquisition 

strategies of this type can then be ranked. At the same time these strategies can be 

compared with the benefits of acquiring further information on system states (see 

above) for use in a future calibration exercise. 

4. By setting certain elements, or groups of elements, of C(k) to zero and by employing 

equation 10.3.1 and/or 10.3.7 in conjunction with this revised C(k), the contribution 
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to pre- and/or post-calibration error variance of a specific model prediction made by 

different parameter types can be estimated. Where certain types of parameters are 

such that their properties are not directly measurable, this may allow the user to 

determine the “irreducible level of uncertainty” associated with key model 

predictions. This type of analysis is expedited using the PREDVAR4 utility. (See also 

the PREDUNC4 utility which uses a linearized form of Bayes equation to conduct a 

similar analysis.) 

5. By re-calculating error variance using equation 10.3.1 for different numbers of 

singular values at which the singular value decomposition process is truncated, the 

minimum in the curve of model predictive error variance versus number of singular 

values can be ascertained. This sets the optimal dimensionality of the calibration 

solution space. See section 6.2.5 of Doherty (2015) for further details of this kind of 

analysis. 

As is discussed below, all of the programs of the PREDVAR suite obtain C(k) by reading a 

parameter uncertainty file; see section 2.5 of this manual for specifications of this type of file. 

The C(ε) matrix is calculated from weights and/or observation covariance matrices supplied 

in the PEST control file using equation 10.3.2. However you must supply the reference 

variance σr
2 yourself. A quick way to calculate this is to divide the (measurement) objective 

function by the number of non-zero-weighted, non-regularisation observations comprising a 

calibration dataset. Alternatively, use the PWTADJ2 utility to create a PEST control file in 

which weights have been adjusted on an observation group by observation group basis, in 

such a way as to achieve a σr
2 value of unity. 

10.3.2 Using PREDVAR1 

PREDVAR1 requires too many inputs for these to be supplied through its command line. So 

it prompts you for the information which it needs. It commences execution with the prompt 

Enter name of PEST control file: 

Supply the name of a PEST control file. It is assumed that a complementary Jacobian matrix 

file (i.e. a JCO file) is available for this PEST control file. This can be produced by setting 

NOPTMAX to -2 in the “control data” section of a PEST control file and then running PEST. 

PREDVAR1 reads the JCO file to obtain the Z matrix featured in the above equations.   

Next PREDVAR1 prompts 

Enter observation reference variance: 

PREDVAR1 computes C() from observation weights and observation covariance matrices 

featured in the PEST control file using equation 10.3.2. In doing so it assumes that the 

inverse of each weight contained in the PEST control file is proportional to the standard 

deviation of measurement noise associated with the observation to which it is assigned. The 

proportionality constant is assumed to be the same for all weights, and equal to the square 

root of the reference variance depicted in equation 10.3.2. Thus the squares of weights are 

assumed to comprise the diagonal elements of the Q matrix of this equation. In addition to 

weights, the PEST control file can feature one of more observation covariance matrices. The 

same reference variance must apply to these as well; that is, the elements of these user-

supplied observation covariance matrices are multiplied by σr
2 of equation 10.3.2 in 

calculating the appropriate submatrix of C(). As stated above, a suitable value for the 

reference variance is easily calculated by dividing the actual or anticipated value of the 

(measurement) objective function by the number of non-zero-weighted, non-regularisation 
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observations featured in the PEST control file. 

PREDVAR1 next prompts for the name of a parameter uncertainty file. The prompt is 

Enter name of parameter uncertainty file: 

The contents of this file define C(k). The following should be noted. 

• If a parameter is log-transformed in the PEST control file, the elements of C(k) 

associated with that parameter must pertain to the log of that parameter. 

• As is the protocol for a parameter uncertainty file, this file can contain information 

pertaining to more parameters than those which are denoted as adjustable in the PEST 

control file. Unused parameters are simply ignored. 

• If one parameter is tied to another parameter in the PEST control file, then the parent 

parameter is in fact a “composite parameter”. Its statistical properties as supplied in 

C(k) should reflect this. 

Next PREDVAR1 prompts 

Enter name of predictive sensitivity matrix file: 

This file must contain a single column matrix (in matrix file format as documented in section 

2.4 of this manual) which contains the sensitivity of a prediction of interest to every 

adjustable parameter cited in the PEST control file. That is, it must contain the vector y of 

equations 10.3.1 and 10.3.7. The following should be noted. 

• If a parameter is log-transformed in the PEST control file, then parameter sensitivities 

contained in y must pertain to the log of the parameter. 

• If a parameter is tied to another parameter in the PEST control file, then the sensitivity 

with respect to the parent parameter as contained in y must reflect the fact that it is 

parent to another parameter. 

• Parameters do not need to be arranged in the same order in the predictive sensitivity 

matrix file as they are in the PEST control file. PREDVAR1 links parameters by 

name, and re-arranges them if necessary. Similarly, if the predictive sensitivity matrix 

file cites more parameters than are adjustable in the PEST control file, the excess 

parameters are simply ignored. 

The easiest way to make a predictive sensitivity matrix file is as follows. 

• When PEST is run in order to calculate observation sensitivities, design the model to 

run in such a way that it makes one or more predictions, as well as calculating outputs 

that correspond to historical observations listed in the PEST control file for calibration 

purposes. This may require that the model be run not once, but twice, based on 

different inputs, through a batch file serving as “the model” as seen by PEST. 

• List these predictions in the PEST control file as additional “observations”. However 

give them weights of zero. 

• If this is done, the JCO file produced as an outcome of the PEST run will contain the 

sensitivities of these predictions to all adjustable parameters. A predictive sensitivity 

matrix file can be constructed for each such prediction using the JROW2VEC utility. 

Next PREDVAR1 issues a series of prompts as follows. 

Enter no. of singular values before truncation [<Enter> if no more]: 

Enter a number between (and including) zero and the number of adjustable parameters 
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featured in the PEST control file. Be aware, however, that if there are more adjustable 

parameters than observations featured in the PEST control file, the number of non-zero-

valued singular values of the weighted Jacobian matrix can only be as large as the number of 

observations. So do not enter a number higher than this. PREDVAR1 will inform you if this 

number is too high and thus results in a zero-valued singular value; in fact it will cease 

execution with an error message under these circumstances. When entering singular values in 

response to the above series of prompts it is best to supply them in increasing order.  

If truncation takes place at zero singular values, this is equivalent to not calibrating the model 

at all. Hence predictive error variance is calculated using equation 10.3.7. As the number of 

singular values prior to truncation increases, the first term of equation 10.3.1 normally falls. 

In fact it will fall monotonically if C(k) is equal to σ2
kI where I is the identity matrix and σ2

k
 

is an appropriate “parameter reference variance”. In other cases, however, there may be 

interruptions in the fall (and sometimes local rises) with increasing singular value, indicating 

that calibration can actually increase the error variance of a prediction if C(k) contains 

variances of very different magnitude, and/or indicates a high level of pre-calibration 

parameter correlation. The former problem can be rectified by appropriate parameter scaling; 

this should be done as a matter of course when calibrating a model in order to prevent this 

problem. The latter can be rectified through Kahunen-Loève transformation. 

The second term of equation 10.3.1 rises as the number of singular values prior to truncation 

increases. At some number of pre-truncation singular values there is normally an optimum, 

where the total predictive error variance (sum of the first and second terms of equation 

10.3.1) is minimised. See section 6.2.5 of Doherty (2015) for details. 

PREDVAR1 finally prompts for the names of its two output files. 

Enter name for predictive error variance output file: 

Enter name for SVD file [<Enter> to read an old one]:  

The first file lists the contributions to predictive error variance made by the first and second 

terms of equation 10.3.1 for each requested singular value. It also lists the total predictive 

error variance, together with the predictive standard deviation (square root of this). If singular 

values are arranged in increasing order, this file can serve as input to a plotting/graphing 

program which can display the dependence of predictive error variance (and its two 

components) on number of pre-truncation singular values.  

PREDVAR1’s second output file is similar to that produced by PEST when implementing 

singular value decomposition as a solution device for the inverse problem. It lists singular 

values and respective eigencomponents of the weighted Jacobian matrix (actually ZtQZ 

rather than Q1/2Z, as stated above). If the option it taken to read an old file, PREDVAR1 

prompts for the name of this file. For large problems involving many parameters, making use 

of eigencomponent data generated on a previous PREDVAR1 run can save a considerable 

amount of time. It is important to note, however, that the results of a previous singular value 

decomposition of the weighted Jacobian matrix are only appropriate for a current 

PREDVAR1 run if the PEST control file (and any covariance matrices cited therein) is the 

same for this run as it was for the run on which the SVD file was originally generated; 

however parameter uncertainties and predictive sensitivities can change between these two 

runs. Note also that there may be tiny differences between predictive error variances 

calculated on the basis of stored SVD data and those calculated internally because of the 

slight loss of precision incurred through ASCII file storage. 

It is important to note that if the PEST control file read by PREDVAR1 instructs PEST to run 
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in “regularisation” mode, regularisation observations and prior information equations are 

ignored in formulating the Z matrix featured in the above equations. Thus it is assumed that 

the only type or regularisation undertaken in solving the notional inverse problem implied by 

equation 10.3.1 is that pertaining to truncated singular value decomposition, with the 

truncation limit set at singular values specified by the user. 

10.4 PREDVAR1A 

10.4.1 General 

The capabilities of PREDVAR1A are very similar to those of PREDVAR1. However there 

are a number of notable differences, these being as follows. 

1. Unlike PREDVAR1, PREDVAR1A does not undertake singular value decomposition 

of the ZtQZ matrix. Rather, it undertakes singular value decomposition of Q1/2Z. In 

many calibration contexts this is a numerically swifter procedure. 

2. PREDVAR1A does not read or write an SVD file. 

3. PREDVAR1A calculates error variance terms for not just one, but for many 

predictions. 

10.4.2 Using PREDVAR1A 

PREDVAR1A prompts, together with typical responses, are displayed below. 

Enter name of PEST control file: case.pst 

Enter observation reference variance: 1.0 

 

Enter name of parameter uncertainty file: param.unc 

Enter name of predictive sensitivity matrix list file: predfile.lst 

 

Enter no. of singular values before truncation [<Enter> if no more]: 0 

Enter no. of singular values before truncation [<Enter> if no more]: 1 

Enter no. of singular values before truncation [<Enter> if no more]: 2 

Enter no. of singular values before truncation [<Enter> if no more]: 3 

. 

. 

Enter no. of singular values before truncation [<Enter> if no more]: 50 

Enter no. of singular values before truncation [<Enter> if no more]: <Enter> 

Part of a “predictive sensitivity matrix list file” is shown below. 

ar10.vec  ar10.sen 

ar9.vec   ar9.sen 

ar8.vec   ar8.sen 

ar7.vec   ar7.sen 

Figure 10.1 A predictive sensitivity matrix list file. 

Each line of a predictive sensitivity matrix list file must contain two entries. The first is the 

name of a predictive sensitivity file. The second is the name of the file to which predictive 

error variances for all nominated singular values are to be written for the prediction whose 

parameter sensitivities are contained in the first file cited on that line.  

The following should be noted. 

1. Blank lines are permissible in a predictive sensitivity matrix list file. 

2. If a filename contains a blank character, its name should be enclosed by quotes. 
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10.5 PREDVAR1B 

10.5.1 General 

PREDVAR1B implements theory that is demonstrated in White et al (2014) and that is 

discussed in section 9.6 of Doherty (2015).  In particular, it implements equation 9.6.6 of 

Doherty (2015). 

PREDVAR1B was designed to examine the error that is introduced to model predictions 

through use of an imperfect model to make those predictions. As all models are imperfect, 

analysis of defect-induced predictive error potential is important. However a requirement for 

analysis of this type of error is that “the perfect model” exists alongside the imperfect model 

so that errors incurred through use of the latter in place of the former can be quantified. Of 

course, the perfect model can never exist. In practice, a more detailed model is used as a 

surrogate for the perfect model. The outcomes of calculations made by PREDVAR1B based 

on this surrogate model are therefore only indicative. 

White et al (2014) and Doherty (2015) examine some repercussions of the use of a defective 

model in the environmental decision-making context. Some of the conclusions from their 

study (which can be verified through use of PREDVAR1B) are as follows. 

• Even though outputs of an imperfect model may fit historical field data well as the 

imperfect model is calibrated, the calibration process does not, of itself, guarantee that 

predictions made by the calibrated imperfect model will be accurate. However the 

theory behind PREDVAR1B demonstrates that, for some predictions, model defects 

can indeed be “calibrated out”. For other predictions, the calibration process can 

introduce substantial bias – bias that would not be present if the model had not been 

calibrated. This happens because some parameters must play surrogate roles in the 

calibration process as they compensate for the notional omission of some system 

parameters from the defective model in order to allow the latter model to replicate 

historical behaviour of the system which it is meant to simulate. 

• Those predictions which are similar in character to measurements which comprise the 

calibration dataset tend to be those which are most immune from calibration-induced 

predictive bias. 

• On the other hand, those predictions which are partly sensitive to null-space 

parameter combinations and partly sensitive to solution-space parameter combinations 

of the “reality model” tend to be those which are most at risk of incurring calibration-

induced predictive bias. 

• The potential for calibration-induced predictive bias can often be reduced by seeking 

a fit with the calibration dataset which is somewhat diminished with respect to that 

which would be sought on the basis of measurement noise alone.  

• Calibration-induced predictive bias can also be reduced through formulation of an 

appropriate objective function which “filters out” those aspects of the information 

contained within the calibration dataset which would otherwise flow into imperfect 

information receptacles provided by a defective model. 

PREDVAR1B allows these issues to be explored. Its operation is very similar to that of 

PREDVAR1A. Recall that PREDVAR1A computes the solution space and null space 

contributions to predictive error variance as a function of the number of singular values 

employed in the calibration process. The greater the number of singular values, the better is 

the fit between model outputs and field data. However beyond an optimum number of 
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singular values, predictive error variance rapidly rises. The optimum level of fit is that which 

reduces predictive error variance to a minimum.  

PREDVAR1B adds a third term to the predictive error variance equation, this being model-

simplification error. This includes that which exists by virtue of model defects alone, as well 

as that which remains (or is amplified) after the imperfect model is calibrated because of the 

compensatory roles that parameters adjusted through the imperfect model calibration process 

may play. Like PREDVAR1A, PREDVAR1B allows a modeller to locate the minimum of 

the predictive error variance curve, and hence the optimum fit between model outputs and 

field data that should be sought through the calibration process; for an imperfect model the 

optimal fit is prediction-specific. It should be noted, however, that with simplification-

induced predictive error taken into account, the location of the predictive-error variance 

minimum may not be as easy to find as when a perfect model is calibrated. Under the latter 

circumstances, a discrete error variance minimum results from the interplay between the 

monotonically decreasing (with increasing level of fit) null space contribution to predictive 

error variance and the monotonically increasing (with increasing level of fit) solution space 

contribution to predictive error variance (assuming that parameters have undergone Kahunen-

Loève transformation prior to estimation). In fact, an error variance minimum may not even 

exist for some predictions made by a defective model, for it is possible that, for some 

predictions, any history-matching can do more harm than good.  

10.5.2 Theory 

The theory on which PREDVAR1B is based in presented in section 9.6.1 of Doherty (2015). 

As stated above, PREDVAR1B implements equation 9.6.6 of that text.  This equation has 

three terms on its right side. The first two terms are the same as those calculated by 

PREDVAR1 and PREDVAR1A. The third term quantifies the contribution to predictive error 

variance incurred through use of a calibrated, defective model. The total error variance is the 

sum of these three terms.  

In normal modelling practice it is not possible to calculate the third term of equation 9.6.6. 

However in order to obtain some measure of the cost of model simplification, it may be 

useful to build a complex model – more complex than you would actually use in practice. A 

Jacobian matrix can then be calculated using this complex model in order to explore the 

repercussions of using a simplified form of that same model in which some parameters (e.g. 

boundary conditions, certain stresses, certain processes, and/or certain expressions of 

heterogeneity) are fixed at values that you may normally deem to be “relatively error free” 

during the calibration and predictive processes. This mimics what happens in real-world 

modelling practice, whereby a simplified numerical expression of reality is declared (without 

any analysis) to be “fit for purpose” despite the fact that many actual or implied parameters 

are fixed at certain values – values that may in fact be wrong. The set of parameters that 

remains adjustable comprises the “defective” model for the purpose of PREDVAR1B 

analysis. 

As is described in documentation for PREDVAR1 and PREDVAR1A above, it is good 

practice to scale parameters by their innate variability (an even better practice is to subject 

adjustable parameters to Kahunen-Loève transformation) before subjecting the resulting Z 

matrix to singular value decomposition. The SCALEPAR utility can help in this regard.  

10.5.3 Using PREDVAR1B  

See documentation for PREDVAR1A above. PREDVAR1B’s prompts and typical responses 
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follow. 

Enter name of PEST control file: case.pst 

Enter observation reference variance i.e. phi(nonreg)/nobs(nonreg): .14 

 

Enter name of parameter uncertainty file: param.unc 

Enter name of predictive sensitivity matrix list file: sen.lst 

 

Enter no. of singular values before truncation [<Enter> if no more]: 0 

Enter no. of singular values before truncation [<Enter> if no more]: 1 

.. 

Enter no. of singular values before truncation [<Enter> if no more]: 40 

Enter no. of singular values before truncation [<Enter> if no more]: 40 

Enter no. of singular values before truncation [<Enter> if no more]: 60 

Enter no. of singular values before truncation [<Enter> if no more]: <Enter> 

 

- reading PEST control file temp.pst.... 

- file temp.pst read ok. 

 

Parameter groups containing a non-zero number of non-tied and non-fixed 

parameters will now be listed. 

 

Identify simplicity-correction parameter groups. 

Other groups are presumed to contain only calibration-adjustable parameters. 

 

  Parameter group "ro"?  [y/n]: n 

  Parameter group "ro_0"?  [y/n]: y 

 

- reading Jacobian matrix file temp.jco.... 

- file temp.jco read ok. 

 

- reading predictive sensitivity matrix file ar18.vec.... 

- file ar18.vec read ok. 

 

- undertaking SVD on observation covariance matrixes... 

- 1 covariance matrices decomposed. 

 

- carrying out singular value decomposition of Q(1/2)X.... 

 

- reading parameter uncertainty file param.unc.... 

- parameter uncertainty file param.unc read ok. 

 

- computing error variance terms for truncation at 0 singular values  .... 

- computing first term .... 

- computing second term .... 

- computing third term .... 

 

- computing error variance terms for truncation at 1 singular values  .... 

- computing first term .... 

- computing second term .... 

- computing third term .... 

  etc. 

As is clear from the above, the user is asked to partition parameters into those that are 

“calibration-adjustable” and those that are “correction parameters”. Sensitivities of model 

outputs to all of these are required. They must lie within a JCO file computed by PEST that 

matches the PEST control file whose name is supplied to PREDVAR1B. A set of sensitivities 

of a prediction to all parameters, both calibration-adjustable model parameters and simplicity-

correction parameters, must also be supplied. If the prediction of interest is featured in the 

same PEST control file as that read by PREDVAR1B (as a dummy observation with a weight 

of zero), predictive sensitivities can be extracted from the JCO file which complements the 

PEST control file using the JROW2VEC utility. Otherwise they must be extracted from 

another JCO file which features the same calibration-adjustable and simplicity-correction 
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parameters. Alternatively, to examine the post-calibration error variance of a single 

parameter, supply a “predictive sensitivity” vector which is comprised of zeroes except for 

the single element that represents the parameter of interest. 

Simplicity-correction parameters must belong to one or more discrete parameter groups 

which are featured in the PEST control file supplied to PREDVAR1B. A parameter group 

must not house both calibration-adjustable parameters and simplicity-correction parameters. 

The following points are worth noting. 

• Weights employed in the calibration dataset should reflect measurement/structural 

noise; that is, weights should be proportional to the inverse of the standard deviations 

of measurement/structural noise. PREDVAR1B calculates C(ε) from these weights 

(and/or covariance matrices associated with measurements), together with the user-

supplied reference variance. If weights are the inverse of the standard deviations of 

measurement/structural noise, and/or observation covariance matrice(s) are supplied 

that are equal to C(ε), then the reference variance is unity. 

• You should request that enough singular values be employed to allow predictive error 

variance terms, and total predictive error variance, to be plotted against enough 

singular values for the minimum in the predictive error variance curve to be 

identified. However the maximum number of singular value to use should be no 

greater than either the maximum number of adjustable parameters, or the maximum 

number of non-zero-weighted observations, whichever is smaller. PREDVAR1B will 

inform you if more singular values than this are requested. 

• A singular value of zero corresponds to no calibration at all. 

10.6 PREDVAR1C 

10.6.1 General 

The PREDVAR1C utility is similar to the PREDVAR1B utility. However its functionality 

differs from that of PREDVAR1B in two important respects. These are as follows. 

• PREDVAR1C insists that the prior covariance matrix C(k) be diagonal. Hence no 

parameters must show prior correlation. 

• PREDVAR1C provides a measure of expected goodness-of-fit between model outputs 

and field data, this being the sum of the diagonal elements of the weighted residuals 

covariance matrix divided by the number of observations. Ideally, if each 

measurement weight supplied in the PEST control file is equal to the inverse of the 

standard deviation of respective measurement/structural noise, and/or observation 

covariance matrices assigned to observation groups in the PEST control file are equal 

to that of measurement/structural noise, then the sum of the diagonal elements of the 

weighted residuals covariance matrix should approximate the number of non-zero-

weighted observations comprising the calibration dataset. This sum divided by the 

number of non-zero-weighted observations should therefore be approximately equal 

to 1.0. (Actually, it will be slightly above this value as the deployment of 

regularisation induces some degree of model-to-measurement misfit; see section 9.3.3 

of Doherty, 2015). 

10.6.2 Theory 

The theory implemented by PREDVAR1C is discussed in section 9.3.2 of Doherty (2015). 
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However it is repeated here for clarity. We commence with equation 9.3.4 of Doherty (2015): 

h = Zmkm + Zdkd + ε        (10.6.1) 

In this equation km represents parameters employed by a simplified model whereas kd 

represents “correction parameters” which encapsulate differences between a simple model 

and the complexity of the real-world (the latter being represented by a more complex model). 

Zm and Zd represent processes which act on km and kd respectively. As usual h represents 

measurements comprising the calibration dataset while ε represents noise associated with 

these measurements. 

Using singular value decomposition, the parameter field km assigned to the calibrated simple 

model is estimated as 

 km = V1S
-1

1U
t
1h        (10.6.2) 

which, after equation 10.6.1 is substituted into equation 10.6.2 becomes (after some 

simplification) 

 km = VtVt
1km + V1S

-1
1U

t
1ε + V1S

-1
1U

t
1Zdkd     (10.6.3) 

Residuals r pertaining to the calibrated model are calculated as 

 r = h - Zmkm = Zmkm + Zdkd + ε – Zmkm     (10.6.4) 

After some manipulation of the terms of this equation we obtain 

 r = U2S2V
t
2km + U2U

t
2ε + U2U

t
2Zdkd      (10.6.5) 

The covariance matrix of residuals of the calibrated model can be formulated from the above 

equation as 

C(r) = U2S2V
t
2C(km)V2S2U

t
2 + U2U

t
2C(ε)U2U

t
2 + U2U

t
2ZdC(kd)Z

t
dU2U

t
2  (10.6.6) 

Suppose that the following conditions are met. 

 C(k) = I         (10.6.7a) 

 C(kc) = I         (10.6.7b) 

 C(ε) = I         (10.6.7c) 

Then equation (10.6.6) becomes 

 C(r) = U2S
2

2U
t
2 + U2U

t
2 + U2U

t
2ZdZ

t
dU2U

t
2     (10.6.8) 

PREDVAR1C internally normalizes parameters (and alters sensitivities accordingly) so that 

conditions (10.6.7a) and (10.6.7b) are met.  

For the sake of keeping the above equations simple, user-specified weights employed in the 

inversion process are not cited in them. Nevertheless, equation (10.6.7c) is respected if the 

user supplies weights in the PEST control file which are equal to the inverse of the standard 

deviation of measurement/structural noise, and/or supplies a covariance matrix for some or 

all observation groups which is equal to C(ε) for each group. (In practice proportionality, 

together with a reference variance for weights and observation covariance matrices, can 

replace equality when using PREDVAR1C.) 

If the number of singular values is zero, then the model is not calibrated at all; that is, no 

history-matching takes place. Under these circumstances equation 10.6.8 describes model-to-

measurement misfit resulting from an uncalibrated, defective model, including that induced 

by the presence of measurement noise.  
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The first and second terms of equation 10.6.8 fall with increasing number of singular values 

employed in the inversion process (the number of columns comprising U2 decreases with 

increasing singular value truncation point). When singular values fall to zero with increasing 

singular value index, so do contributions made by the first term. The second term is equal to 

the identity matrix I when zero singular values are used in model calibration (that is when the 

model is not calibrated at all); it falls uniformly as the number of singular values used in the 

inversion process increases. 

The behaviour of the third term of 10.6.8 as singular values increase is context-specific. If Zd 

is orthogonal to U2, then it is zero. When zero singular values are employed in the calibration 

process (i.e. when the model is not calibrated at all), this implies that model defects do not 

affect model outputs that correspond to members of the calibration dataset. Alternatively, this 

term may start off as non-zero, but fall to a low number as the number of singular values 

employed in the calibration process increases. This implies that model parameters that are 

adjusted through the calibration process (i.e. the km parameters as distinct from the kd 

parameters) can assume values that compensate for model defects (i.e. for the presence of kd 

parameters) to ensure that the calibration process achieves a good fit with the calibration 

dataset.  

If a model has no defects then the third term of equation 10.6.8 is absent. In this case, if the 

conditions implied by equations 10.6.7a and 10.6.7c are respected, the diagonal elements of 

C(r) should be in the vicinity of 1.0 as the number of singular values employed in the 

inversion process increases to the point at which the model can be considered as “calibrated”. 

This is the point at which parameter and predictive error variances are minimized – see 

documentation of PREDVAR1 and PREDVAR1A. The second term of equation 10.6.8 will 

be less than 1.0 at this point, while the first term will have descended from possibly high 

values to values of 1.0 or below. (Eventually this term will be zero; this occurs when the 

singular value truncation point is such that singular values are zero.)  

10.6.3 Using PREDVAR1C 

The running of PREDVAR1C is identical to the running of PREDVAR1B except for the fact 

that PREDVAR1C asks two other questions. These are as follows. 

Calculate residuals statistics? [y/n]: 

Enter name for residuals statistics file: 

The second question is asked only if the response to the first question is “y”.  

The first part of a residual statistics file written by PREDVAR1C is illustrated in Figure 10.2. 

sing_val  first_term        second_term       third_term        sum_of_terms 

     0       1.105678          1.000000         0.7587583          2.864436     

     1      0.6062968         0.9473684         0.7545655          2.308231     

     2      0.2745901         0.8947368         0.7279764          1.897303     

     3      0.1040756         0.8421053         0.6870091          1.633190     

     4      3.3155639E-02     0.7894737         0.6434713          1.466101     

     5      8.8168476E-03     0.7368421         0.6037423          1.349401     

     6      1.9222139E-03     0.6842105         0.5711024          1.257235     

     7      4.0396902E-04     0.6315789         0.5486338          1.180617     

Figure 10.2 The first part of a residual statistics file. 

The order of terms referenced in the header to the residual statistics file is the same as that of 

terms featured in equation 10.6.8. The items listed in each column are the sum of the diagonal 

elements of C(r) calculated using only that term, with this sum divided by the number of non-

zero-weighted observations featured in the PEST control file. 
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When using PREDVAR1C it is important to keep the following points in mind. 

1. As has already been discussed, weights supplied in the PEST control file should be 

proportional to the inverse of the standard deviation of measurement/structural noise. 

This strategy allows condition 10.6.7c to be satisfied once the proportionality constant 

is supplied through the reference variance. Alternatively (or as well), a covariance 

matrix proportional to C(ε) can be supplied for one or more observation groups. (If 

desired, the PWTADJ2 utility followed by JCO2JCO can be used to create a PEST 

control file with correct weights together with a corresponding JCO file prior to 

running PREDVAR1C; the reference variance associated with the PWTADJ2-created 

PEST control file is 1.0.) 

2. If the above strategy is followed then a “sum_of_terms” value (i.e. final column of the 

residuals file) approaching 1.0 indicates a fit with the field data that is commensurate 

with that expected from measurement noise alone. 

3. Reduction of the value of the third term with an increasing number of singular values 

indicates that model defects are being “calibrated out”. Adjustable parameters may 

therefore be adopting surrogate roles to achieve a high level of model-to-measurement 

fit. 

4. PREDVAR1C writes all output files that are written by PREDVAR1B. Hence it can 

be used as a replacement for PREDVAR1B. In fact, its use is preferred to that of 

PREDVAR1B as the internal normalization of sensitivities to achieve condition 

10.6.7a results in a monotonic relationship between the null space component of 

predictive error variance and number of singular values used in the inversion process. 

5. Regularisation observations and prior information equations cited in a PEST control 

file that is read by PREDVAR1C are ignored. 

Calculations undertaken by PREDVAR1C are memory and cpu-intensive. Hence execution 

speed may be slow. If observation numbers are high, memory and cpu requirements may be 

impossible to meet. If this occurs use a 64 bit version of this utility. Consider also reducing 

the number of observations featured in the PEST control file. 

10.7 PREDVAR2 

10.7.1 General 

In contrast to PREDVAR1B and PREDVAR1C, and in similar fashion to other members of 

the PREDVAR suite, PREDVAR2 does not consider model defects. Operation of 

PREDVAR2 is, in fact, based on the same principles as those on which PREDVAR1is based. 

However instead of calculating the dependence of predictive error variance on the number of 

singular values employed in the truncated singular value decomposition inversion process 

through which R and G of equation 10.3.1 are evaluated, it supports calculation of predictive 

error variance based on a sequence of different parameter uncertainty files, all for the same 

singular value truncation limit. This can serve at least the following purposes. 

1. If, in each of these files, a particular parameter, or parameter type, is assigned zero 

variance (and is therefore assumed to be perfectly known), the reduction in error 

variance accrued from knowing that parameter or parameter type can be construed as 

a measure of the contribution made to the variance of the prediction by that parameter 

type. This analysis can be undertaken at an optimum number of singular values as 

determined by prior use of PREDVAR1. It can also be undertaken at zero singular 

values, to determine pre-calibration contribution of different parameters and/or 
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parameter types to predictive error variance. The change between pre- and post-

calibration predictive error variance is a measure of the effect that the calibration 

process has in reducing the effect of that parameter, or parameter type, on the error 

variance of the studied prediction. 

2. Where a parameter is spatially variable, and where this variability is characterized 

within a model using a mechanism such as pilot points, contribution to predictive 

error variance made by different parameters can be contoured. This presents a graphic 

means by which the worth of making direct property measurements in different parts 

of the model domain, as a means of reducing the uncertainty of a particular prediction, 

can be assessed. The variance of the “measured” parameter does not need to be 

reduced to zero in this process; it can simply be diminished, thus reflecting the fact 

that direct “measurements” of system properties have their own sources of 

uncertainty. 

Like PREDVAR1 (but unlike PREDVAR1A), PREDVAR2 undertakes singular value 

decomposition of the ZtQZ matrix rather than the Q1/2Z matrix (where Z is defined in 

equation 10.3.6). Hence its execution may be a little slow where parameter and/or 

observation numbers are large. 

Note however that PREDUNC-suite programs documented later in this section often provide 

better measures of data worth than PREDVAR-suite programs as PREDUNC-suite programs 

calculate parameter and predictive uncertainty rather than error variance. Uncertainty can be 

quicker to calculate; furthermore uncertainty provides a slightly more intrinsic measure of the 

information content of a calibration dataset than does error variance, the latter being a 

function of the regularisation device employed to achieve calibration uniqueness, in this case 

singular value decomposition at a user-specified truncation point. 

10.7.2 Using PREDVAR2 

Like PREDVAR1, PREDVAR2 commences execution with the prompt 

Enter name of PEST control file: 

It is assumed that a JCO file exists corresponding to the PEST control file whose name is 

provided in response to the previous prompt. (PREDVAR2 will cease execution with an error 

message if this is not the case). It is important to note that, as for PREDVAR1, the model 

need not be calibrated; hence values employed in the PEST control file (and those on which 

derivatives recorded in the JCO file are based) can be comprised of best parameter estimates 

originating from outside the calibration process. A JCO file pertaining to these parameter 

estimates can be obtained by running PEST on the basis of a PEST control file in which these 

parameter values feature as initial values; NOPTMAX should be set to -2 in this file. In other 

circumstances it may be convenient to build this JCO file from a JCO file recorded on a 

previous PEST run using the JCO2JCO utility. 

As for PREDVAR1, it is assumed that the inverse squares of weights contained in the cited 

PEST control file are proportional to measurement error variances, and that any observation 

covariance matrices cited in the PEST control file are related to true measurement error 

covariances using the same proportionality constant. PREDVAR2 asks for the value of this 

constant, that is for the reference variance. The prompt is 

Enter observation reference variance: 

A suitable value for the reference variance can be obtained by dividing the (measurement) 

objective function by the number of non-zero-weighted, non-regularisation observations 
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featured in the inverse problem. 

Next PREDVAR2 prompts 

Enter name of parameter uncertainty file listing file: 

A parameter uncertainty file listing file must list the names of parameter uncertainty files, one 

after the other; see the example below. 

# Horizontal K’s set to zero 

param1.unc 

# Vertical K’s set to zero 

param2.unc 

# Sy’s set to zero 

param3.unc 

Figure 10.3 Part of a parameter uncertainty file listing file.  

Any line within a parameter uncertainty file listing file that begins with the “#” character, or 

is blank, is ignored. Files cited within this file must be parameter uncertainty files (use quotes 

to surround filenames containing a blank). Specifications for a parameter uncertainty file are 

provided in section 2.5 of this manual. There is no limit to the number of parameter 

uncertainty files which can be so listed. Each one of these files allows construction of a C(k) 

matrix for use in equation 10.3.1. 

Next PREDVAR2 asks for the name of a predictive sensitivity matrix file. This contains the y 

vector featured in equation 10.3.1. This matrix can be built using a text editor if desired (see 

the format for this file in section 2.4 of this manual). However in most cases it is easier to 

extract it from a JCO file using the JROW2VEC utility.  

PREDVAR2’s next prompt is 

Enter number of singular values before truncation: 

Enter a number between zero and the number of adjustable parameters cited in the PEST 

control file; on most occasions the number of singular values should correspond to the 

optimum for the prediction of interest identified using PREDVAR1. 

PREDVAR2 next prompts for the name of its principal output file. 

Enter name for predictive error variance output file: 

For each parameter uncertainty file listed in the parameter uncertainty file listing file, the 

PREDVAR2-generated output file will contain predictive error variance components 

corresponding to the first and second terms of equation 10.3.1, as well as the total predictive 

error variance; it will also list the square root of the later as the total predictive standard 

deviation.  

Finally PREDVAR2 prompts 

Enter name for SVD file [<Enter> to read an old one]: 

PREDVAR2 records the outcomes of singular value decomposition of the ZtQZ matrix in an 

ASCII file. This may be useful for its own sake (in order that the user may be aware of the 

linear parameter combinations which define orthogonal directions in parameter space which 

are used as a basis for subdividing that space into calibration solution and null subspaces). 

However if this file is read in a subsequent PREDVAR2 run (instead of undertaking singular 

value decomposition of ZtQZ again), considerable savings in computation time can be 

achieved where large numbers of adjustable parameters are cited in the PEST control file 

(with slight loss of precision incurred through having to read these results from an ASCII 
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file). However for the SVD file to be valid for the current run, no alterations should have 

been made to the PEST control file on which the current PREDVAR2 run is based between 

this run and its previous run. If you press the <Enter> key in response to the above prompt, 

signalling that such an old SVD file should be read, PREDVAR2 then prompts for the name 

of this file. 

After all of the above questions have been answered, PREDVAR2 undertakes its calculations, 

recording the progress of its work to the screen. Its output file can be inspected at any time 

during these calculations. 

10.8 PREDVAR3 

10.8.1 General 

PREDVAR3 bears some resemblance to PREDVAR2 in that it is employed for calculation of 

the contribution of different parameter types, or parameter groups, to the potential error of a 

prediction of interest. However the methodology underpinning its use is more general than 

that of PREDVAR2. It has been largely superseded by PREDVAR4 however (see below). 

Hence it is recommended that the latter program be used instead of PREDVAR3. 

Nevertheless PREDVAR3 is retained in the PEST utility suite as it may prove useful to some. 

As for PREDVAR2 and PREDVAR1, use of PREDVAR3 does not depend on the existence 

of a calibrated model. All that is required is that sensitivities of model-generated 

measurement-equivalents to all parameters employed by the model be available, and that the 

sensitivities of a model prediction of interest to all parameters employed by the model also be 

available. 

There are a number of ways in which the “contribution to total predictive error variance” by a 

particular parameter, or parameter type/group can be defined. One way in which such a 

quantity can be calculated is through undertaking the following exercise. 

1. Use PREDVAR1 (possibly in conjunction with SCALEPAR in order to scale 

parameters by their innate variabilities) to determine the minimum predictive error 

variance achievable for a certain prediction. This is accomplished by plotting 

predictive error variance versus number of singular values, and identifying the 

minimum of this curve. 

2. Build a new PEST control file in which parameters comprising a particular type or 

group are held fixed, thus implying that they are notionally perfectly known by the 

modeller. 

3. Obtain the Jacobian matrix pertaining to this new PEST control file. This is normally 

easily obtained from the Jacobian matrix corresponding to the original PEST control 

file (in which no parameters are fixed) using the JCO2JCO utility. 

4. Run PREDVAR1 on the basis of this new PEST control file and complimentary 

Jacobian matrix file to calculate minimised predictive error variance. The difference 

between this predictive error variance and the original predictive error variance based 

on a full parameter set is a measure of the amount by which the attainment of perfect 

knowledge of the newly fixed parameters would reduce the error variance of the 

prediction of interest. It can thus be considered to quantify the “contribution” made by 

these parameters to the error variance of the prediction of interest. 

PREDVAR3 carries out the same operations as listed above, but without the need for 
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production of new PEST control file and a new Jacobian matrix file, and without the need to 

run PREDVAR1 repeatedly. Because of its similarity to PREDVAR1, many of its inputs 

resemble that of this program. 

10.8.2 Using PREDVAR3 

PREDVAR3’s first four prompts are the same as those of PREDVAR1. They are repeated 

below. 

Enter name of PEST control file: 

Enter observation reference variance:  

 

Enter name of parameter uncertainty file: 

Enter name of predictive sensitivity matrix file: 

See documentation of PREDVAR1 for details of how to respond to these prompts. (Note that 

use of PREDVAR3, like that of PREDVAR1, assumes that observation weights contained in 

the PEST control file are inversely proportional to measurement uncertainties, and/or that one 

or a number of observation covariance matrices are supplied whose elements are related to 

measurement error variance by the same constant of proportionality, this being the reference 

variance referred to above; see documentation of PREDVAR1 for further details.) 

Next PREDVAR3 prompts for a “singular value list” file. 

Enter name of singular value list file: 

This is a file containing singular values written one to a line. For every parameter type 

nominated by the user (see below), PREDVAR3 calculates the predictive error variance 

corresponding to all of these singular values. It then selects the minimum of these variances 

and records that on its output file. It is important to note that if a model has many parameters, 

then use of many singular values can lengthen PREDVAR3 execution time a great deal. 

Normally you will know roughly where the minimum will lie, and can properly span this 

singular value interval. If the interval is wide, then perhaps employing a singular value set 

with an increment of two or three, rather than unity, may also help. If it is found that 

minimum error variance exists at either end of the supplied sequence of singular values, this 

is evidence that a large enough range of singular values may not have been spanned. 

PREDVAR3 lists to its output file the singular value corresponding to the minimum 

predictive error variance for each parameter type; see below. 

Next PREDVAR3 prompts 

Enter name of parameter type list file: 

The format of such a file is illustrated in figure 10.4. 



Linear  Error and Uncertainty – Part I 121 

 
 

* parameter type “none” 

* parameter type ro 

ro1 

ro2 

ro3 

ro4 

ro5 

* parameter type thickness 

th1 

th2 

th3 

th4 

* parameter type “bot_elev” 

belev1 

belev2 

etc. 

Figure 10.4 Example of a parameter type list file. 

Normally the parameter type list file will be prepared by extracting a list of parameters from 

the PEST control file for the current case and simply inserting parameter type identifiers 

within this list as shown above. Each set of parameters appearing between two such 

identifiers (or between an identifier and the end of the file) comprises a “parameter type”, 

with the name of this type being defined after the “* parameter type” string which identifies 

the beginning of the listing for that type. 

Note the following. 

1. The list of parameters comprising a certain type can be empty. In this case no 

parameters are frozen and the predictive error variance is equivalent to that which 

would be computed by PREDVAR1 on the basis of all adjustable model parameters. 

2. A given parameter can belong to more than one type if desired. 

3. There is no limit to the number of parameter types which can be represented in a 

parameter type list file. 

4. The name of a parameter type should be 12 characters or less in length. It can 

optionally be surrounded by quotes. 

5. If the overall C(k) matrix for the current inverse problem indicates that correlation 

exists between certain parameters (that is, if C(k) is not a diagonal matrix), then 

correlated parameters must belong to the same parameter type, and must be all frozen 

together or not at all. (Proper calculation of separate predictive error variance 

contributions by parameters which are correlated requires that the C(k) matrix be 

conditioned as a result of the attainment of perfect knowledge of the values of the 

notionally fixed parameters. Where a fixed parameter is not correlated with any other 

parameter, such conditioning of C(k) is not necessary.) 

For each parameter type identified in the parameter type listing file, PREDVAR3 computes 

the predictive error variance for all singular values nominated in the singular value list file. It 

then records the minimum such variance to its output file, an example of which is shown 

below. Also recorded are the first and second predictive error terms corresponding to the 

minimized predictive error variance. 
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Name of prediction = "ar10" 

 

Fixed_params      First_term      Second_term     Minimized_error_variance  Sing_vals_at_min 

none               4.4625057E-02   0.1285734       0.1731985                    4 

top                4.0642764E-02   0.1438543       0.1844970                    2 

bottom             1.9366123E-02   9.0539228E-03   2.8420046E-02                2 

middle             3.4950000E-02   5.6072226E-02   9.1022226E-02                4 

 

Figure 10.5 Part of a PREDVAR3 output file. 

A PREDVAR3 output file is easily imported into a spreadsheet program such as EXCEL for 

undertaking the subtractions necessary to obtain contributions made by different parameter 

types to the variance of a certain prediction. 

10.9 PREDVAR4 

PREDVAR4’s purpose and use are identical to those of PREDVAR3. However it offers a 

slightly higher level of functionality than that offered by PREDVAR3.  

If certain parameters are frozen (i.e. if perfect knowledge of the values of these parameters is 

assumed) for the purpose of calculating their contribution to predictive error variance, and if 

these parameters are correlated with non-frozen parameters, the C(k) matrix of the latter is 

conditioned by the fact that the former are now notionally perfectly known, and hence have 

no uncertainty associated with them. Use of the conditioned C(k) matrix in predictive error 

variance computation results in an altered error variance for many predictions, this reflecting 

the fact that notional perfect knowledge of the frozen parameters has implications for 

knowledge of correlated  (from a prior knowledge point of view) non-frozen parameters as 

well. 

Conditioning of the C(k) covariance matrix is carried out using equation 3.8.5 of Doherty 

(2015). 

See also the PREDUNC4 utility. This computes the contributions of different parameter types 

to predictive uncertainty rather than to predictive error variance. This is quicker to compute; 

furthermore uncertainty is a more “natural” quantity than “error” when assessing parameter 

importance. 

10.10 PREDVAR5 

10.10.1 General 

PREDVAR5 is used for analysing the effect of individual observations, or groups of 

observations, on the error variance of a particular prediction. It has two modes of operation. 

These are as follows. 

1. It allows ranking of the relative worth of existing observations by calculating 

predictive error variance with selected ones, or groups, of these observations removed 

from the calibration dataset. 

2. It allows ranking of the relative worth of new observations by calculating predictive 

error variance with selected ones, or groups, of these new observations added to the 

existing calibration dataset. 

As for PREDVAR3 and PREDVAR4 (which work with parameter contributions to 

predictive error variance instead of observation contributions), PREDVAR5 allows 
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observations to be grouped into “types” for addition to, or subtraction from, the existing 

calibration dataset. These groupings are provided in an “observation type list file”, the format 

of which is very similar to that of the parameter type list file used by PREDVAR3 and 

PREDVAR4. Figure 10.6 illustrates such a file. 

* observation type "base" 

ar8 

ar9 

.. 

ar34 

* observation type “none” 

* observation type "type1" 

ar5 

ar3 

ar4 

* observation type "flows" 

flow1 

flow2 

* observation type "heads" 

head1 

head2 

etc. 

Figure 10.6 Format of an observation type list file. 

The PREDVAR5 observation addition and subtraction options are now discussed in more 

detail. 

Subtracting Observations 

This is the easier of the two options to implement. In this case each set of observations 

belonging to the different observation types nominated in the observation type list file is, in 

turn, removed from an existing PEST input dataset as set out in an existing PEST control file; 

this is affected by setting all of the pertinent observations weights to zero. Not only 

observations can be removed, but prior information equations can be removed as well. 

However it is important to note that regularisation observations and prior information 

equations are ignored when PREDVAR5 (and any of the other PREDVAR suite programs) 

calculate predictive error variance. If the PEST control file whose name is provided to 

PREDVAR5 instructs PEST to run in “regularisation” mode, and if an observation or prior 

information equation is cited in an observation type list file which belongs to a regularisation 

group, PREDVAR5 will cease execution with an error message. 

Naturally, each observation cited in an observation type list file must be cited in the PEST 

control file which defines the current inverse problem.  

An observation type can have no members; often the first nominated observation type has no 

members. Thus PREDVAR5 will calculate predictive error variance with no observations 

subtracted from the current PEST dataset. The contributions that other nominated types of 

observation make to the accuracy of a certain prediction can then be evaluated by subtracting 

the error variance of that prediction with the observation type included, from that calculated 

with it missing. PREDVAR5 does not undertake this subtraction itself. However it can be 

easily carried out if the PREDVAR5 output file is imported into a spreadsheet. 
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Adding Observations 

In this case the first observation type listed in the observation type list file must be a “base 

type”, and must be named “base”. As for the subtraction alternative, all observations cited in 

the observation type list file must also be cited in the PEST control file which defines the 

current inverse problem. The set of base observations are always employed in the notional 

inversion processes carried out by PREDVAR5. Other observation types are added to this 

base set in sequential PREDVAR5 predictive error variance calculation operations. The effect 

that each set of new observations has in reducing the error variance of the nominated 

prediction can then be judged by subtracting the error variance computed with inclusion of 

the new observation type in the notional inversion process from that computed on the basis of 

the base observation type alone. All observations contained within the PEST control file that 

do not belong to the base observation type, or to the observation type that is being currently 

processed, are assigned a weight of zero. 

As for the observation subtraction option, prior information can be included in an observation 

type. However if, in the PEST control file read by PREDVAR5 which defines the current 

inverse problem, PEST is run in “regularisation” mode, a regularisation observation or prior 

information equation cannot be cited in the observation type listing file, as PREDVAR5 

ignores regularisation observations and prior information equations. 

The base observation type can be empty if desired. In this case the contribution to error 

variance made by the second term of equation 10.3.1 (i.e. the “measurement noise term”) is 

zero, and that made by the first term is the error variance under pre-calibration conditions (i.e. 

the pre-calibration predictive uncertainty). However other observation types cannot be empty 

in this case. Where the base observation type is empty, each listed observation type 

sequentially comprises the entirety of the tested calibration dataset. 

The “observation addition” option is useful for assessing the relative worth of different data 

acquisition strategies. All possible additional observations must be included in the PEST 

control file, along with the existing calibration dataset (the latter comprising the base 

observation type). PREDVAR5 then computes the predictive error variance with different 

observation types in turn added to the set of base observations. You can then compare the 

relative efficacy of these observation types in lowering the error variance of the identified 

prediction. Note that a given observation can appear in more than one observation type. 

10.10.2 Using PREDVAR5 

PREDVAR5 commences execution with the prompt 

Enter name of PEST control file:  

As for the other PREDVAR-suite programs, the PEST control file provides specifications for 

the current inverse problem. It defines the parameters involved in that problem and their 

transformation status. It is assumed that a corresponding Jacobian matrix file (i.e. a JCO file) 

exists; this is assumed to have the same filename base as the PEST control file, but to possess 

an extension of “.jco”. It may have been created on a previous PEST run (possibly with the 

NOPTMAX variable set to -2 so that the run was carried out specifically for this purpose), or 

it may have been created using the JCO2JCO utility from an existing JCO file pertaining to 

another PEST control file citing a superset of the parameters and observations which 

comprise the current inverse problem. 

Then it asks 

Enter observation reference variance:  
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This is discussed below. PREDVAR5’s next prompt is 

Enter name of parameter uncertainty file: 

This file provides the C(k) matrix of equation 10.3.1; see section 2.5 of this manual for its 

specifications. Next PREDVAR5 prompts 

Enter name of predictive sensitivity matrix file: 

The contents of this file must be in accordance with PEST matrix file format. It must contain 

the sensitivities of a prediction of interest to parameters cited in the PEST control file. Note 

the following. 

1. Sensitivities to parameters additional to those existing in the PEST control file are 

ignored. Also, the ordering of parameters in the matrix file does not need to be the 

same as in the PEST control file. 

2. If a parameter is log-transformed or has other parameters tied to it, this must be 

reflected in the sensitivities supplied in this file. 

3. If a parameter is cited in the PEST control file, and is not fixed or tied, but is not cited 

in the parameter sensitivity vector, PREDVAR5 ceases execution with an appropriate 

error message. 

Normally the predictive sensitivity vector will have been extracted from a JCO file using the 

JROW2VEC utility.  

Next PREDVAR5 prompts 

Enter name of singular value list file: 

The role of this file is similar to its role for other PREDVAR-suite programs. In the present 

case it provides a list of singular values for which PREDVAR5 calculates predictive error 

variance for each of the various observation types for which this is required. It chooses the 

minimum predictive error variance in each case. It is important to ensure that the range of 

singular values provided in this file is sufficient to encompass the predictive error variance 

minimum (a previous PREDVAR1 exercise may help in this regard). It is also a good idea for 

singular values to be sequential, and separated by unity. This minimises “granularity” in 

predictive error variance contributions when large numbers are subtracted from each other to 

form smaller ones, as must occur when predictive error variance differences are calculated.  

PREDVAR5’s next prompt is 

Enter name of observation type list file: 

The format of this file is described above. Then 

Subtract list members or add to base observations [s/a]: 

This is where you select between the two modes of PREDVAR5 operation described above. 

Its final prompt is 

Enter name for predictive error variance output file:  

The PREDVAR5 output file is similar to that of PREDVAR3 and PREDVAR4. It is normally 

best to import this file into a spreadsheet. For the observation addition option, subtract the 

predictive error variance calculated with each new set of nominated observations from the 

predictive error variance computed with no new observations (the latter can be computed 

using an empty observation type if you wish) to calculate the effect that each observation 

type would have in reducing predictive error variance from its current value. For the 
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observation subtraction option, subtract the predictive error variance computed with no 

observations subtracted from that calculated with each nominated observation type 

withdrawn to compute the effect that each observation type has in achieving the predictive 

error variance of the currently calibrated model. 

10.10.3 Observation Weights and Reference Variance 

Like other PREDVAR-suite programs, PREDVAR5 assumes that observation weights 

supplied in the PEST control file are proportional to the inverse of measurement noise 

variances (squares of standard deviations). An observation covariance matrix may be 

supplied for one or a number of observation groups cited in the PEST control file if you wish; 

the same constant of proportionality (i.e. the reference variance) is assumed to prevail 

between this matrix and measurement noise variance. Use of the PWTADJ2 utility following 

a calibration exercise can create a PEST control file in which this constant of proportionality 

is 1.0. Alternatively, a value for the reference variance can be estimated by dividing the 

calculated or estimated value of the (measurement) objective function associated with the 

calibration process by the number of non-zero-weighted, non-regularisation observations 

used in this process. 

10.10.4 Parameter Scaling 

Ideally, parameters should be scaled using the SCALEPAR utility before using any of the 

PREDVAR-suite programs (except PREDVAR1C). This helps to ensure that there are no 

rises in predictive error variance before the latter starts to fall as singular values are increased 

(or that these rises are small, as can happen where some parameters are correlated with each 

other through non-diagonal terms of the C(k) matrix). It also promotes minimisation of 

predictive error variance. You don’t actually need to run PEST using the PEST calibration 

dataset generated by SCALEPAR to obtain scaled parameters; however you do need to allow 

SCALEPAR to compute the scaled parameter Jacobian matrix. Furthermore you need to 

adjust parameter standard deviations such that they are all unity; similarly, parameter 

covariance matrices should be adjusted so that their diagonal elements are all unity in 

harmony with SCALEPAR’s re-scaling calculations; off-diagonal elements must be adjusted 

accordingly. Predictive sensitivities must be scaled in the same way that observation 

sensitivities are scaled. 

10.10.5 PREDUNC5 instead of PREDUNC4 

See the PREDUNC5 utility documented below. This uses predictive uncertainty rather than 

predictive error variance to assess observation worth. Predictive uncertainty is quicker to 

compute than predictive error variance. No parameter scaling is required. Predictive 

uncertainty does not suffer the same singular value granularity as does predictive error 

variance. In addition to this, uncertainty is a more “natural” quantity than “error” (though the 

two should differ only slightly – see Doherty (2015)). Hence use of PREDUNC5 is 

recommended over use of PREDVAR5 for assessment of data worth. 

10.11 PARVAR1 

PARVAR1 calculates the post-calibration error variance of all parameters employed by a 

model. Like PREDVAR-suite programs, it assumes that model calibration takes place 

through singular value decomposition; the user informs PARVAR1 of the dimensionality of 

the solution space (i.e. the number of pre-truncation singular values used in notional 

estimation of parameters). It uses the same formula to calculate parameter error variance as 
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that used by PREDVAR1A to calculate predictive error variance. However the “predictive 

sensitivity vector” of a parameter is simply a vector in which all elements of the vector are 

zero except for that pertaining to the parameter of interest; the value of this sensitivity is 1.0. 

The calculation is repeated for each adjustable parameter. 

Typical prompts and responses are as follows. 

Enter name of PEST control file: pestcase.pst 

Enter observation reference variance: 2.5 

 

Enter name of parameter uncertainty file: param.unc 

 

Enter no. of singular values before truncation: 12 

Enter name for output file: var.tab 

Once PARVAR1 has been informed of the name of a PEST control file, it immediately 

checks that the corresponding Jacobian matrix file is also present; if this is not the case it 

ceases execution with an appropriate error message. It ignores all regularisation observations 

and prior information that is contained in the PEST control file when computing post-

calibration parameter error variance.  

As usual, the observation reference variance can be calculated as the actual or estimated 

(measurement) objective function divided by the number of non-zero-weighted, non-

regularisation observations included in the calibration dataset. 

The format of a parameter uncertainty file is specified in section 2.5 of this manual. 

The first part of a PARVAR1 output file is shown below. 

Parameter error variances for 12 singular values 

 ------------------------------------------------- 

 parameter   variance_1     variance_2      total_variance    standard_deviation 

 k_ppt1       0.5830897      1.1113309E-03     0.5842010        0.7643304     

 k_ppt2       0.5905922      3.2496525E-04     0.5909172        0.7687114     

 k_ppt3       0.5957456      1.2426367E-04     0.5958699        0.7719261     

 k_ppt4       0.5886176      6.6431960E-04     0.5892819        0.7676470     

 k_ppt5       0.5885078      6.6709287E-04     0.5891749        0.7675773     

 k_ppt6       0.5956354      1.3614296E-04     0.5957715        0.7718624     

 k_ppt7       0.5913795      2.6715074E-04     0.5916467        0.7691857     

 k_ppt8       0.5817068      1.3035155E-03     0.5830103        0.7635511     

 k_ppt9       0.5420429      7.3421960E-03     0.5493851        0.7412052     

 k_ppt10      0.5616598      3.4346757E-03     0.5650944        0.7517276     

 k_ppt11      0.5856337      7.0444812E-04     0.5863381        0.7657272     

 etc. 

Figure 10.7 Part of a PARVAR1 output file. 

In the table that is recorded on the PARVAR1 output file, “variance_1” and “variance_2” 

refer to the null space and solution space contributions to total posterior parameter error 

variance; these are the first and second terms of equation 10.3.1. These sum to the total 

parameter error variance, the square root of which is the post-calibration parameter standard 

deviation; the last of these is tabulated in the final column of the PARVAR1 output file.  

10.12 PREDUNC1 

10.12.1 General 

The PREDUNC suite of programs have much in common with the PREDVAR suite of 

programs. However their major difference is that they calculate predictive uncertainty 

variance rather than predictive error variance. Hence parameter importance (PREDUNC4) 
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and observation data worth (PREDUNC5) are assessed in terms of their effects on predictive 

uncertainty rather than on predictive error variance. (Note that the value of a parameter can 

be considered to be a model prediction; the sensitivity vector for this prediction has elements 

of zero, except for that pertaining to the parameter of interest, for which the sensitivity value 

is 1.0.) 

The PREDUNC suite of programs base their analyses on equations 7.4.1 and 7.4.2 presented 

in Doherty (2015); these are the same equation (the linearized form of Bayes equation) but 

expressed in different ways. The assumptions that underpin derivation of these equations are 

as follows. 

1. The model is linear, so that its action can be replaced by a Jacobian matrix (the Z 

matrix in the equations referred to above); 

2. Prior parameter probabilities expressed by the covariance matrix C(k) are Gaussian; 

3. Measurement noise expressed by the covariance matrix C(ε) is Gaussian. 

PREDUNC1 is the simplest member of the PREDUNC suite. Its purpose is solely to calculate 

the pre- and post-calibration (i.e. prior and posterior) uncertainty variance of a prediction. 

(Recall that the variance is the square of the standard deviation.) 

10.12.2 Using PREDUNC1 

Use of PREDUNC1 is very similar to that of PREDVAR1. However a list of singular values 

is not required for computation of σ2
s (i.e. the uncertainty variance of prediction s); hence 

singular values are not requested. 

Like PREDVAR1, PREDUNC1 commences execution with the prompt 

Enter name of PEST control file: 

PREDUNC1 checks that a JCO file exists which complements the PEST control file. If it 

does not exist, PREDUNC1 ceases execution with an appropriate error message. 

PREDUNC1 (and other members of the PREDUNC suite) will also cease execution with an 

error message if the PESTMODE variable in the PEST control file is set to “regularisation”. 

If your PEST file includes regularisation observations and/or prior information, these can be 

removed using the SUBREG1 utility. A complementary JCO file for this new PEST control 

file can then be built using the JCO2JCO utility. 

PREDUNC1’s next prompt is 

Enter observation reference variance: 

As is done by members of the PREDVAR utility suite, PREDUNC-suite programs obtain 

statistics of measurement noise (i.e. the C(ε) matrix) from the user-nominated PEST control 

file. Where measurement weights are employed in this file, PREDUNC1 assumes that the 

square of each such weight is proportional to the inverse of the variance of the noise 

associated with the respective measurement, the proportionality constant being the reference 

variance σ2
r. Thus the standard deviation of measurement noise associated with each 

measurement is presumed to be σr times the inverse of the weight ascribed to that 

measurement, where σr is the square root of the reference variance supplied by the user. 

Where an observation covariance matrix is supplied for some or all observations, this same 

reference variance is assumed to apply. 

A value for the reference variance can be calculated by dividing the calculated or expected 

value of the objective function by the number of non-zero-weighted observations featured in 

the inverse problem. 
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PREDUNC1’s next prompt is 

Enter name of parameter uncertainty file: 

in response to which the name of a file specifying prior parameter uncertainties (i.e. the C(k) 

matrix) must be supplied; see section 2.5 of this manual for specifications of this type of file. 

PREDUNC1’s next prompt is 

Enter name of predictive sensitivity matrix file: 

The response to this prompt must be the name of a file written by a program such as 

JROW2VEC which lists (as a vector) the sensitivity of a prediction to each adjustable 

parameter. Note that the ordering of parameters in the predictive sensitivity file does not need 

to be the same as that in the PEST control file; nor does it matter if extra parameters are cited 

in this file. 

Next PREDUNC1 asks 

Use which version of linear predictive uncertainty equation:- 

     if version optimized for small number of parameters   - enter 1 

     if version optimized for small number of observations - enter 2 

 Enter your choice:  

The “version optimised for small number of parameters” is equation 7.4.2 of Doherty (2015); 

the version optimised for small number of observations is equation 7.4.1. If in doubt chose 

the first of these alternatives as its calculation requires fewer matrix operations. 

PREDUNC1 next computes the pre- and post-calibration uncertainty of the prediction, and 

writes these to the screen. 

Unlike PREDVAR-suite utilities, PREDUNC-suite utilities do not compute separate 

contributions to predictive error variance made by the calibration solution and null spaces, for 

no singular value decomposition is undertaken of the weighted sensitivity matrix. However 

contributions made by these spaces can be computed in an indirect way by increasing the 

weights assigned to all measurements (or decreasing the value supplied for the reference 

variance). When measurement weights are very high (and hence measurement noise is 

assumed to be low), the resulting predictive uncertainty is attributable solely to 

nonuniqueness of solution of the inverse problem; that is, it is a direct outcome of the 

existence and size of the calibration null space. 

10.13 PREDUNC4 

PREDUNC4 is to PREDUNC1 what PREDVAR4 is to PREDVAR1. That is, it computes the 

decrease in predictive uncertainty where groups of parameters are sequentially removed from 

the parameter estimation process, the names of these parameters being supplied in a 

“parameter type list file” (see documentation of PREDVAR4 for specifications of this file). 

This decrease in uncertainty accrued through acquiring perfect knowledge of the values of 

this group of parameters can be loosely described as the “contribution that this group of 

parameters makes to the uncertainty of the prediction”. Unlike PREDVAR4, PREDUNC4 

does not prompt for a singular value list file, for the means by which predictive uncertainty is 

calculated is the same as that employed by PREDUNC1, this not requiring that singular value 

decomposition of the weighted Jacobian matrix be undertaken. 

Refer to documentation of PREDVAR4 for usage details of PREDUNC4. In general, it is 

better to use PREDUNC4 than PREDVAR4 for assessment of parameter importance with 

respect to a particular prediction, as uncertainty is an easier and “more natural” quantity to 
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compute than error. 

10.14 PREDUNC5 

PREDUNC5 is to PREDUNC1 what PREDVAR5 is to PREDVAR1. That is, it computes 

alterations to the uncertainty of a prediction where groups of observations are sequentially 

added to, or subtracted from, the calibration dataset. The names of these observations are 

supplied in an “observation type list file”, specifications for which are supplied with 

documentation of PREDVAR5. Unlike PREDVAR5, PREDUNC5 does not prompt for the 

name of a singular value list file, for the means by which predictive uncertainty is calculated 

is the same as that employed by PREDUNC1, this not requiring that singular value 

decomposition of the weighted Jacobian matrix be undertaken. 

Refer to documentation of PREDVAR5 for usage details of PREDUNC5. In general, it is 

better to use PREDUNC5 than PREDVAR5 for assessment of data worth with respect to a 

particular prediction, as uncertainty is an easier and “more natural” quantity to compute than 

error. 

10.15 PREDUNC6 

PREDUNC6 performs a similar function to PREDUNC1 in that it computes pre- and post-

calibration predictive uncertainty. Unlike PREDUNC4 and PREDUNC5 however, it does not 

compute any “value-added” information such as contributions made to predictive uncertainty 

by different parameters, or alterations to predictive uncertainty promulgated through 

inclusion or exclusion of observations from the calibration process.  

In contrast to PREDUNC1, PREDUNC6 computes pre-and post-calibration uncertainties for 

multiple predictions. It records the outcomes of its calculations in a tabular data file that is 

readily amenable to processing using other software.  

Like PREDUNC1, PREDUNC6 issues the following prompts when it commences execution; 

typical responses are also shown. 

Enter name of PEST control file: case13.pst 

Enter observation reference variance: 1.0 

 

Enter name of parameter uncertainty file: param.unc 

As usual, a JCO file must exist to complement the PEST control file. For the above example 

this file would be named case13.jco. 

PREDUNC6’s next prompt is 

Enter name of predictive sensitivity JCO file:  

This file must be a Jacobian matrix file written by PEST. Hence it should contain the 

sensitivities of one or many “observations” which are cited in its complementary PEST 

control file to all adjustable parameters cited in that file. PREDUNC6 assumes that every 

“observation” is in fact a prediction whose uncertainty is to be computed. For this to be 

possible, the Jacobian matrix file should feature the same parameters as those that are 

featured in the PEST control file on which the inverse problem is based - that is the PEST 

control file whose name is supplied in response to the first of PREDUNC6’s prompts. 

However it does not matter if the predictive sensitivity JCO file features more parameters 

than this, or if the parameters are represented in a different order; PREDUNC6 will undertake 

the necessary adjustment and re-ordering of predictive sensitivity vectors. 
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Next PREDUNC6 prompts for the name of the file that it must write. 

Enter name for output uncertainty table file: 

Upon completion of PREDUNC6 execution, this file will contain a listing of all predictions 

named in the predictive sensitivity JCO file, together with the pre-calibration and post-

calibration uncertainty, and uncertainty variance, associated with each (the latter is the square 

of the former). 

PREDUNC6’s final prompt is 

Use which version of linear predictive uncertainty equation:- 

     if version optimized for small number of parameters   - enter 1 

     if version optimized for small number of observations - enter 2 

 Enter your choice:  

See documentation of PREDUNC1 for details of these options. If in doubt enter “1”. 

Note the following. 

1. Don’t forget the extremely useful JCO2JCO utility. This allows you to modify a 

PEST control file (for example by removing observations), and to then obtain a 

complementary JCO file. This can be very useful in constructing the predictive 

sensitivity JCO file required by PREDUNC6. 

2. Parameters cited in the PEST control file on which the predictive sensitivity JCO file 

is based must be logarithmically transformed (or not) in the same way as in the PEST 

control file which defines the inverse problem. Similarly, if a parameter is a parent 

parameter to tied parameters in the latter file, it must perform the same role in the 

former file. These measures ensure consistency of sensitivities. 

10.16 PREDUNC7 

The PREDUNC7 utility is similar to the PREDUNC1 utility. However instead of computing 

the uncertainty of a prediction, it computes the covariance matrix pertaining to the posterior 

parameter probability distribution. This can be computed in either of two ways. The first is 

through equation 7.3.15 of Doherty (2015) while the second is through equation 7.3.4 of 

Doherty (2015). Both equations compute the same thing; however the matrix manipulations 

are somewhat different. In theory, use of the second equation is slow if there are many 

observations while use of the first equation is slow if there are many parameters. In practice, 

because equation 7.3.4 involves a large number of matrix multiplications, its use can incur 

numerical errors where parameter numbers are large. In either case, calculation of the 

posterior covariance matrix can take a long time where parameter numbers are very high. 

PREDUNC7’s prompts are as follows. 

Enter name of PEST control file:  

Enter observation reference variance:  

 

Enter name of prior parameter uncertainty file:  

 

Enter name for posterior parameter covariance matrix file:  

Enter name for posterior parameter uncertainty file: 

 

Use which version of linear predictive uncertainty equation:- 

    if version optimized for small number of parameters   - enter 1 

    if version optimized for small number of observations - enter 2 

Enter your choice:  
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Option 1 uses equation 7.3.15 while option 2 uses equation 7.3.4 from Doherty (2015). If in 

doubt use option 1 (because it is less susceptible to numerical error). 

The covariance matrix computed by PREDUNC7 is written in PEST matrix file format to a 

file of your choice. Note that each row of the matrix wraps onto a new line after each 

succession of eight element values. The posterior parameter uncertainty file simply cites this 

matrix file within a COVARIANCE_MATRIX block. The posterior parameter uncertainty 

file can be used by programs such as RANDPAR to generate random samples from the 

posterior parameter probability distribution. 

In calculating C(ε) PEST divides weights provided in the “observation data” section of the 

PEST control file by the square root of the reference variance supplied in response to the 

second of the above prompts. The reference variance can be approximated as the objective 

function achieved or expected through calibration divided by the sum of non-zero-weighted 

observations. (It is not wise to include prior information in the PEST control file provided to 

PREDUNC7 - or to any other member of the PREDUNC suite - as expert parameter 

knowledge is accounted for in the prior parameter uncertainty file.) 

10.17 GENLINPRED 

10.17.1 General 

GENLINPRED stands for “generalized linear predictive uncertainty/error analyser”. It is 

actually a driver program which runs a number of other PEST utilities, these being 

SCALEPAR, JROW2VEC, SUPCALC, IDENTPAR, PREDUNC1, PREDUNC4, 

PREDUNC5, PREDVAR1, PREDVAR4 and PREDVAR5. As such, it carries out a variety 

of tasks related to assessment of the uncertainty and/or error variance of a parameter or 

prediction, collecting the information that it gathers into a single output file. Tables within 

this file are readily pasted into Microsoft EXCEL, or any other graphing program, for 

graphical analysis. 

Because it is a driver program, and because it therefore runs other programs to carry out 

various computational tasks, some of these tasks are repeated by the different programs (for 

example the task of undertaking singular value decomposition of a weighted sensitivity 

matrix). Thus, from a computational point of view, using GENLINPRED to conduct 

error/uncertainty analysis is inefficient. However from a user’s point of view its use can be 

efficient, for it performs a multitude of related tasks based on minimal user keyboard input 

and/or input file preparation. 

10.17.2 Tasks Carried out by GENLINPRED 

GENLINPRED carries out some or all (as requested by the user) of the following tasks. 

1. It optionally uses SUPCALC to compute the optimum dimensionality of the 

calibration solution and null spaces for a particular parameter estimation problem. 

2. On the basis of this subdivision (or using calibration solution and null space 

dimensionalities supplied by the user), it can compute the identifiability of each 

parameter (using the IDENTPAR utility) and the relative error variance reduction of 

each parameter (using PREDVAR1A). It can also compute the relative uncertainty 

variance reduction of each parameter using the PREDUNC1 utility; note that this 

latter quantity does not require subdivision of parameter space into solution and null 

subspaces (and is far quicker to calculate than relative error variance reduction). 



Linear  Error and Uncertainty – Part I 133 

 
 

3. If requested, GENLINPRED computes the solution space and null space components 

of the total error variance of a nominated prediction (which may in fact be the 

estimated value of a parameter) at different singular value truncation levels. This 

allows you to graph the dependence of these quantities on the number of pre-

truncation singular values employed in calibration of a model. It uses PREDVAR1A 

for this purpose. 

4. Pre- and post-calibration uncertainties of a nominated prediction can be computed 

using the PREDUNC1 utility.  

5. The contributions to the pre- and post-calibration error variance and/or uncertainty of 

a nominated prediction (or parameter) made by different parameter groups, or by 

different individual parameters, can be computed using the PREDVAR4 and/or 

PREDUNC4 utilities. 

6. The worth of different observation groups, or of different individual observations, in 

lowering the post-calibration error variance and/or uncertainty of a nominated 

prediction (or parameter) can be computed using PREDVAR5 and/or PREDUNC5 by 

selectively removing those observation (groups) from the total calibration dataset and 

monitoring the rise in predictive error variance (uncertainty variance) thereby 

incurred. 

7. The worth of different observation groups, or of different individual observations, in 

lowering the post-calibration error variance and/or uncertainty of a nominated 

prediction (or parameter) can be computed using PREDVAR5 and/or PREDUNC5 by 

selectively adding those observation (groups) to a null calibration dataset and 

monitoring the fall in predictive error variance (uncertainty variance) thereby accrued. 

All operations are carried out on a PEST input dataset supplied by the user. GENLINPRED 

internally modifies this dataset by scaling parameters by their pre-calibration variabilities. 

Where calibration is notionally, or actually, implemented using truncated singular value 

decomposition, this operation results in lower predictive error variance than where unscaled 

parameters are estimated through the inverse problem solution process. 

10.17.3 Predictive Error Variance and Predictive Uncertainty 

As is explained elsewhere in the present chapter, PREDVAR-suite utilities calculate the error 

variance of a particular prediction (which may also be a parameter), whereas PREDUNC-

suite utilities calculate the uncertainty of that prediction (or parameter). As is explained by 

Doherty (2015), uncertainty is an intrinsic quality of parameters and of the calibration 

dataset, and is obtained by conditioning a pre-calibration (i.e. prior) parameter uncertainty 

covariance matrix on the basis of observations comprising the calibration dataset. On the 

other hand, “error” is a concept that is associated with the notion of calibration, and 

quantifies the extent to which a prediction made by a calibrated model may be wrong. The 

PREDVAR utility suite notionally implements model calibration using truncated singular 

value decomposition as an inverse problem solution device; truncation takes place at that 

singular value at which the error variance of the prediction of interest is minimized. It can be 

shown that posterior predictive (or parameter) uncertainty is always less than posterior 

predictive (or parameter) error variance; see section 7.4.1.3 of Doherty (2015). 

It is important to note that even though GENLINPRED (and the utility programs that it runs) 

computes predictive uncertainty and predictive error variance, it does not actually make a 

prediction; nor does it calibrate a model. Its calculations are made on the basis of sensitivities 
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alone, and no parameter adjustment actually takes place. Moreover, a model does not need to 

be actually calibrated for GENLINPRED to be employed for calculation of quantities that are 

salient to model calibration, parameterisation, and predictive uncertainty analysis. 

Sensitivities calculated on the basis of current parameter values are employed, whether or not 

those parameter values result in a calibrated model. Naturally, the results of GENLINPRED 

analysis may show some degree of parameter-dependence for seriously nonlinear models 

where sensitivities are strong functions of parameter values. However experience has 

demonstrated that broad outcomes of linear analysis are robust on most occasions for most 

models. Thus, for example, if a particular parameter group is identified as making a large 

contribution to the uncertainty of a particular prediction relative to that made by other 

parameter groups on the basis of current parameter values, that conclusion is likely to be 

robust. However the actual number calculated for that contribution is likely to change with 

parameter values. 

10.17.4 The Prior Covariance Matrix 

As is discussed by Doherty (2015), highly-parameterized error/uncertainty analysis requires 

that the user provide a covariance matrix of innate parameter variability; this is referred to as 

the C(k) matrix in Doherty (2015) and in equations provided in this manual. This can also be 

viewed as a covariance matrix of pre-calibration parameter uncertainty. As such, this matrix 

provides a statistical encapsulation of what is known, and of what is unknown, about system 

properties before an attempt is made to refine that knowledge through matching model 

outputs to historical observations of system state. Lack of knowledge of system parameters is 

expressed by the fact that the C(k) matrix has non-zero diagonal elements, thereby 

demonstrating that parameter values are only approximately known. Knowledge is expressed 

by the fact that these diagonal elements are finite, and that non-zero off-diagonal elements 

may depict a propensity for spatial correlation of heterogeneous parameter fields. 

The C(k) matrix is supplied to GENLINPRED through a parameter uncertainty file. The 

format of this file is discussed in section 2.5 of this manual. This file can be easily prepared 

using a text editor. Where pilot points parameterisation is employed, assistance in its 

preparation can be obtained from the PARCOV utility and from the PPCOV family of 

utilities supplied with the PEST Groundwater Data Utilities suite. 

It is important to note that if a parameter is designated as log-transformed in the PEST control 

file supplied to GENLINPRED, its pre-calibration uncertainty, as provided in the uncertainty 

file, must pertain to the log (to base 10) of that parameter. 

10.17.5 Observations and Predictions 

Use of GENLINPRED requires that a PEST control file and corresponding JCO file be 

provided to it. The latter can be obtained from the former by running PEST with the 

NOPTMAX termination control variable set to -1 or -2. Observations cited within the 

“observation data” section of the PEST control file comprise the calibration dataset. These 

provide the basis for estimation of parameters through notional calibration implemented 

using truncated singular value decomposition by the PREDVAR suite of programs; at the 

same time, they provide the basis for conditioning of pre-calibration parameter uncertainties 

undertaken using the PREDUNC suite of programs. 

The prediction whose uncertainty and error variance is analysed by GENLINPRED can be 

any function of the adjustable parameters cited in the user-supplied PEST control file. For a 

linear model, this function is represented by its sensitivities to all adjustable parameters. 
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These sensitivities may be provided through a “sensitivity file”. This file must adopt PEST 

matrix file format – see section 2.4 of this manual; sensitivities must be provided as a vector, 

that is, as a matrix with one column and with one row for each adjustable parameter. 

Alternatively predictive sensitivities may comprise one row of a Jacobian matrix, either the 

Jacobian matrix that complements the PEST control file which defines the inverse problem, 

or another Jacobian matrix altogether that was produced on the basis of a PEST control file 

that was built specifically for obtaining the sensitivities of one or a number of predictions to 

the same adjustable parameters as those that are employed in the inversion process. A third 

possibility is that the “prediction” may actually be a parameter. In this case GENLINPRED 

writes the prediction sensitivity file itself; sensitivities of this prediction to all parameters, 

except for the one in question, are zero. 

A particularly easy way to implement predictive error and uncertainty analysis is to build a 

PEST control file that includes not only observations that are employed in the calibration 

process, but also one or a number of predictions that are to be subjected to error/uncertainty 

analysis. When PEST is then run with NOPTMAX set to -1 or -2, sensitivities of these 

predictions to all adjustable parameters are automatically computed, along with the 

sensitivities of observations comprising the calibration dataset. If the “prediction 

observations” are assigned weights of zero, they do not actually take part in the inversion 

process; they are simply “carried” in that process for the purpose of obtaining sensitivities. 

When using GENLINPRED, the user then informs it that predictive sensitivities reside in the 

JCO file that complements the PEST control file that is supplied to it. 

10.17.6 Making GENLINPRED Easier to Use  

As it requires more information than can be provided through the command line, 

GENLINPRED gathers information from the user through the user’s responses to a series of 

prompts. Unfortunately GENLINPRED issues many prompts, and it is easy to make a 

mistake in responding to one of them. Because of this, GENLINPRED provides backtracking 

capabilities. If you respond to any prompt by simply pressing “e” (for “escape”) followed by 

<Enter>, GENLINPRED will take you back to its previous prompt so that you may provide 

an alternative response to this prompt if you wish. This process can continue right back to 

GENLINPRED’s first prompt. 

In order to reduce the need to provide responses for a large number of prompts, 

GENLINPRED provides you with two options for prompt sequences. As will be seen shortly, 

through one of its early prompts GENLINPRED provides you with the option of receiving an 

abbreviated set of prompts. If this option is selected, GENLINPRED does not ask whether 

you wish to undertake parameter estimability analysis; instead it assumes that this is not 

required. Furthermore, when undertaking parameter/predictive error/uncertainty analysis, no 

prompts are in fact issued for error analysis, so that only uncertainty analysis is undertaken. 

As a further means of enhancing ease of use, a default response is provided for most of 

GENLINPRED’s prompts; by pressing the <Enter> key, the default is accepted. You should 

note, however, that while responding with a simple press of the <Enter> key may be the 

easiest way to respond to a prompt, it is not always the correct way. This applies in particular 

to prompts regarding observation weights and the use of parameter bounds as measures of 

pre-calibration parameter uncertainty. 

As a final means to expedite GENLINPRED user interaction, GENLINPRED writes an 

optional “response file”. This records your responses to each of its prompts. Suppose that this 

file is named genlinpred.rsp (it is your choice). Then after it has been run on the basis of 
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keyboard input supplied by you in response to each of its individual prompts, GENLINPRED 

can then be run again using the command 

genlinpred < genlinpred.rsp 

to produce identical output. Alternatively, one or more responses to GENLINPRED’s 

prompts can be altered through editing of this file before issuing the above command. 

Because GENLINPRED labels its prompts when writing the response file (see the figure 

below) this is easy to do. However if you do this, it is important to note the following. 

1. The number and nature of GENLINPRED’s prompts depend on answers to previous 

prompts. Hence if, for example, you alter a “y” to a “n” in the response file, this may 

invalidate the file, as the ensuing questions may be different, or may not be asked at 

all. However responses to prompts for items such as filenames, number of singular 

values, the name of a prediction or parameter etc., can be altered with impunity. 

2. When reading its response file, GENLINPRED ignores all characters following the 

“!” character. This character should not be removed from any line of the file. 

However it, together with ensuing text, can be moved to the right to make room for a 

longer response to a particular prompt (this will apply only to filenames) if this is 

required. 

! GENLINPRED response file. Beware of altering single letter responses as ensuing GENLINPRED 

prompts may be different 

f                     ! abbreviated or full input? 

temp1.pst             ! PEST control file 

b                     ! bounds or uncertainty file for parameter uncertainties? 

y                     ! are weights the inverse of measurement uncertainty? 

genlinpred.out        ! GENLINPRED output file 

y                     ! perform global parameter estimability analysis? 

y                     ! compute parameter identifiabilities? 

y                     ! compute relative parameter error reduction? 

y                     ! use SUPCALC to estimate solution space dimensionality? 

y                     ! compute relative parameter uncertainty reduction? 

y                     ! perform comprehensive analysis of prediction or parameter? 

ar10                  ! name of prediction or parameter to analyse 

ar10.vec              ! file to read predictive sensitivities or "p" for parameter 

y                     ! compute solution/null space contributions to predictive error? 

y                     ! compute predictive uncertainty? 

y                     ! compute parameter contributions to parameter or predictive error? 

y                     ! compute parameter contributions to uncertainty? 

g                     ! for individual parameters or parameter groups? 

y                     ! compute observation worth with respect to error? 

y                     ! compute observation worth with respect to uncertainty? 

g                     ! for individual observations or for observation groups? 

y                     ! over-ride SUPCALC calculation of solution space dimensions? 

e                     ! escape 

y                     ! over-ride SUPCALC calculation of solution space dimensions? 

7                     ! new solution space dimensions 

Figure 10.8 Example of a GENLINPRED response file. 

10.17.7 Using GENLINPRED 

Because GENLINPRED runs other programs of the PEST suite, it is important to ensure that 

the executable files for these programs reside in a directory that is cited in the PATH 

environment variable. 

GENLINPRED begins execution with the prompt 

Enter name of response file (<Enter> if none): 

In response to this prompt, provide the name of the file to which ensuing GENLINPRED 

prompts, together with your responses to these prompts, will be recorded. Alternatively 

simply press the <Enter> key. Next GENLINPRED asks 
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Use abbreviated or full input? [a/f] (<Enter if “f”): 

If the “a” option is chosen, a subset of the following set of prompts will be offered, as was 

mentioned above. 

Having dealt with the preliminaries, GENLINPRED now gets down to business. It asks 

Enter name of PEST control file: 

Supply the name of a PEST control file which meets the following specifications. 

1. It must contain no prior information. 

2. It must instruct PEST to run in “estimation” mode. 

3. A JCO file corresponding to this file must be present in the same directory as that in 

which the PEST control file resides. 

If any of these conditions are violated GENLINPRED will cease execution with an 

appropriate error message. 

GENLINPRED next asks for a C(k) matrix. Two options are available, as evinced by the 

following prompt. 

Use bounds or uncert file for param uncertainties  [b/u] <Enter> if "b": 

If you respond with “b”, GENLINPRED builds a C(k) matrix itself, this being a diagonal 

matrix which thereby assumes statistical independence of all adjustable parameters. The 

standard deviation of each parameter is obtained by dividing the difference between its upper 

and lower bounds (as represented in the PEST control file) by 4, this strategy being based on 

the assumptions that 

1. parameters are normally distributed, and 

2. their upper and lower bounds approximately demarcate their 95% confidence 

intervals. 

On the other hand, if your response to the above prompt is “u”, GENLINPRED prompts for 

the name of an uncertainty file. The prompt is 

Enter name of parameter uncertainty file: 

Calculation of predictive error/uncertainty requires knowledge of the statistics of 

measurement noise. GENLINPRED assumes that the weight provided for each observation in 

the PEST control file is inversely proportional to the uncertainty associated with each field 

measurement. First it asks 

Are weights the inverse of measurement uncertainty?  [y/n] <Enter> if "y":  

A response of “y” signifies a proportionality constant of 1.0. However, if your response to the 

above prompt is “n”, GENLINPRED asks 

Enter factor for weights to make this so: 

Provide a factor here by which all weights should be multiplied in order for the inverse of 

each of them to thereby equal the uncertainty associated with the measurement to which it is 

assigned. The square of this factor will also be applied to the inverse of any observation 

covariance matrices supplied in the “observation groups” section of the PEST control file. 

Conceptually, weights are equal to the inverse of measurement uncertainties when the 

calibration objective function is roughly equal to the number of non-zero-weighted 

observations comprising the calibration dataset (for then each squared weighted residual is, 
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on average, approximately equal to 1.0). Practically, however, weights supplied to 

GENLINPRED may need to be lower than this (suggesting higher measurement noise), to 

account for the fact that the presence of structural error within the measurement dataset 

(which always shows a high degree of temporal and/or spatial correlation) diminishes its 

information content to a greater degree than the presence of noise which shows little or no 

spatial/temporal correlation. This is further discussed below. 

The easiest way to ensure that weights are at least approximately equal to 

measurement/structural uncertainty (so that a response of “y” can be provided for the above 

prompt) is to use the PWTADJ2 utility. This builds a PEST control file in which weights are 

calculated to be commensurate with misfit attained through a previous calibration exercise. 

Next GENLINPRED prompts for the name of its output file. This is the file to which the 

outcomes of all of GENLINPRED’s analyses will be written. The prompt is 

Enter name for output file (<Enter> if genlinpred.out): 

GENLINPRED’s next prompt is 

Perform global parameter estimability analysis? [y/n] <Enter> if "n": 

This type of analysis pertains only to parameters. If the response to the above prompt is “y” 

you are given the option of undertaking the following types of analysis. 

Compute parameter identifiabilities? [y/n] <Enter> if "y": 

Compute relative parameter error reduction? [y/n] <Enter> if "n": 

Use SUPCALC to estimate soln space dimensions? [y/n] <Enter> if "y": 

Compute relative parameter uncertainty reduction? [y/n] <Enter> if "n": 

Note that the third of the above questions is asked only if the response to either of the first 

two prompts is “y”, for calculation of both parameter identifiability and relative parameter 

error reduction requires knowledge of the dimensions of the calibration solution (and hence 

null) spaces. These can be evaluated by SUPCALC; if so, you have the ability to over-ride 

SUPCALC’s calculations (see below). Alternatively, you may supply the dimensions of the 

calibration solution space yourself and dispense with the running of SUPCALC altogether. 

Hence if the response to the third of the above prompts is “n”, GENLINPRED asks 

Enter solution space dimensionality: 

in response to which a number greater than zero and less than or equal to the number of 

adjustable parameters and/or observations featured in the PEST control file must be supplied. 

GENLINPRED’s next prompt is 

Perform comprehensive analysis of a prediction/param? [y/n] <Enter> if "y": 

If the response to this prompt is “n”, GENLINPRED commences work (see below). 

Alternatively, if the response to this prompt is “y”, GENLINPRED then inquires 

Enter name of prediction/parameter to analyse: 

If the name of a prediction is supplied in response to the above prompt, GENLINPRED asks: 

Enter file to read its sensitivities ["p" if a parameter]: 

If you wish to analyse the error/uncertainty of a particular parameter as if it were a prediction, 

then that parameter’s name should be provided in response to the preceding prompt. The fact 

that this is a parameter must then be indicated by responding to the current prompt with “p”. 

Otherwise, provide the name of the file in which the sensitivities of the prediction to all 

adjustable parameters featured in the inverse problem can be found. If the extension of the 

supplied filename is “.jco”, GENLINPRED assumes that the file is a JCO file; it will then use 
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the JROW2VEC utility to extract sensitivities from the pertinent row of this file, re-writing 

these in PEST matrix file format. Alternatively, if any other filename extension is supplied, 

GENLINPRED will assume that the predictive sensitivity file is already in PEST matrix file 

format, with sensitivities recorded as a vector, i.e. as a matrix with a single column.  

You are then presented with options for prediction/parameter analysis. These commence with 

Compute total predictive error and soln/null space contribs?  [y/n]:  

Compute total predictive uncertainty?  [y/n]:  

An affirmative response to the first of the above prompts will result in GENLINPRED 

running PREDVAR1 to compute predictive error variance at many different singular value 

truncation levels, this providing the information through which graphs of solution and null 

space contributions to predictive error variance versus number of singular values used in 

estimation of parameters may be computed. An affirmative response to the second of the 

above prompts will cause GENLINPRED to employ PREDUNC1 to compute the pre- and 

post-calibration uncertainties of the chosen prediction or parameter. 

GENLINPRED then asks 

Compute parameter contributions to error? [y/n] <Enter> if "n":  

Compute parameter contributions to uncertainty? [y/n] <Enter> if "y": 

and, if the response to either of the above prompts is “y”, 

For indiv parameters or for parameter groups? [i/g] <Enter> if "g": 

PREDVAR4 and PREDUNC4 are employed for calculation of parameter contributions to 

predictive error and uncertainty variance respectively. Contributions can be calculated for 

either individual parameters or for groups of parameters. The latter is recommended, for the 

former may take a long time. The names of parameter groups are read from the “parameter 

groups” section of the PEST control file; the group to which each parameter belongs is cited 

in the “parameter data” section of the PEST control file. Note that if a parameter group 

contains no adjustable parameters, it is not featured in GENLINPRED’s analysis. Note also 

that calculation of contributions to uncertainty is a far less numerically intensive procedure 

than calculation of contributions to error as the latter requires calculation of error variance at 

many different singular values so that it can be minimized; also uncertainty is a more 

“natural” concept than error.  

Next GENLINPRED asks 

Compute observation worth wrt error? [y/n] <Enter> if "n":  

Compute observation worth wrt uncertainty? [y/n] <Enter> if "y":  

and, if the response to either of the above prompts is “y”: 

For indiv observations or for observation groups? [i/g] <Enter> if "g": 

PREDVAR5 and PREDUNC5 are employed for calculation of the worth of individual 

observations, or groups of observations. The option to compute worth of groups of 

observations or individual observations is selected in response to the last of the above 

prompts; the “groups” option is recommended as the “individual” option may require too 

much computation. Two means of calculating observation worth are provided by 

PREDVAR5 and PREDUNC5; GENLINPRED uses both of these. One method is to compute 

the increase in predictive error/uncertainty accrued through omitting the nominated 

observation (group) from the calibration dataset; the other is to compute the decrease in pre-

calibration error/uncertainty incurred through having that observation (group) as the sole 

member of the calibration dataset. Note that calculation of worth with respect to uncertainty 
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is a far less numerically intensive procedure than calculation of worth with respect to error; 

also uncertainty is a more “natural” concept than error. 

GENLINPRED then gets down to work. Regardless of your selected processing options, 

GENLINPRED first runs SCALEPAR to create a PEST input dataset based on scaled 

parameters. Then it may run SUPCALC to compute an appropriate dimensionality for the 

calibration solution and null spaces. If so, it writes the outcome of this calculation to the 

screen and asks whether you would like to accept this, or override it. The prompt is 

SUPCALC has recommended the use of N solution space dimensions 

 for computation of parameter identifiability and relative 

 error reduction. 

Do you wish to over-ride this? [y/n] <Enter> if "n": 

If your response is “y”, an appropriate solution space dimensionality must be provided (in 

response to a GENLINPRED prompt requesting this); this is further discussed below. Note 

that the dimensionality of the solution and null spaces only features in computation of 

identifiability and relative parameter error reduction. Computation of relative parameter 

uncertainty reduction, and of all prediction-related quantities, is independent of this choice. 

Where uncertainty analysis is undertaken (by PREDUNC-suite programs) no formal 

subdivision of parameter space into solution and null spaces is required. In contrast, where 

error variance analysis is undertaken (by members of the PREDVAR suite), the predictive 

error variance is minimised with respect to singular value number on each occasion that 

predictive error variance is calculated; this can be a numerically intensive procedure. 

10.17.8 Error and Uncertainty Tables 

An inspection of tables produced by GENLINPRED may reveal the following. 

1. Predictive error variance is greater than predictive uncertainty variance. (This is in 

harmony with theory; see section 7.4.1.3 of Doherty, 2015.) 

2. Some parameter contributions to predictive error variance can be slightly negative. 

3. The worth of some observations, as assessed through their ability to lower predictive 

error variance, can be slightly negative. 

Unfortunately, analysis of predictive error is not as “clean” as that of predictive uncertainty. 

It is a “granular” procedure as it depends on a (necessarily discontinuous) number of singular 

values employed in the notional truncated singular value decomposition calibration exercise 

through which it is assessed. Furthermore, it is not a Bayesian procedure; error limits are less 

statistically efficient than are uncertainty limits. Nevertheless, it imitates what happens in 

practice where a model is normally calibrated first and then used as a basis for predictive 

error analysis in lieu of predictive uncertainty analysis because implementation of Bayesian 

analysis in conjunction with highly-parameterized nonlinear models is a task that can attract 

an overwhelming numerical burden. In the linear context, however, things are different, for in 

this context parameter and predictive uncertainties can be calculated relatively easily 

(provided the Gaussian assumption is valid). Hence the outcomes of uncertainty analysis 

should be used in preference to the outcomes of error analysis when assessing parameter 

importance and observation worth. 

10.17.9 Identifiability 

Computation of parameter identifiability requires that an estimate be provided of the 

dimensionality of the calibration solution and null spaces. SUPCALC provides such an 
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estimate. However its estimate is approximate, with a tendency for it to err on the side of too 

large a solution space dimensionality, and too small a null space dimensionality. The reason 

for this is that in most calibration contexts the bulk of “measurement noise” is in fact 

structural noise. Unfortunately this has a spatial and temporal correlation structure that 

SUPCALC (or anything else for that matter) cannot properly take into account. This 

diminishes the information content of the calibration dataset, or at least the information that 

can be transferred to model parameters. This, in turn, expands the null space to a higher 

dimensionality than that calculated by SUPCALC under the assumption of limited 

measurement noise correlation (an assumption that is implied in the use of weights for 

observations rather than a covariance matrix). Hence there may be occasions when you 

should over-ride SUPCALC’s estimate of the dimensionality of the calibration solution and 

null spaces with a smaller estimate of the former (and thereby a larger estimate of the latter). 

10.17.10 Pre- and Post-Calibration Parameter Contributions to Error/Uncertainty 

Based on its running of PREDVAR4 and PREDUNC4, GENLINPRED tabulates pre- and 

post-calibration contributions to predictive error/uncertainty made by different parameter 

groups (or by individual parameters). Bar charts which depict these quantities are very 

informative, for they convey to the user (amongst other things) 

1. the effectiveness (or otherwise) of the calibration process in reducing the 

contributions that different parameter types make to the errors/uncertainties of critical 

predictions required of a model; and 

2. the parameter types that still contribute significantly to these errors/uncertainties, even 

after the model has been calibrated. 

Plots such as these will often reveal that the post-calibration contribution that a parameter 

makes to the error/uncertainty of a prediction of interest is greater than its pre-calibration 

contribution. This enigmatic occurrence is an outcome of the definition of “contribution to 

error/uncertainty” made by a particular parameter (or parameter group). This is defined as the 

decrease in error/uncertainty of the prediction of interest accrued through gaining perfect 

knowledge of the parameter in question (or of all parameters within a defined parameter 

group).  

Prior to calibration, the uncertainty of a particular prediction may have no relation to that of a 

certain parameter (or group of parameters), because the prediction may be insensitive to that 

parameter (or group of parameters). However that prediction may be sensitive to one or more 

parameters with which the first parameter (or group of parameters) becomes correlated 

through the parameter estimation process. This means that perfect knowledge of the first 

parameter (group) allows better estimation of the second parameter (group) to take place 

through the model calibration process; hence acquisition of better knowledge of the first 

parameter (group) reduces the uncertainty of the prediction of interest, notwithstanding the 

fact that this prediction is insensitive to it. The post-calibration “contribution” made by 

members of the first parameter (group) to the uncertainty of the prediction of interest may 

therefore be significant, even though it only influences this prediction indirectly through 

calibration-induced parameter correlation. 

10.17.11 PREDUNC Uncertainty Formulation 

As documented in descriptions of PREDUNC1, PREDUNC4 and PREDUNC5, these 

programs provide two different options for computation of predictive uncertainty and of 

quantities which depend on this. One of these options is better used where parameter numbers 
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are small while the other is more efficient where observation numbers are small. 

GENLINPRED chooses the “efficient if low parameter numbers” option if the number of 

adjustable parameters in the PEST control file is less than the number of adjustable 

observations, and chooses the “efficient if low observation numbers” option otherwise. 

Nevertheless where both observation and parameter numbers are high, the run times 

associated with PREDUNC-suite programs, and hence with GENLINPRED, may be high. 

Furthermore, there may be some occasions where use of one of these equations (particularly 

the low observation number option) can induce numerical errors due to the large number of 

matrix operations involved. Contact me if GENLINPRED computes obviously erroneous 

quantities such as negative uncertainties and negative parameter contributions to predictive 

uncertainty and I will alter GENLINPRED’s internal settings to alter its choice of equation. 

10.17.12 Flexibility 

As discussed above, GENLINPRED performs a variety of analyses, with the user having 

many choices over the analyses that are actually undertaken on any given run. Should further 

choices be required, or should numerical error arise because of inappropriate choice of the 

PREDUNC uncertainty equation, you should run the programs that GENLINPRED runs 

yourself (that is, members of the PREDVAR and PREDUNC suites), in order to undertake 

the various types of analysis provided individually by each of the members of these utility 

suites. (Note that there is nothing to be gained by running SCALEPAR prior to running a 

PREDUNC-suite program.) 
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11. Linear Error and Uncertainty – Part II 

11.1 Introduction 

11.1.1 General 

The utility programs that are documented in this chapter are older than those documented in 

the previous chapter. Many have not been used for a while, and they have not been upgraded 

over time as other utilities, and PEST itself, have been updated. Nevertheless they all still 

work, and some users may find them helpful. They focus on parameter and predictive error 

rather than uncertainty. They rely on information forthcoming from a PEST run in which a 

model was actually calibrated. Their analyses are therefore somewhat less general in nature 

than those presented in the previous chapter.  

11.1.2 Concepts 

Post-Calibration Parameter and Predictive Error 

Let k represent parameters employed by a model. Let k represent the parameter set achieved 

through model calibration. From equation (5.5.10) of Doherty (2015) the covariance matrix 

of post-calibration parameter error is calculated as 

C(k - k) = (I - R)C(k)(I - R)t + GC()Gt     (11.1.1) 

where 

k represents “true” model parameters (which are unknown); 

k represents calibrated model parameters; 

C(k) represents the prior parameter covariance matrix, this describing the innate 

variability of real-world parameters; 

C() represents the covariance matrix of measurement/structural noise, mostly 

assumed to be diagonal; 

R is the so-called “resolution matrix”; and  

G is the matrix through which estimated parameter values (i.e. the elements of 

k) are calculated from measurements (which are denoted as h in Doherty, 

2015); G is referred to herein as the “parameter solution matrix”, or more 

simply as the “G matrix”. 

R is related to G through the equation 

 R = GZ         (11.1.2) 

where Z specifies the relationship between model parameters and model outputs used in the 

calibration process (see equation 10.3.6). 

Let s be a model prediction whose sensitivities to model parameters are encapsulated in the 

vector y. For a linear model, the “true” value of a model prediction is given by 

 s = ytk          (11.1.3a) 

while its counterpart as calculated by the calibrated model is 

 s = ytk          (11.1.3b) 
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Model predictive error is then obtained as 

 s – s = yt(k - k) = -yt(I – R)k + ytG      (11.1.4) 

while model predictive error variance (i.e. the “variance of potential wrongness” of a 

prediction made by a calibrated model) is given by 

 2
s-s = yt(I – R)C(k)(I – R)ty + ytGC(ε)Gty     (11.1.5) 

Note that while derivation of these equations rests on an assumption of model linearity, they 

are nevertheless approximately correct when applied to many nonlinear models. With some 

modifications, they can also be used as a basis for nonlinear analysis; PEST’s null space 

Monte Carlo methodology rests on equation (11.1.1). 

Calculation of the R and G Matrices 

Formulas for R and G featured in the above equations depend on the method used by PEST 

to solve the inverse problem. For an overdetermined system, for which the regularisation 

opportunities offered by truncated singular value decomposition and Tikhonov schemes are 

not required, the resolution matrix R is simply I, the identity matrix. However in many real 

world cases, barely overdetermined problems are rescued from numerical instability through 

PEST’s use of a high-valued Marquardt lambda (which is a de-facto Tikhonov regularisation 

device). Even where mathematical regularisation is formally introduced to a real world 

problem, it is often insufficient to guarantee unequivocal numerical stability of solution of 

that problem; hence PEST will often respond by raising the value of the Marquardt lambda, 

this allow progress in solution of an inverse problem to be made when it may otherwise 

founder.  

The role of the Marquardt lambda in calculation of the R and G matrices is recognised in the 

utility software described in the present chapter. It must be noted, however, that the 

Marquardt lambda is not a very good regularisation device; in many cases it can lead to 

inverse problem solutions which are not of minimised error variance, at the same time as it 

can lead to distortion of the resolution matrix. Hence, whether using one of the specialist 

regularisation devices offered by PEST to assist in solution of an inverse problem, or whether 

using manual regularisation to promulgate inverse-problem well-posedness, attempts should 

be made to keep the Marquardt lambda low. 

Formulas used for calculation of R and G are now provided. Variables appearing in these 

formulas are as follows. 

Z This is the Jacobian matrix, which is a linearization of the relationship between 

model parameters and model outputs used in the calibration process. Each row 

of the Jacobian matrix provides derivatives of a particular model outcome for 

which there is a complementary field measurement with respect to all 

adjustable parameters. If a parameter is log-transformed, pertinent elements of 

Z pertain to the log of that parameter. Note that for SVD-assisted inversion the 

Z matrix refers to base parameters, not super parameters in the equations 

below. 

X This is the super-parameter Jacobian matrix whose elements are derivatives of 

model outcomes with respect to super parameters estimated through SVD-

assisted inversion. 

  The PEST-calculated Marquardt lambda. 
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T The matrix of Tikhonov regularisation constraints. These constraints are 

assumed to be of the form Tk = 0. 

S  The relative regularisation weight matrix (calculated from user-supplied 

regularisation weights and/or user-supplied regularisation covariance 

matrices). 

2
 The PEST-calculated regularisation weight factor.  

h The set of observations which constitute the calibration dataset.  featured in 

equations 11.1.1, 11.1.4 and 11.1.5 is the “noise” or “measurement error” 

associated with these observations. 

Q The observation weight matrix (calculated from user-supplied weights and 

measurement covariance matrices). 

V The matrix whose columns are orthogonal unit eigenvectors of ZtQZ (and 

hence of Q1/2Z) as calculated through singular value decomposition 

undertaken either during every iteration of the parameter estimation process 

(when this is achieved through truncated singular value decomposition), or at 

the beginning of the inversion process for determination of super parameters 

(if using SVD-assisted parameter estimation). 

E A diagonal matrix whose elements are the eigenvalues of ZtQZ (arranged in 

decreasing order) determined through singular value decomposition. The 

singular values of Q1/2Z are the square roots of these. 

V1 The first k columns of V, where k is the singular value truncation limit, or the 

number of super parameters employed in SVD-assisted parameter estimation. 

E1 A diagonal matrix whose elements are the first k eigenvalues of ZtQZ. 

The utility software described below through which R and G can be calculated employs the Z 

(or X in the case of SVD-assisted inversion) matrix corresponding to the best parameter set 

achieved through the parameter estimation process. This is stored in file case.jco where case 

is the filename base of the PEST control file. Like case.rsd (see below) and case.par (the 

parameter value file), case.jco is updated by PEST whenever an improved parameter set is 

obtained. The Z matrix used by SVD-assist, however, is not updated through the parameter 

estimation process. The utility software documented below provides the user with the option 

of using the Z matrix computed during the pre-SVD-assist base parameter sensitivity run, or 

of using a new Z matrix computed using optimised parameters; if possible, it is better to use 

the latter. 

Formulas through which R and G are calculated for different regularisation methodologies 

used to solve the inverse problem are now presented. (Note that the use of LSQR in solution 

of the inverse problem is not accommodated by the utility programs discussed in this 

chapter.) 

Overdetermined Parameter Estimation (with no Regularisation) 

 R = (ZtQZ + I)-1ZtQZ       (11.1.6a) 

 G = (ZtQZ + I)-1ZtQ        (11.1.6b) 
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Tikhonov Regularisation 

 R = (ZtQZ + 2TtST + I)-1ZtQZ      (11.1.7a) 

 G = (ZtQZ + 2TtST + I)-1ZtQ      (11.1.7b) 

Singular Value Decomposition with Zero Marquardt Lambda 

 R = V1V1
t         (11.1.8a) 

 G = V1E1
-1V1

tZtQ        (11.1.8b) 

SVD-Assist  

 R = V1(X
tQX + 2TtST + I)-1XtQZ      (11.1.9a) 

 G = V1(X
tQX + 2TtST + I)-1XtQ      (11.1.9b) 

The following should be noted. 

1. PEST allows various combinations of different regularisation schemes to be used in 

estimating parameter values. For example a non-zero Marquardt lambda can be used 

with truncated SVD, truncated SVD can be used as a matrix equation solution scheme 

in SVD-assisted parameter estimation, SVD-assist can be implemented with or 

without Tikhonov regularisation, etc. All of these (and other) permutations can be 

accommodated in the software described in this chapter. 

2. Where some parameters are log-transformed, the pertinent elements of the R and G 

matrices calculated through the above equations pertain to the logs of these 

parameters. 

3. Where SVD-assisted parameter estimation is undertaken, the R and G matrices 

pertain to base parameters (or their logs), as used by the model – not the super 

parameters used by PEST in the SVD-assisted inversion process. 

11.1.3 Some Special Considerations 

Regularisation Relationships 

As mentioned above, where Tikhonov regularisation is employed it is assumed to be of the 

type 

 Tk = 0          (11.1.10) 

In PEST, regularisation can be linear (supplied through prior information equations), or 

nonlinear (supplied as observations). In both cases these are identified as regularisation 

relationships through being assigned to an observation group whose name begins with 

“regul”. However PEST also allows regularisation relationships of the following type to be 

supplied 

 Tk = j          (11.1.11) 

Calculation of the resolution matrix, as implemented in the utility software described below, 

cannot accommodate relationships of the type expressed by equation 11.1.11. In most cases, 

equation 11.1.11 can be transformed to equation 11.1.10 by appropriate parameter re-

definition. 
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Initial Parameter Values 

When using truncated singular value decomposition or SVD-assisted inversion, the integrity 

of the predictive error variance analysis process requires that initial parameter estimates 

(provided in the “parameter data” section of the PEST control file) correspond to most likely 

parameters according to a user’s concept of parameter likelihood based on the current 

modelling context and the characteristics of the modelled area. That is, they constitute 

“minimum error variance” estimates of parameter values based on expert knowledge alone. 

The Z Matrix in SVD-Assisted Inversion 

As mentioned above, the Z matrix appearing in equation 11.1.9a provides the sensitivities of 

model outputs for which there are corresponding field measurements to base parameters. In 

SVD-assisted inversion these can far outnumber super parameters; computation of the Z 

matrix can therefore be costly. Nevertheless, as described in part I of this manual, this matrix 

must be calculated (based on initial parameter values) prior to undertaking SVD-assisted 

inversion, and so should be available for calculation of the resolution matrix upon completion 

of the SVD-assisted parameter estimation process. A better matrix to use in equation 11.1.9a 

however is a Z matrix calculated on the basis of optimised parameter values. Thus, after an 

SVD-assisted PEST run is complete, the PARREP utility can be used to build a new base 

PEST control file using optimised base parameter values. NOPTMAX can be set to -1 or -2 

in this new file so that when PEST is run, it terminates execution as soon as the Jacobian 

matrix is filled. The resulting JCO file will then hold the Z matrix of base parameter 

sensitivities, calculated using optimised parameter values. 

11.1.4 PEST Requirements 

The IRES Variable 

As part of its normal suite of output files, PEST writes a “resolution data file” named case.rsd 

where case is the filename base of the PEST control file. If desired, writing of this file can be 

enabled or suppressed using the IRES variable featured on the last line of the “control data” 

section of the PEST control file. If IRES is omitted, its value is assumed to be one if PEST is 

run in “regularisation” mode and/or if PEST’s singular value decomposition or SVD-assist 

functionality is activated, thus ensuring that file case.rsd is written. However if IRES is set to 

zero, writing of case.rsd is suppressed. (It is automatically set to zero if PEST is run in 

“predictive analysis” mode.)  

The Resolution Data File 

The resolution data file case.rsd is a binary file whose contents cannot be read by the user. 

Instead it is used by the RESPROC utility described below for calculation of the R and G 

matrices of equations 11.1.6 to 11.1.9. 

Upon commencement of execution, PEST deletes an existing resolution data file having the 

same filename base as that of the current PEST control file if such a file is found. This 

eliminates the possibility that an old file will be mistaken for a new one if PEST did not run 

long enough to produce this file, or if IRES was inadvertently set to zero. 

PEST updates the resolution data file many times during the course of the parameter 

estimation process such that data contained within it always pertains to the best parameters 

achieved so far during that process; it is thus overwritten whenever the estimated parameter 

set is improved. 
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11.1.5 Program Versions 

At the time of writing only 32 bit versions of the utility programs documented in the present 

chapter are available. Hence they may not work for inversion problems which involve high 

numbers of parameters and high numbers of observations. Contact me for a 64 bit version of 

any of these utilities if you need them. 

11.2 RESPROC 

11.2.1 General 

RESPROC stands for “resolution data postprocessor”. It is designed to be used after 

completion of a PEST run. Normally PEST will have been run in “regularisation” mode, or 

with SVDMODE set to 1, will have undertaken SVD-assisted inversion, or will have 

implemented all of these aspects of its inversion functionality. However RESPROC can also 

provide useful results after PEST has been run in “estimation” mode without the use of any 

regularisation device (except the Marquardt lambda). In all cases a “resolution data file” 

(named case.rsd where case is the filename base of the PEST control file) must have been 

produced on that PEST run. 

RESPROC’s task is to write a file containing both the R and G matrices pertaining to the 

previous PEST run. These can then be used by utility programs documented below for 

calculation of parameter and predictive error variances. In order to save disk space, 

RESPROC writes the R and G matrices to binary files; however these matrices can be 

rewritten in ASCII form if desired using the RESWRIT utility described below.  

11.2.2 What RESPROC Does 

RESPROC reads the following files, all associated with an existing PEST dataset 

characterised by the case filename base: 

1. a PEST control file (named case.pst); 

2. a resolution data file (named case.rsd); 

3. a Jacobian matrix file (named case.jco). 

Note that at any stage of the parameter estimation process the contents of the latter two files 

pertain to the best parameters achieved up to that stage of the process. 

If the previous PEST run implemented SVD-assisted parameter estimation, the following 

files are also read by RESPROC. 

1. the base PEST control file in which base parameters are defined (named bcase.pst for 

present purposes); 

2. the base Jacobian matrix file in which base parameter sensitivities are recorded 

(named bcase.jco); 

3. optionally, an updated JCO file in which base sensitivities are recorded for optimised 

base parameter values. 

Where many parameters and observations are involved in the inversion process, RESPROC 

may take a while to run, for the matrices that must be manipulated in the formulation of R 

and G can be large. Fortunately, it need only be run once, for these matrices, once calculated, 

can then be used for computation of the error variance of a variety of model predictions. 
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As presently programmed there is a slight restriction on the use of RESPROC, which it is 

hoped will not limit its usefulness too much. RESPROC insists that no covariance matrix in 

lieu of observation weights be used for observation groups pertaining to measurements; 

however it will accept the use of a covariance matrix for an observation group containing 

regularisation information. 

11.2.3 Running RESPROC 

RESPROC is run using the command 

resproc case outfile [/(n)L] 

where 

case  is the filename base of the PEST control file pertaining to a completed 

PEST run, and  

outfile  is the name of the RESPROC output file containing the R and G matrices. 

(This file is referred to herein as a “binary resolution matrix file”.) 

Optionally a switch can accompany command line arguments. This can be supplied “/L” or 

“/nL”. If the “/L” switch is used, then formulas 11.1.6 to 11.1.9 are used in calculation of R 

and G as shown. If the “/nL” switch is employed then the Marquardt lambda is set to zero for 

the purpose of calculating R and G. If this switch is omitted, “/L” is assumed. 

As it executes, RESPROC writes its current activities to the screen. As discussed above, these 

activities involve manipulation of possibly large matrices. They also involve matrix inversion 

and possibly singular value decomposition (which will need to be undertaken twice if the 

previous inversion process was SVD-assisted and if truncated SVD was employed for 

estimation of super parameters). Hence, as mentioned above, execution of RESPROC may 

take a while. When it has completed calculation of R and G, RESPROC stores these matrices 

in its output binary resolution matrix file, records this fact to the screen, and ceases execution. 

11.2.4 SVD-Assisted Inversion 

Where the previous PEST run implemented SVD-assisted inversion, RESPROC prompts the 

user for some extra information as follows. 

Select option for obtaining base parameter sensitivities:- 

    enter "1" to use those in base Jacobian matrix file bcase.jco 

    enter "2" to read from another JCO file 

Enter your choice:  

If your response to the above prompt is 2, RESPROC asks for the name of a JCO file. This 

file must cite the same parameters and observations (including prior information) as the base 

parameter PEST control file used in setup of the SVD-assisted run. This will be automatically 

ensured if the following steps are taken for preparation and implementation of SVD-assisted 

parameter estimation, and subsequent postprocessing. 

1. A PEST case is set up involving base parameters and optional Tikhonov 

regularisation constraints. Let us specify the name of the PEST control file for this 

case as bcase.pst. 

2. Base parameter sensitivities are calculated for this base case. These are stored in the 

base Jacobian matrix file bcase.jco. 

3. A super parameter dataset is constructed using SVDAPREP; let the new PEST control 

file be named case.pst. 
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4. PEST is run; after this run is complete, optimised base parameters reside in file 

bcase.bpa. 

5. PARREP is run to build a new base PEST control file, bcase1.pst, in which estimated 

parameter values are employed as initial parameter values. The command is 

parrep bcase.bpa bcase.pst bcase1.pst 

6. NOPTMAX is set to -1 or -2 in bcase1.pst. Thus it calculates the Jacobian matrix (the 

Z matrix of equation 11.1.9a), and then ceases execution. This matrix is stored in file 

bcase1.jco. 

7. When RESPROC is run, a 2 is supplied in response to the above prompt. bcase1.jco is 

then supplied as the name of the alternative base Jacobian matrix file. 

Limited experience suggests that use of a Z matrix calculated on the basis of optimised base 

parameter values results in a better resolution matrix than use of the original Z matrix 

contained in file bcase.jco which was used for definition of super parameters. 

11.3 RESWRIT 

The R and G matrices recorded by the RESPROC utility are not readable by the user. If it is 

desired that these matrices be subject to inspection and/or plotting, they can be converted to 

ASCII format using the RESWRIT utility. 

RESWRIT is run using the command 

reswrit resprocfile matfile1 matfile2 

where 

resprocfile  is the name of a binary RESPROC output file, 

matfile1  is a matrix file to which the resolution matrix will be written, and 

matfile2  is a matrix file to which the G matrix will be written. 

The matrix files written by RESPROC respect the formatting specifications outlined in 

section 2.4 of this manual. 

11.4 PARAMERR 

11.4.1 General 

PARAMERR constructs the parameter error covariance matrix C(k-k) of equation 11.1.1. It 

stores the two terms on the right side of equation 11.1.1 in separate files. This saves you from 

having to re-compute both of these terms if an input required by only one of them (for 

example C(k) or C()) is altered. It also allows you to quantify the individual contribution to 

overall predictive error variance made by “uncaptured system heterogeneity” on the one hand 

(the first term), and measurement/structural error on the other hand (the second term). The 

first diminishes as the level of fit between model outputs and field measurements increases, 

while the second term grows as a higher level of model-to-measurement fits is attained; see 

Doherty (2015) for further details. 

11.4.2 Using PARAMERR 

PARAMERR receives information from keyboard input supplied by the user in response to a 

series of prompts. (It requires more information than can be easily supplied through 

command line arguments.) 
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Upon commencement of execution, PARAMERR prompts 

Enter name of RESPROC output file: 

in response to which the name of the binary file generated by RESPROC which holds the R 

and G matrices should be provided. Next PARAMERR asks 

Options are as follows:- 

  to compute (I-R)C(k)(I-R)'     - enter 1 

  to compute GC(e)G'             - enter 2 

  to compute both                - enter 3 

Enter your choice: 

As mentioned above, there will be occasions when only one of the two terms on the right side 

of equation 11.1.1 requires computation. However if both are required, enter 3. If this is done, 

PARAMERR’s next prompts is 

Enter name of parameter uncertainty file: 

Enter name for covariance matrix output file: 

 

Enter name of observation uncertainty file: 

Enter name for covariance matrix output file: 

Alternatively, if your choice is 1, then only the first two prompts are issued while if your 

response is 2 then only the third and fourth prompts are issued.  

The parameter uncertainty file requested by the first of the above four prompts contains the 

prior parameter covariance matrix C(k). The observation uncertainty file requested by the 

third of the above four prompts contains the covariance matrix of measurement/structural 

noise C(ε). These must be prepared by you in accordance with specifications set out in 

section 2.5 of this manual. The covariance matrix output file whose name is supplied in 

response to the second of the above four prompts comprises the first term on the right side of 

equation 11.1.1, that is (I - R)C(k)(I - R)t. The covariance matrix output file whose name is 

supplied in response to the fourth of the above four prompts comprises the second term on the 

right of equation 11.1.1, that is GC()Gt. These are written in PEST matrix file format 

following the protocol discussed in section 2.4 of this manual. Each of these matrices is 

square with dimensions m × m where m is the number of adjustable parameters pertaining to 

the current parameter estimation problem. 

11.5 PREDERR 

11.5.1 General 

PREDERR is similar in many respects to PARAMERR. Like PARAMERR it reads a 

parameter uncertainty file and an observation uncertainty file; see section 2.5 of this manual 

for specifications of these files. However rather than calculating and storing the two 

components of C(k–k), it calculates the error variance of a user-specified prediction. 

Calculation of C(k–k) is bypassed, this enhancing the efficiency of calculation of predictive 

error variance considerably. Hence unless calculation of C(k-k) is specifically required for a 

certain application, use of PREDERR is preferred over use of PARAMERR followed by 

matrix/vector manipulation utilities such as JROW2VEC and MATQUAD for calculation of 

the error variance of a certain prediction.  

(Actually, as stated at the beginning of this chapter, the utility programs documented in the 

previous chapter, rather than those documented in the present chapter, are the preferred 

options for computing predictive error variance, as well as predictive uncertainty.) 
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11.5.2 Using PREDERR 

Many of PREDERR’s prompts are similar to those of PARAMERR. However unlike 

PARAMERR, PREDERR requires the name of a Jacobian matrix file, as well as the name of 

a particular observation for which parameter sensitivities are recorded in this file. This 

“observation” is actually treated as a prediction for the purpose of error variance analysis 

undertaken by PREDERR using equation 11.1.5. The parameter sensitivities extracted from 

the user-specified row of the Jacobian matrix constitute the y vector of this equation. 

PREDERR’s screen display, including its prompts, are as follows; typical responses are 

shown highlighted. 

 

Enter name of RESPROC output file: modela.rpo 

 

Enter name of parameter uncertainty file: param1.unc 

Enter name of observation uncertainty file: observ1.unc 

 

Enter name of Jacobian matrix file: model1.jco 

Enter name of prediction featured in this file: ptime 

 

- reading RESPROC output file modela.rpo... 

- file modela.rpo read ok. 

 

- reading Jacobian matrix file model1.jco... 

- Jacobian matrix file model1.jco read ok. 

 

- reading parameter uncertainty data... 

- parameter uncertainty data read ok. 

 

- calculating I-R contribution to predictive error variance... 

- I-R term calculated ok. 

 

- reading observation uncertainty data... 

- reading PEST control file temp.pst... 

- file temp.pst read ok. 

- observation uncertainty data read ok. 

 

- calculating G contribution to predictive error variance... 

- G term calculated ok. 

The following should be noted. 

1. As is discussed extensively in this manual, the Jacobian matrix file will have been 

written by PEST. It is a binary file with the name case.jco where case is the filename 

base of the corresponding PEST control file. 

2. The cited Jacobian matrix file must contain an observation named as the “prediction” 

in the pertinent PREDERR prompt. Many more observations than this can be cited in 

the Jacobian matrix file; all others are ignored. 

3. Each parameter cited in the RESPROC output file must also be cited in the Jacobian 

matrix file. If more parameters than this are cited in the Jacobian matrix file, they are 

ignored. If fewer parameters are cited, PREDERR ceases execution with an 

appropriate error message. Parameters need not be arranged in the same order in the 

Jacobian matrix file as they are in the RESPROC output file (and hence in the PEST 

control file on which the RESPROC output file is based). 

PREDERR quickly calculates the contribution to predictive error variance made by both 
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terms of equation 11.1.5 (which it refers to as the “I-R term” and the “G term”). It writes the 

outcomes of its calculations to the screen, an example of which is depicted below. 

*********** COMPONENTS OF PREDICTIVE ERROR VARIANCE  *********** 

 

      I-R component of predictive error variance =   2881711. 

      G   component of predictive error variance =   5342.439 

      Total            predictive error variance =   2887054. 

      Predictive error standard deviation        =   1699.133 

 

 **************************************************************** 

Figure 11.1 Screen output of PREDERR.  

11.6 PREDERR1 

Operation of PREDERR1 is very similar to that of PREDERR, the only difference being that 

PREDERR1 does not prompt for the name of a RESPROC output file. Instead it prompts 

individually for the names of files which hold the resolution matrix (i.e. the R matrix) on the 

one hand and the solution matrix (i.e. the G matrix) on the other. These files must be in 

matrix file format as described in section 2.4 of this manual. If they were written by the 

PARAMERR utility then they will, indeed, adhere to this format.  

Note the following. 

1. Row names provide in the R and G matrix files must be identical to each other. 

2. The resolution matrix must have identical row and column names. These names must 

be the same as parameter names involved in the current inverse problem. 

3. Column names cited in the G matrix must pertain to observations employed in the 

current inverse problem. 

11.7 PREDERR2 

PREDERR2 is a modification of PREDERR1. Unlike PREDERR1, which calculates error 

variance for only one prediction whose sensitivities are contained within a Jacobian matrix 

file, PREDERR2 can calculate variances for multiple predictions featured in this file. Like 

PREDERR1 it prompts for a resolution matrix file, a solution matrix file, a parameter 

uncertainty file, an observation uncertainty file and a Jacobian matrix file. However it also 

prompts for the name of a “prediction list file”. This must contain a list of predictions, one to 

a line, for which error variances are to be calculated; each such prediction should be featured 

in the Jacobian matrix file.  

PREDERR2 also prompts for the name of a “prediction error variance output file”. This is the 

file that it writes. An example appears in figure 11.2. 

Prediction             Variance_1     Variance_2       Total          Standard_Dev 

 ar1                     0.4282991      4.7418460E-02  0.4757175      0.6897228     

 ar2                     0.3441107      6.0151659E-02  0.4042623      0.6358163     

 ar3                     0.2486108      8.1392663E-02  0.3300034      0.5744593     

 ar4                     0.1724225      0.1177954      0.2902179      0.5387187     

 ar5                     0.1363500      0.1767298      0.3130798      0.5595354     

 ar6                     0.1115423      0.2602005      0.3717428      0.6097071     

Figure 11.2 Part of a PREDERR2 output file. 

The “variance_1” and “variance_2” terms appearing in the column headers of figure 11.2 are 

the I-R and G terms of the predictive error variance equation, i.e. equation 11.1.5. Thus these 
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terms describe the contributions to predictive error variance arising from “uncaptured 

heterogeneity” and measurement noise respectively. The contents of the “total” column are 

the sum of these two terms; the square roots of these totals comprise the “standard_dev” 

column. 

11.8 PREDERR3 

PREDERR3 is almost identical to PREDERR2. However instead of reading the R and G 

matrices from separate files, it reads both of these from an unformatted RESPROC output 

file.  

11.9 REGERR 

11.9.1 General 

REGERR evaluates the covariance matrix of regularisation-induced model output error. For 

present purposes this is defined as 

 τ = Z(I – R)k         (11.9.1) 

so that 

  

C(τ) = Z(I – R)C(k)(I – R)tZt      (11.9.2) 

In this equation C(k) is, as usual, the pre-calibration parameter covariance matrix, R is the 

resolution matrix for the current inverse problem, and Z is the Jacobian matrix. REGERR 

obtains R from a RESPROC output file and Z from a Jacobian matrix file (i.e. a JCO file). 

Presumably these will both pertain to the same PEST input dataset. However REGERR only 

tests that the number of parameters cited in the RESPROC output file and the number of 

parameters cited in the Jacobian matrix file are the same. The number of observations can 

differ between these two files. Thus the Jacobian matrix file can pertain to model outputs that 

differ from those employed in the calibration process if desired; the covariance matrix of 

regularisation-induced predictive error can thereby be calculated. The latter is very similar to 

the covariance matrix of predictive error; however it lacks the contribution to this error from 

measurement noise. 

11.9.2 Running REGERR 

REGERR is run simply by typing its name at the screen prompt; it then prompts the user 

specifically for its input data requirements. Prompts, and typical replies, are illustrated below. 

 Enter name of RESPROC output file: pestcase.rpo 

 Enter name of parameter uncertainty file: param.unc 

 Enter name of Jacobian matrix file: pestcase.jco 

 Enter name for output covariance matrix file: cov.mat 

 - reading RESPROC output file pestcase.rpo... 

 - file pestcase.rpo read ok. 

 

 - reading Jacobian matrix file pestcase.jco... 

 - Jacobian matrix file pestcase.jco read ok. 

 

 - reading parameter uncertainty data... 

 - parameter uncertainty data read ok. 
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 - calculating regularisation-induced output error covariance matrix... 

 - file cov.mat written ok. 

The format of a parameter uncertainty file is discussed in section 2.5 of this manual. The 

covariance matrix file written by REGERR employs the matrix file protocol discussed in 

section 2.4 of this manual. 
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12. Nonlinear Error and Uncertainty 

12.1 Introduction 

Programs described in this chapter assist in the implementation of nonlinear error and 

uncertainty analysis. Some of them explore uncertainty (or error variance as a surrogate) 

through generation of random parameter sets. This is facilitated using the RANDPAR utility. 

By first sampling a prior covariance matrix, and by then running the model many times using 

these samples, the prior uncertainty of a prediction can be established. Alternatively, 

posterior uncertainty can be explored by sampling a linear approximation to the posterior 

parameter covariance matrix (produced, for example, using the PREDUNC7 utility described 

in a previous chapter). Another option is to modify samples of the prior parameter 

distribution in order to ensure respect for calibration constraints using subspace methods; see 

the PNULPAR utility. Thus-obtained samples of a linear approximation to the posterior 

parameter distribution can then be adjusted to adhere more strongly to calibration constraints 

using PEST’s null space Monte Carlo methodology described in section 10.6.3 of part I of 

this manual. 

If a prediction is made by a model using many different parameter sets, the values computed 

for the prediction can be processed in order to formulate a prediction value histogram. This 

histogram can be considered to be an approximation to the predictive probability density 

function. The RDMULRES, MULPARTAB and COMFILNME utilities can assist in this 

type of data collation. 

Calibration-constrained direct predictive maximisation/minimisation provides an alternative 

to Monte Carlo exploration of post-calibration predictive uncertainty. This is implemented by 

PEST’s predictive analyser; see part I of this manual. Where parameter numbers are few, and 

where an inverse problem is well-posed, PEST’s predictive analyser can implement this 

procedure in a relatively efficient manner. Unfortunately, however, this methodology 

becomes less efficient in highly-parameterized contexts. Nevertheless assistance in file setup 

for implementation of this procedure in the highly parameterised context can be gained 

through use of the REGPRED utility. 

As is also described in part I of this manual, direct hypothesis testing of predictive 

possibilities can be undertaken by running PEST in “pareto” mode. A prediction is deemed to 

be unlikely when it is demonstrably incompatible with either or both of expert knowledge and 

the historical behaviour of the system under investigation. The compatibility (or otherwise) of 

a parameter set with expert knowledge (as encapsulated in a covariance matrix) can be tested 

using the ASSESPAR utility. 

Utility programs described in the present chapter are complemented to some extent by those 

discussed in the following chapter; the latter provide the means to undertake Latin hypercube 

sampling of a parameter probability density function. Some of the utilities described in the 

present chapter can be used in conjunction with those described in the next, particularly for 

postprocessing of model runs that are collectively undertaken on the basis of Latin hypercube 

samples of a pre- or post-calibration parameter probability density function. 
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12.2 RANDPAR 

12.2.1 General 

RANDPAR generates parameter value realisations using a random number generator. The 

parameters for which it must generate realisations are read from an existing PEST control 

file. RANDPAR-generated random numbers are inserted into a series of PEST parameter 

value files (see section 2.2 of this manual for specifications of this type of file) which 

complement the original PEST control file. The TEMPCHEK utility can then be used to 

insert these parameter sets into model input files. Alternatively, the PARREP utility can be 

employed to insert them into a series of PEST control files; if PEST is then run with 

NOPTMAX set to 0 in each of these files, the objective function corresponding to each set of 

parameter values can be calculated. 

You can choose between two probability distributions for random number generation. The 

first option is a uniform distribution. In this case the upper and lower end of the parameter 

range is taken as the upper and lower bounds of respective parameters as recorded in the 

PEST control file. If a parameter is log-transformed, then the log of the parameter is assumed 

to possess a uniform distribution rather than the parameter itself. No correlation is permitted 

between parameter values if a uniform distribution is specified.  

Where a normal distribution is specified, parameter variances/covariances must be supplied 

through a parameter uncertainty file (see section 2.5 of this manual for specifications of this 

file type). If a covariance matrix with non-zero off-diagonal elements is cited in this file, then 

correlation can exist between (some or all) parameters. It is important to note that if some 

parameters are log-transformed in the PEST control file read by RANDPAR, then it is 

assumed that uncertainties and correlations supplied in the parameter uncertainty file pertain 

to the logs of the respective parameters rather than to the native parameters. 

Random values are not generated for parameters which are fixed in the PEST control file read 

by RANDPAR; values supplied by RANDPAR for these parameters are the same as in the 

PEST control file. Nor are random values generated for tied parameters; instead, the values 

assigned to tied parameters are such that the ratios of initial values between tied parameters 

and those to which they are linked as supplied in the original PEST control file are preserved. 

Parameter realisations can be filtered such that those that do not respect certain user-supplied 

ordering relationships as expressed in a “parameter ordering file” are rejected. 

12.2.2 Using RANDPAR 

RANDPAR data inputs are supplied through user responses to prompts, rather than through 

the command line. RANDPAR commences execution by prompting for the name of the 

PEST control file which it must read. 

Enter name of existing PEST control file: 

in response to which the name of an existing PEST control file should be supplied. Next it 

asks 

Use (log)normal or (log)uniform distrib for param generation? [n/u]: 

Respond with “n” or “u” as appropriate. Note that the choice of lognormal/normal or 

loguniform/uniform distribution is made on the basis of the parameter transformation status 

as recorded in the PEST control file. Note also that random numbers are not generated for 

fixed or tied parameters. As stated above, the former retain their fixed value in all 
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realisations; the latter are assigned values that preserve the initial value ratios as defined in 

the PEST control file.  

Suppose that you respond to the above prompt with “u”. Then if any parameters are tied, 

RANDPAR asks 

Respect parameter ranges (tied parameters)? [y/n]: 

This question is necessary because in preserving the ratios between tied and parent parameter 

values, the former may transgress their bounds as the latter are assigned random values 

between those bounds. If the answer to the above prompt is “n”, then the fact that tied 

parameters may transgress their bounds is ignored. If it is “y”, then tied parameters are 

clipped at their bounds, thereby destroying the tied parameter – parent parameter ratio 

defined in the PEST control file. 

If a normal distribution is requested, RANDPAR needs to acquire more information than it 

does for generation of parameter sets according to a uniform distribution. It asks 

Compute means as existing param values or range midpoints? [e/m]: 

As is apparent from the above prompt, there are two choices here. In generating random 

numbers which belong to a normal distribution a mean value is required. RANDPAR can 

accept the initial parameter value as supplied in the PEST control file as its mean value. 

Alternatively it can compute the mean as midway between the lower and upper bound of each 

parameter as supplied in the PEST control file (or midway between the logs of the lower and 

upper bounds if a parameter is log-transformed). An “e” in response to this prompt selects the 

former option while an “m” selects the latter option. 

Next (for a normal distribution only) RANDPAR asks 

Respect parameter ranges? [y/n]: 

Or, if any parameters are tied 

Respect parameter ranges (parent parameters)? [y/n]: 

If the response to the above prompt is “y”, then if any parameter realisation lies below its 

lower bound or above its upper bound as recorded in the PEST control file, RANDPAR will 

assign the parameter a value equal its lower or upper bound respectively. Alternatively, if the 

answer is “n”, bounds are ignored in the generation of parameter values.  

If any parameters are tied, RANDPAR next prompts (as it does for the uniform distribution 

option) 

Respect parameter ranges (tied parameters)? [y/n]: 

The response to this question has the same effect as it does where parameters are assigned a 

uniform distribution, as discussed above.  

If a normal distribution is specified for the generation of random realisations, the name of a 

parameter uncertainty file is next acquired. The format of this file is discussed in section 2.5 

of this manual. Within this file uncertainties can be supplied on a parameter-by-parameter 

basis; alternatively one or a number of parameter covariance matrices can be supplied. 

RANDPAR next asks (for both normal and uniform distributions) 

Enter name of parameter ordering file (<Enter> if none): 

An example of a parameter ordering file follows. 
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# parameter ordering file 

 

h2 > h1 

ro2 > ro1 

ro10 > ro2 

Figure 12.1 A parameter ordering file. 

Each line of a parameter ordering file must cite the names of two parameters; these 

parameters can be adjustable, tied or fixed in the PEST control file. Parameter names must be 

separated by a “>” or a “<” character. Suppose that one or more of the ordering relationships 

expressed in a parameter ordering file are not respected by a RANDPAR-generated random 

parameter set. Then RANDPAR will abandon that realisation, and will continue to generate 

further realisations until a realisation is finally obtained for which all relationships expressed 

in the parameter ordering file are respected. However if, after 1000 attempts, such a 

parameter set is not achieved, RANDPAR will cease execution with an appropriate error 

message. The user is then advised to set parameter ordering relationships less restrictively (or 

alter the variables governing the probability functions on which basis parameter realisations 

are generated), and then re-run RANDPAR. 

RANDPAR’s next prompt (irrespective of parameter distribution type) is 

Enter integer random number seed (<Enter> if default): 

Supply a positive integer, or simply press the <Enter> key. Random number sequences are 

identical for the same random number seed; to generate different sets of parameter values, 

use different seeds. 

Finally RANDPAR asks 

Enter filename base for parameter value files:  

How many of these files do you wish to generate? 

Suppose that you supply a filename base of “base”. Then parameter value files written by 

RANDPAR are named base1.par, base2.par, base3.par ….baseN.par, where N is the number 

supplied in response to the second of the above prompts. 

12.3 RANDPAR1 

Use of RANDPAR1 is identical to that of RANDPAR. It uses a different methodology for 

generation of random correlated parameter fields which may be more efficient where 

parameter numbers are large. 

12.4 PNULPAR 

12.4.1 General 

PNULPAR can be used in conjunction with RANDPAR to undertake calibration-constrained 

Monte-Carlo analysis. In general, RANDPAR-generated parameter fields do not respect 

calibration constraints; PNULPAR can modify these parameter fields so that they do. 

PNULPAR reads a set of parameter value files generated by RANDPAR. The sets of random 

parameters contained within these files may have been generated on the basis of a PEST 

control file in which initial parameter values are expected parameter values from an expert 

knowledge point of view. Alternatively, the PEST control file on which RANDPAR 

parameter set generation was based may have housed calibrated parameter values. (In the 
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latter case the PARREP utility may have been used to replace pre-calibration initial 

parameter values with calibrated parameter values in the PEST control file.) 

Regardless of which of the above alternatives was employed for RANDPAR-based random 

parameter set generation, use of PNULPAR requires that a PEST control file exists in which 

initial parameter values are calibrated parameter values. This file is referred to herein as a 

“post-calibration PEST control file”; it may or may not be the same PEST control file as that 

used by RANDPAR for random parameter set generation. A corresponding JCO file must 

exist for the post-calibration PEST control file. This may have been produced by running 

PEST on the basis of the post-calibration PEST control file with NOPTMAX set to -1 or -2 in 

that file. It could also have been created from another JCO file using the JCO2JCO utility. 

PNULPAR reads the set of parameter value files produced by RANDPAR. It writes a new set 

of parameter value files in which parameter values are modified from those occurring in the 

RANDPAR-generated files. In generating this new set of parameter value files PNULPAR 

undertakes the following operations. 

1. It undertakes singular value decomposition of Q1/2J where Q is the observation 

weight matrix and J is the Jacobian matrix pertaining to the post-calibration PEST 

control file. It asks the user for the dimensionality of the calibration solution space. 

This is the number of dimensions spanned by those columns of the V matrix 

forthcoming from singular value decomposition of Q1/2J whose corresponding 

singular values are significantly non-zero. Recall that singular value decomposition of 

Q1/2J is described by the following formula. 

Q1/2J = USVt         (12.3.1) 

As described by Doherty (2015), the matrix V can be partitioned as [V1 V2] where V1 

is an orthonormal matrix whose columns span the calibration solution space, and V2 is 

an orthonormal matrix whose columns span the calibration null space. The 

dimensionality of the calibration solution and null spaces can be estimated with the 

help of utilities such as SUPCALC. 

2. Suppose that elements of the vector k comprise the set of parameter values contained 

within a RANDPAR-generated parameter value file. Let k describe the set of 

parameters contained (as initial parameter values) within the post-calibration PEST 

control file read by PNULPAR; as stated above, it is assumed that the vector k was 

calculated during a previous calibration process, and thus comprises the minimum 

error variance estimate of the real (but unknown) parameter set k. PNULPAR next 

computes k-k taking parameter transformation status into account. 

3. Components of parameter differences encapsulated in k-k that possess a non-zero 

projection onto the calibration solution space are then removed by computing a set of 

“projected parameter differences” kd using the equation 

kd = V2V2
t(k-k)        (12.3.2) 

4. A new set of parameter values is then produced by adding kd to k. These values are 

written to a new parameter value file. 

With the exception of singular value decomposition of the Q1/2J matrix (which is only 

undertaken once), PNULPAR undertakes each of the above operations for every existing 

RANDPAR-generated parameter value file that it encounters, writing a new parameter value 

file in each case as an outcome of these calculations. 
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PNULPAR preserves the ratios of tied parameters to parent parameters (unless bounds are 

encountered – see below). In fact if the ratio of any tied parameter to its parent parameter in 

the post-calibration PEST control file read by PNULPAR is different from the ratio of these 

same parameters in any RANDPAR-generated parameter value file, PNULPAR will cease 

execution with an appropriate error message. (This should cause no problems in normal 

RANDPAR operation, as RANDPAR preserves the ratio of tied to parent parameters as it 

generates random values for the latter.) 

PNULPAR handles differences in fixed parameter values slightly differently. If a fixed 

parameter has a different value in a RANDPAR-generated parameter value file from that 

which it has in the post-calibration PEST control file, the value in the parameter value file 

prevails. This strategy may be beneficial in certain instances of groundwater model 

calibration where, for example, the PPSAMP utility from the Groundwater Data Utility suite 

may be used instead of RANDPAR for generation of random parameter values. However 

differences in the values of fixed parameters should never occur if RANDPAR is used to 

generate random parameter values as it respects the values of fixed parameters, and does not 

generate random values for them. 

12.4.2 Using PNULPAR 

PNULPAR commences execution with the prompt 

Enter name of PEST control file: 

Supply the name of a post-calibration PEST control file whose initial parameter values are in 

fact calibrated parameter values calculated during a previous PEST run. (The PARREP utility 

may have been used to insert these into an existing PEST control file containing non-

calibrated parameter values.) A JCO file corresponding to this post-calibration PEST control 

file must also exist. In many cases of PNULPAR usage, this same PEST control file will have 

formed the basis for RANDPAR random parameter set generation. 

PNULPAR next prompts 

Does PEST control file contain calibrated parameter values? [y/n]: 

If you answer “n” to this question, PNULPAR will cease execution with some salient advice. 

Otherwise it prompts 

Enter number of dimensions of calibration solution space: 

The dimensions of the null space are m minus this number, where m is the number of 

adjustable parameters cited in the PEST control file. As stated above, SUPCALC can offer 

advice on this matter. Alternatively, if you would like to perform calculations on the Q1/2J 

matrix yourself in order to determine an appropriate answer to the above question, 

PNULPAR can facilitate this process by storing the Q1/2J matrix in PEST matrix file format. 

It prompts 

Would you like to store Q(1/2)X matrix in matrix file format? [y/n]: 

and if your answer to this question is “y”, 

Enter file for storage of matrix:  

(Note that the “X” matrix referred to by PNULPAR is actually the J matrix used in present 

documentation.) Next PNULPAR asks 

Enter filename base of existing parameter value files: 

Suppose that your answer to the above question is “basename”. Then PNULPAR will look 
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for files basename1.par, basename2.par etc. When it encounters no more files in this 

sequence, it assumes that it has found them all. For each such existing parameter value file it 

writes a new parameter value file based on null-space-projected parameter differences as 

described above. The filename base of these new files must be supplied in response to the 

prompt 

Enter filename base for new parameter value files: 

An extension of “.par” is again assumed. The numerical suffix in each case is the same as 

that of the corresponding, existing, RANDPAR-produced, parameter value file. 

Having been supplied with all of its input data requirements, PNULPAR undertakes the 

computations outlined above, outlining its progress to the screen. Then it ceases execution. 

Note that PNULPAR will not accept a PEST control file in which PESTMODE is set to 

“prediction”, “regularisation” or “pareto”. So if you wish to employ PNULPAR after 

undertaking regularised inversion (as is often the case), alter PESTMODE to “estimation” in 

the governing PEST control file and remove all regularisation observations and prior 

information equations from that file. (Alternatively, use the SUBREG1 utility to accomplish 

the same thing automatically.) The reason for PNULPAR’s refusal to read a PEST control 

file in which PESTMODE is set to “regularisation” is to avoid the potential for confusion and 

error; when undertaking singular value decomposition of the Q1/2J matrix to define 

calibration solution and null spaces, no regularisation information should be included in the J 

matrix. 

12.4.3 What to do Next 

Parameter values recorded in parameter value files generated by PNULPAR can be 

PARREPed into a PEST control file. NOPTMAX can be set to zero in this file and the 

objective function computed in each case. If the model is linear, this objective function 

should be similar to that achieved during the previous calibration exercise. 

Where a model is nonlinear, the use of PNULPAR-generated parameters will probably not 

result in a calibrated model. In many cases, however, parameter values can be adjusted back 

into calibration with very little effort, this often requiring only one PEST iteration. (If 

desired, set NOPTMAX to 1 in the governing PEST control file to ensure that only one 

iteration actually takes place.) Furthermore, this process can be made even more inexpensive 

by employing sensitivities residing in an existing JCO file (for example, the same JCO file as 

that read by PNULPAR). This can be achieved by starting PEST with the “/i” switch and 

providing the name of the pertinent JCO file when prompted accordingly. 

When undertaking a single-iteration PEST run under these conditions, the following may 

help. 

1. Set the BROYDEN update parameter JACUPDATE to 999. Thus on the second and 

further attempts to upgrade parameter values during this single iteration, PEST will 

have improved the Jacobian matrix on whose basis these upgrades are computed, this 

resulting (hopefully) in a lower objective function. 

2. Set the PHIRATSUF control variable very low (for example 0.001) and RLAMFAC 

to -4. Thus PEST will be forced to test a number of different Marquardt lambdas 

before the end of the iteration.  

Hopefully, with the help of these strategies, an objective function can then be found which is 

as low as it can possibly be based on current sensitivities. 
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If the calibration null space is relatively large, then use of SVD-assist for calibration 

adjustment of each PNULPAR-generated parameter set can be achieved with a high level of 

model run efficiency, even if more than one iteration is required to reduce the objective 

function to a level at which the model is deemed to be “calibrated”. See section 10.6.3 of part 

I of this manual for details. 

Whichever of the above methods is chosen to enforce calibration constraints on PNULPAR-

modified parameter sets, the higher that you inform PNULPAR is the dimensionality of the 

calibration solution space, the less work will be required to enforce these constraints. This is 

because the higher that PNULPAR believes the dimensions of the calibration solution space 

to be, the greater is the contribution made by the parameter field calculated during the 

previous calibration process to each PNULPAR-generated parameter field. The user-supplied 

solution space dimensionality therefore provides a “lever” through which you can increase 

the efficiency of attainment of parameter fields which respect calibration constraints (as 

embodied in respect for an objective function that is deemed to “calibrate” the model). The 

cost of such a speed-up strategy is, of course, some reduction in the diversity of the 

calibration-adjusted random parameter sets thus obtained. 

12.5 RDMULRES 

12.5.1 General 

RDMULRES stands for “read multiple results”. It is used to read identical data from many 

different model or PEST output files, the names of these files being distinguished from each 

other by an indicial integer. RDMULRES has many uses, two of which are now briefly 

discussed. 

Monte Carlo Analysis 

Monte Carlo analysis of model predictive uncertainty can be undertaken by running a model 

many different times using different sets of parameters on each occasion. Parameter values 

may have been generated by RANDPAR and may have been modified by PNULPAR. 

Alternatively they may have been generated by another program altogether, for example a 

geostatistically-based parameter field generator such as the Stanford Geostatistical Modeling 

Software package SGEMS. 

Suppose that RANDPAR (and possibly PNULPAR) was used to generate a suite of 

parameter value files named parval1.par, parval2.par, etc. Suppose that the model reads its 

parameters from a single input file named model.in, and that a template for this file is named 

model.tpl. Suppose further that the model output file to which results of interest are recorded 

is named model.out. Then a sequence of model output files named model1.out, model2.out, 

etc. containing model results calculated on the basis of parameter sets contained in 

parval1.par, parval2.par, etc. can be obtained using the batch file shown in Figure 12.2 if 

working on a PC. (A similar script file can be readily written for use on a UNIX platform.) 

for /L %%i in (1,1,100) do ( 

tempchek parval%%i.par model.in model.tpl 

model.exe 

copy model.out model%%i.out) 

Figure 12.2 A batch file in which a sequence of model runs is undertaken.  

The above batch file runs the model executable program (in this case named model.exe) one 
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hundred times. In the sequence “(1,1,100)” the first integer is the starting value, the second is 

the step size and the final integer is the finishing value. For each model run the model output 

file is linked to the parameter set on whose basis it was recorded by integer index 

(represented by the %%i variable). Note that other options could also be used for the 

commissioning of many model runs. For example the PARREP utility could be used to insert 

parameter values into a PEST control file. Then PEST could be run. If NOPTMAX is set to 0 

in the PEST control file, PEST will run the model once before ceasing execution. This may 

be a more convenient methodology to use where a model has many input files requiring many 

template files and/or if an objective function value is required. 

A Sequence of PEST Runs 

PEST can be used to calibrate a model many different times using many different parameter 

sets as starting values. This can be useful in undertaking null space Monte Carlo analysis, 

where each of a sequence of PNULPAR-generated parameter sets must be adjusted to 

achieve an objective function that is low enough for the model to be considered as 

“calibrated”. Suppose that parameter sets to use as initial values in subsequent PEST runs 

reside in parameter value files named parval1par, parval2.par, etc. Suppose also that a 

suitable PEST control file is named pestcase.pst and that a copy of this file named 

pestcase.pst.keep has been made. Suppose also that parameter adjustment is actually carried 

out on super parameters (see section 10.6.3 of part I of this manual), and that 

pestcase_svda.pst is the PEST control file that is employed for this purpose (for which 

pestcase.pst is the corresponding base parameter PEST control file). Upon each occasion of 

cessation of pestcase_svda.pst execution, optimised base parameter values reside in file 

pestcase.bpa. However the run record file is named pestcase_svda.rec.  

The following batch file can be used to undertake multiple PEST runs on the basis of starting 

base parameter values housed in files parval1.par, parval2.par, etc. 

rem ########################################################### 

rem Delete an existing record file. 

rem ########################################################### 

 

del /P record.dat 

echo  > record.dat 

pause 

 

rem ########################################################### 

rem Do all the PEST runs. 

rem ########################################################### 

 

for /L %%i in (1,1,100) do ( 

parrep parval%%i.par pestcase.pst.keep pestcase.pst 

pest pestcase_svda 

find /I "optimised mea" pestcase_svda.rec >> record.dat 

copy pestcase_svda.rec pestcase_svda.rec.%%i 

copy pestcase.bpa pestcase.bpa.%%i) 

Figure 12.3 A batch file used for conducting a sequence of SVD-assisted parameter 

estimation runs. 

After running the batch file depicted in figure 12.3, the sequence of resulting run record files 

will be named pestcase_svda.rec.1, pestcase_svda.rec.2, etc. Respective optimised parameter 

value files will be named pestcase.bpa.1, pestcase.bpa.2 etc. Note that a “global record file” 
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named record.dat is also kept. After each PEST run, the value of the optimised measurement 

objective function achieved during that run is appended to this file. This provides a 

continuously-updated record of the success or otherwise of the sequence of PEST runs. 

12.5.2 The RDMULRES Input File 

RDMULRES requires a control file, an example of which is shown in figure 12.4. 

# An example RDMULRES input control file. 

 

* observations 

initobj 

finalobj 

* instruction file 

obj.ins 

* model output file 

case_svda*.rec 

* integer list 

1 

4 - 10 

12 

15 

16-100 

* rdmulres output file 

rdmulres.rec 

Figure 12.4 An example RDMULRES control file. 

The RDMULRES input control file is subdivided into a number of sections, each of which 

begins with a section header. Section headers are as shown in the above example; in each 

case their name is preceded by the “*” character followed by a space. 

The “observations” section must contain a list of names for the numbers that must be read 

from model (or PEST) output files. These must be provided one to a line. As is the normal 

PEST protocol, these names must be 20 characters or less in length (and are case insensitive); 

names must be unique. Up to 100 such names can be provided. This limit is set in order to 

keep the RDMULRES output file (see below) from being too wide. 

The “instruction file” section of the RDMULRES control file must contain a single entry, this 

being the name of an instruction file. This instruction file must cite all observations named in 

the “observations” section of the RDMULRES input file (and no more). Instruction files must 

follow the normal PEST protocol; see chapter 2 of part I of this manual. An instruction file 

suitable for reading the initial and optimised measurement objective function values from a 

PEST run record file is illustrated in figure 12.5. 

pif $ 

$INITIAL CONDITIONS:$ 

$measurement$  $=$ !initobj! 

$OPTIMISATION RESULTS$ 

$Optimised measurement$ $=$ !finalobj! 

Figure 12.5 An instruction file which reads a PEST run record file. 

The model output file which the instruction file is designed to read must be listed as the sole 

filename cited in the “model output file” section which immediately follows the “instruction 

file” section of the RDMULRES control file. RDMULRES requires that this filename contain 

at least one “*” character. In fact, many such output files are read by the same instruction file; 
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the name of each is obtained by replacing the “*” character with an appropriate integer on 

each occasion. 

The integers to employ in formulation of model output filenames in this fashion are listed in 

the “integer list” section of the RDMULRES control file. Either one or two integers can be 

listed on each line of this section. If two are listed, the second must be larger than the first, 

and must be separated from the first integer by a “-” (i.e. dash) character. (Negative numbers 

are not allowed.) In this case the “*” character is progressively replaced by all integers 

between and including the two nominated integers. 

The final section of the RDMULRES control file is the “RDMULRES output file” section. 

Numbers read from model output files are recorded in tabular fashion in this file. See below. 

If any line within a RDMULRES control file contains no characters, or begins with the “#” 

character, it is ignored. 

12.5.3 Running RDMULRES 

RDMULRES is run by typing the command 

rdmulres infile 

at the screen prompt, where infile is the name of its control file. If any errors are detected in 

this file, RDMULRES ceases execution with an appropriate error message. If not, it reads all 

requested model output files, recording to the screen its progress in this endeavour. If any 

errors are encountered in reading any such files, it ceases execution with an appropriate error 

message. However if a requested file is not present, it records this fact to the screen (and to its 

output file) and proceeds to the reading of the next cited file. 

An example of a RDMULRES output file is shown in figure 12.6. Observation names head 

all columns except the first; the first column contains integer index values used in forming 

the model output filename from which respective numbers in other columns are read.  

index      initobj              finalobj             

 1         9546.1300            415.1000     

 2         1715.0300            196.3000     

 3         File case_svda.rec.3 not found. 

 4          545.0300            10.95000     

Figure 12.6 Part of a RDMULRES output file. 

A RDMULRES output file is easily imported into a spreadsheet or graphing program for 

further processing. 

12.6 MULPARTAB 

12.6.1 General 

MULPARTAB stands for “multiple parameter table”. It can be used in the postprocessing of 

multiple PEST runs undertaken, for example, as part of null space Monte Carlo analysis. In 

such an analysis, a model calibration process is repeated many different times using the same 

sets of parameters, but with different starting values or base parameter values on each 

occasion (see section 10.6.3 of part I of this manual). The outcomes of such an analysis are a 

suite of run record files, and a suite of corresponding parameter value files. In most cases 

these files will have identical names except for the presence of an indicial integer at some 

location within each name.  
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Run record files can be processed using the RDMULRES utility. Such processing can reveal 

which calibration exercises resulted in parameter sets that gave rise to an objective function 

which can be considered low enough to call the model “calibrated”. Those that succeed in 

this regard can then be assimilated into a single table using the MULPARTAB utility. This 

table can be imported into spreadsheet and/or graphing software for further processing and/or 

display. 

12.6.2 Using MULPARTAB 

MULPARTAB is run using the command 

mulpartab parfile listfile outfile 

where 

parfile  is a generic parameter value filename, 

listfile  contains a list of integer indices, and 

outfile  is the name of a tabular output file. 

The generic parameter value filename must contain at least one asterisk (i.e. “*” character). 

In forming the names of actual parameter value filenames, this asterisk is replaced by an 

integer in each case. The list of integers to employ in forming parameter value filenames is 

supplied in the integer list file (the second filename provided on the MULPARTAB 

command line). Thus if the first MULPARTAB command line argument is supplied as 

parval*.par, then MULPARTAB will look for files named parval1.par, parval2.par, etc., if 

the integers 1, 2 etc. are supplied in the integer list file. 

As the name suggests, an integer list file must contain a list of integers. An example of such a 

file is provided in figure 12.7. 

# An integer list file 

 

1 

2-4 

5 

7-20 

Figure 12.7 An integer list file. 

Lines beginning with “*” or “#” are ignored in an integer list file; so too are blank lines. 

Integers on other lines can be supplied individually, or as the beginning and end members of 

a sequence separated by a “-” (dash) character. Negative integers are not allowed. 

A MULPARTAB output file is shown in figure 12.8. As is apparent, the file is comprised of 

multiple columns. The first of these columns contains parameter names. Columns containing 

parameter values as read from parameter value files follow this first column. The header for 

each of these latter columns is the integer index which is included in the filename from which 

parameter values recorded in the respective column were read. 
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                          1               4               6        

 ro1                 0.9988774        1.348253        1.089392     

 ro2                  1.040405        1.884527        1.277791     

 ro3                  1.256830        3.430308        1.930116     

 ro4                  1.771721        7.359193        3.583956     

 ro5                  2.611562        17.36130        6.978424     

 ro6                  3.000000        27.00000        9.000000     

 ro7                  2.139646        8.553685        4.517614     

 ro8                  1.265521        2.049192        1.677921     

 ro9                 0.9782547        1.074042        1.032021     

 ro10                0.9753630       0.9830849       0.9765695     

 h1                  0.2500000       0.2500000       0.2500000     

 h2                  0.5000000       0.5000000       0.5000000     

 h3                   1.000000        1.000000        1.000000     

 h4                   2.000000        2.000000        2.000000     

 h5                   4.000000        4.000000        4.000000     

 h6                   8.000000        8.000000        8.000000     

 h7                   16.00000        16.00000        16.00000     

 h8                   32.00000        32.00000        32.00000     

 h9                   64.00000        64.00000        64.00000     

Figure 12.8 A MULPARTAB output file. 

The following should be noted. 

1. As documented in the PEST manual, the first line of a parameter value file must 

contain the word “single” or “double” followed by the word “point” or “nopoint”. If 

these are absent from a parameter value file which MULPARTAB is asked to read, it 

will terminate execution with an error message. 

2. SCALE and OFFSET values are also provided in a parameter value file. 

MULPARTAB multiplies parameter values by their SCALE and adds their OFFSET 

before recording these values to its output file. 

3. All parameter value files read by MULPARTAB must cite the same parameters. 

However parameters do not need to be listed in the same order in each file. 

4. If an expected parameter value file is absent, MULPARTAB will notify you of this 

fact, and then proceed to read the next parameter value file. Values listed for missing 

parameters are replaced with the “---“ string in the respective column of the 

MULPARTAB output file. 

5. If a parameter value file is, in fact, found, and if an error is encountered in reading this 

file, MULPARTAB will cease execution after recording an appropriate error message 

to the screen. 

12.7 COMFILNME 

COMFILNME stands for “compress file names”. This simple utility can sometimes be useful 

in winnowing unwanted output files after many related model or PEST runs have been 

carried out, prior to undertaking another analysis step on the basis of the reduced file 

collection. 

Suppose, for example, that many PEST runs have been undertaken as part of a null space 

Monte Carlo exercise, and that this has resulted in a sequence of parameter value files named 

pestcase1.bpa, pestcase 2.bpa, pestcase 3.bpa, etc. Suppose that corresponding run record 

files are named pestcase1.rec, pestcase2.rec, pestcase3.rec, etc. Use of RDMULRES on the 

latter set of files may reveal that a suitably low objective function may not have been 
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achieved on all of these runs. (This may have occurred if, for example, the NOPTMAX 

variable for these runs was set to 1 so that PEST was allowed to undertake just one iteration 

in which super parameter derivatives are available “for free”.)  

Suppose now that a prediction is to be made using the model, and that this prediction is to be 

made using many different parameters sets which calibrate that model, but from which those 

which do not calibrate the model must be excluded. Hence non-compliant parameter value 

files need to be removed from the set of files generated during the previous set of PEST runs. 

This could be achieved by simply deleting these files. However there are certain advantages 

to retaining a sequential numbering system for parameter value files in future processing of 

this nature. COMFILNME allows such deletions to take place, with higher index filenames 

being assigned lower indices to “fill in deletion gaps”. 

COMFILNME is run using the command 

comflenme datfile listfile 

 where 

datfile  is a generic data or text file name, and 

listfile  contains a list of integer indices. 

The filename supplied as the first COMFILNME command line argument must contain at 

least one asterisk (“*”) character. In forming actual filenames this character is replaced by a 

sequence of integers. This sequence is listed in the integer list file whose name is supplied as 

the second argument to COMFILNME. The format for an integer list file is provided in 

documentation to MULPARTAB; see figure 12.7. 

When run in the above manner, COMFILNME reads each of the nominated data files – that 

is, each of the files whose name is formed by replacing the “*” character in datfile by an 

integer from the list file. It then generates a sequence of files in which the “*” character is 

replaced by “1”, “2”, “3”, etc. in sequence, with no gaps. In doing this, previous files are 

overwritten. 

The following should be noted. 

• Files represented by datfile must be ASCII (i.e. text) files, and be no more than 3000 

characters in width. 

• Integers must be supplied in the integer list file in ascending order. 

• Suppose that a total of N integers are directly cited or implied (in expressions of the 

type n1 – n2) in the integer list file. At the end of a COMFILNME run, members of 

the datfile sequence with integer indices beyond N will still remain in the user’s 

directory. It is the user’s responsibility to delete these. 

• It is a simple matter to relate new file names to old file names. New file indices are 

simply “1”, “2”, “3”, etc., with these indices assigned to files sequentially in order of 

their representation in the integer list file supplied to COMFILNME as its second 

command line argument. 

12.8 COMFILNME1 

COMFILNME1 does the same thing as COMFILNME except for the fact that it does not 

overwrite existing files. Instead it demands that a new filename sequence be created. It is run 

using the command 
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comflenme datfile listfile newdatfile 

 where 

datfile  is a generic data or text file name,  

listfile  contains a list of integer indices, and 

newdatfile  is a generic data or text file name different from datfile.  

 

12.9 REGPRED 

12.9.1 General 

The purpose of REGPRED is to write a PEST input dataset in which “regularised nonlinear 

predictive uncertainty analysis” is carried out. REGPRED is an older utility; however it may 

be useful to some despite the fact that solution of a constrained maximisation/minimisation 

problem in the highly parameterised context is often a numerically expensive undertaking. 

Calibration-constrained Monte Carlo methods normally provide better options for post-

calibration nonlinear uncertainty analysis where parameter numbers are high and model run 

times are long. 

Use of REGPRED is based on the premise that model calibration has been accomplished 

through regularised inversion. As is explained by Doherty (2015), the regularised inversion 

process can be conceived of as subdividing parameter space into two distinct subspaces – the 

calibration solution space and the calibration null space. Parameter combinations within the 

former subspace are informed by the calibration dataset; those within the latter subspace are 

not. The potential errors associated with estimates of parameter combinations associated with 

the former subspace are a function of measurement noise; this is statistically characterised by 

the covariance matrix C(ε). The potential errors associated with estimates of the latter 

parameter combinations are a function of the “innate variability” of real-world parameters; 

this is statistically characterised by the C(k) covariance matrix. Both of these matrices are 

discussed by Doherty (2015) (and referred to extensively in this manual). 

REGPRED writes a PEST input dataset in which PEST is asked to run in “predictive 

analysis” mode. When run in this mode, PEST maximises or minimises a selected model 

prediction while maintaining the objective function at or below a user-specified value. In the 

REGPRED-generated PEST control file, the objective function is defined in such a way that 

it encompasses both of the constraints discussed above. That is, it constrains parameter 

combinations lying within the calibration null space to respect the fact that they must be 

realistic (at a certain probability level), at the same time as it ensures that the model does not 

“become uncalibrated” by employing parameter sets that result in a mismatch between model 

outputs and field measurements that is not justified by the noise content of those 

measurements. 

12.9.2 Theory 

This subsection echoes some of the theory presented in section 8.4.4 of Doherty (2015). 

However it is presented herein in a way that is relevant to functionality embodied in the 

REGPRED utility. 

Null Space Constraints 

Let k represent parameters employed by a model. Let k represent the parameter set achieved 
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through model calibration. From equation (5.5.10) of Doherty (2015) the covariance matrix 

of post-calibration parameter error is calculated as 

C(k - k) = (I - R)C(k)(I - R)t + GC()Gt     (12.9.1) 

where 

k represents true model parameters; 

k represents calibrated model parameters; 

C(k) represents the prior parameter covariance matrix, this describing the innate 

variability of real-world parameters; 

C() represents the covariance matrix of measurement noise, often assumed to be 

diagonal; 

R is the so-called “resolution matrix”; and  

G is the matrix through which estimated parameter values (i.e. the elements of 

k) are calculated from measurements comprising the calibration dataset 

(which are denoted by h in Doherty, 2015); G is referred to herein as the 

“parameter solution matrix”, or more simply as the “G matrix”. 

Meanwhile the actual (and unknowable) errors in the calibrated parameter set k are given by 

 k – k = -(I – R)k + Gε       (12.9.2) 

Where regularised inversion is achieved through singular value decomposition R, I-R and G 

are calculated as 

R = V1V
t
1         (12.9.3) 

I-R = V2V2
t         (12.9.4) 

and 

 G = V1S
-1

1U1
t          (12.9.5) 

where the U, S and V matrices are defined through singular value decomposition of the 

linearized model matrix Z (calculated as the Jacobian matrix) through 

 J = USVt         (12.9.6) 

(Normally singular value decomposition is actually undertaken on the weighted Jacobian 

matrix Q1/2J where, ideally, the weight matrix Q is proportional to C-1(ε). C(ε) in equation 

12.9.1 then becomes the identity matrix I.)  

The columns of V1 and V2 in equations 12.9.3 and 12.9.4 span the calibration solution and 

null spaces respectively. 

To explore the error range of a prediction, the constrained maximisation/minimisation 

process to be described shortly imposes constraints on k-k as k is varied in order to maximise 

or minimise that prediction. It is assumed that a set of calibrated parameters k already exists. 

The extent to which deviations from this set are tolerable at a certain confidence level is 

defined by C(k-k) of equation 12.9.1. Where such deviations are along directions spanned by 

the calibration null space, tolerance of movement of k is governed by the first term of 

equation 12.9.1; the governing probability distribution in this case is C(k) (i.e. expert 

knowledge). To the extent to which changes in parameter values are incurred along directions 

spanned by the solution space, the second term of 12.9.1 exerts constraints; for this term the 
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governing probability distribution is C(), that is, the stochastic description of measurement 

noise (of which so-called structural noise arising from model defects is probably a significant 

contributor – but this is a matter for another time). 

REGPRED asks the user to nominate the number of dimensions comprising the calibration 

solution space. This is the same as the number of columns in V1 of equation 12.9.3. The 

SUPCALC utility can provide some assistance in making this determination. It does not have 

to be exact (and in fact can rarely be exact). REGPRED actually undertakes singular value 

decomposition of the resolution matrix R read from a file produced by the RESWRIT utility. 

In doing so, it calculates the matrices D, E and F such that 

 R=DEFt
         (12.9.7) 

For the set of parameter values k employed in the predictive analysis 

maximisation/minimisation process which it sets up, REGPRED computes 

 g = D2
t(k - k)         (12.9.8) 

where D2 is comprised of the last m-k columns of D, k being the number of dimensions in the 

solution space as provided by the user, and m being the total number of parameters featured 

in the inversion process. D2 approximately spans the calibration null space. The g vector has 

m-k elements.   

From (12.9.2)  

 g = D2
t(k - k) = -D2

t(I – R)k + D2
tG      (12.9.9) 

The second term on the right side of equation 12.9.9 is assumed to be zero; it is in fact 

exactly zero where regularisation in undertaken using singular value decomposition. Hence 

the covariance matrix of g is given by 

 C(g)= D2
tC(k - k)D2 = D2

t(I – R)C(k)(I – R)tD2    (12.9.10) 

In the predictive analysis PEST control file written by REGPRED, all elements of the g 

matrix are read as observations (the calculation of g through equation 12.9.8 is implemented 

through a modification of the model to be described below). They are assigned an “observed 

value” of zero and collectively assigned to an observation group of their own. This group is 

then assigned the covariance matrix C(g) which is computed by REGPRED using equation 

12.9.10 and written to a covariance matrix file ready for the use of PEST. Because the 

elements of g thus comprise part of the observation dataset, deviations of g from zero as 

computed on the basis of a given parameter set contribute to the objective function. Thus in 

constraining the objective function during the maximisation/minimisation process 

implemented by PEST’s predictive analyser, parameter movement within the calibration null 

space is also constrained. 

As an alternative to the above procedure, instead of reading a resolution matrix, REGPRED 

prompts the user for the contents of a singular value decomposition file. Such a file (written 

by PEST when singular value decomposition is employed as a solution mechanism for the 

inverse problem) contains the V matrix of equation 12.9.6, provided the EIGWRITE variable 

in the “singular value decomposition” section of the pertinent PEST control file was set to 1. 

REGPRED extracts V2 from this matrix (i.e. the set of eigenvectors spanning the calibration 

null space) and uses V2
t in place of D2

t and D2
t (I – R) in the above procedure. Where 

regularised inversion was implemented using singular value decomposition, and thus (I - R) 

is equal to V2V2
t, all of these are equivalent.  
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Solution Space Constraints  

Error in the estimation of those combinations of parameters that lie within the calibration 

solution space arises solely from measurement (and structural) noise, the stochastic properties 

of which are supposedly described by the C(ε) covariance matrix appearing in equation 

12.9.1. 

Suppose that the estimated parameter set k when supplied to the model gives rise to model 

outputs o. As parameters are altered through the prediction maximisation/minimisation 

process, a set of parameters k+δk may be calculated. These may, in turn, result in model 

outputs o+δo. Now if δo is “unlikely” at a certain significance level as assessed in terms of 

measurement noise, then o+δo will be statistically different from o at this same significance 

level. Thus, also at this same significance level, the alterations δk to the calibrated parameter 

set k will be statistically unlikely. As a consequence it is then unlikely that k+δk can be 

considered as an alternative to k at the same significance level; hence δk must be constrained 

to prevent this. 

This can be viewed in another way. Suppose that measurement noise for the current 

calibration dataset is a stochastic realisation based on the covariance matrix C(ε). Let this 

realisation be denoted as ε1. Suppose also that “true” system behaviour is encapsulated in the 

vector o so that the measurement dataset h is expressed as o+ε1. Implied in the calibration 

process, and the assumption of truly random measurement noise, is the assumption that a 

model can perfectly replicate true system behaviour if it is provided with the correct 

parameter set. Suppose that this parameter set, after projection onto the calibration solution 

space, is k. Now if any parameter set k+δk gives rise to a set of model outputs o+δo to which 

the above measurement noise ε1 is added, the resulting model outputs will be h+δo. If δo is a 

statistically unlikely random variable as assessed using the covariance matrix C(ε), then h+δo 

is significantly different from h and the parameter difference δk thus introduces discernable 

differences to the calibration dataset k, notwithstanding the noise content of this data. k+δk 

can thus not be considered as a parameter set which “calibrates” the model at a certain 

significance level because it results in a statistically unlikely difference in model outputs, at 

that same significance level. 

Following this logic, when implementing maximisation/minimisation of a user-specified 

prediction, constraints are not implemented directly on model-to-measurement misfit. Rather 

they are imposed on the change in model outputs induced through the 

maximisation/minimisation process. If this change is considered unlikely at a certain 

significance level as assessed in terms of the covariance matrix C(ε) of measurement noise, 

then so too are the parameters required to achieve this, at the same significance level. 

Imposition of all Constraints 

With the two sets of constraints now identified, the manner of their imposition can be 

defined.  

As will be discussed below, REGPRED assumes that you have built a PEST control file in 

which initial parameter values are optimised parameter values, and in which initial 

observation values are model outputs calculated using these optimised parameter values. Any 

regularisation information present within this file is ignored. However the presence of 

regularisation in the preceding parameter estimation process is “felt” through the values of 

the optimised parameters, and through use of the corresponding resolution matrix in defining 

g of equation 12.9.8. It is assumed that you have already calculated this resolution matrix. 
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Observations within the existing PEST control file that are not regularisation observations are 

transferred to the new PEST control file that is written by REGPRED. However, as 

discussed, REGPRED assumes that their values are now perfectly matched to the initial 

parameter values supplied in this file (this can be achieved using the OBSREP utility); thus 

all residuals corresponding to all observations are initially zero. REGPRED assigns weights 

to these observations which are the inverse of the uncertainties of the associated 

measurements, measurement uncertainty being read from an observation uncertainty file; see 

section 2.5 of this manual for specifications of this file type. (It should be noted here that 

observation weights employed in the predictive analysis process can differ from those 

employed in the parameter estimation process. REGPREG, however, does not allow a 

covariance matrix to be used to characterise the uncertainties of field measurements.) 

The observation dataset written to the new PEST control file is supplemented by the elements 

of g; the “observed value” or each element of g is zero. These new observations are assigned 

to an observation group of their own, for which the C(g) covariance matrix of equation 

12.9.10 is employed for specification of uncertainty. As defined above, g is nonzero only 

where parameters depart from their initial values in combinations that lie within the 

calibration null space. 

An objective function is thus formed comprised of modified measurements on the one hand 

and parameter differences projected onto the calibration null space on the other hand. The 

objective function is zero at the commencement of the predictive analysis process and will 

only become non-zero as parameters depart from their previously estimated values. If such 

departures take place in combinations that lie within the calibration solution space, model 

outputs will be affected. If they take place in combinations that lie within the calibration null 

space, the elements of g will be affected. All observations are assigned weights (or a 

covariance matrix in the case of g) which are in accord with their statistical distributions. If 

the noise associated with measurements is Gaussian, and if C(k) is multiGaussian, the square 

root of the objective function thus measures, in normalised observation space, the distance of 

departure of the collective model outputs and g dataset from its optimum value of 0 (for 

which the objective function is zero). The square root of the objective function is thus a 

normalized normal variate and can be employed as a means of setting a significance level on 

these departures (see section 8.3 of Doherty (2015) and documentation of the ASSESPAR 

program for further details). Thus, for example, if the objective function is raised to 9 for a 

certain parameter set, then the distance, in normalised observation space, of the collective set 

of “observations” (including the g component of these observations) from their optimum 

value of zero is 3 standard deviations. Thus at this point the “observations” are statistically 

different from their optimised counterparts at the 99.7% significance level. Given the 

definition of these observations, this means that there is a very low likelihood that the 

corresponding parameter set satisfies the stochastic requirements of C(k), and that model 

output deviations calculated on the basis of the corresponding parameter set satisfy the 

stochastic requirements of C(ε); thus any prediction made on the basis of that parameter set is 

equally unlikely. 

12.9.3 Preparing for a REGPRED Run 

Obtaining the Resolution Matrix 

Prior to running REGPRED, a regularised inversion exercise must have been carried out. 

Regularisation could have been achieved using singular value decomposition alone (in which 

case PEST was run in “estimation” mode), and/or using Tikhonov constraints (in which case 
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PEST was run in “regularisation” mode”), and/or using SVD-assist (in either mode). It is 

assumed that the RESPROC utility has been run after this, and that RESWRIT has been run 

to produce a resolution matrix, stored in a file of its own using PEST matrix file format (see 

section 2.4 of this manual). Note that if regularised inversion is carried out using SVD-assist, 

a second set of parameter sensitivities may have been calculated based on optimised 

parameters in order to provide more accuracy in computation of the resolution matrix. See 

documentation of RESPROC for more details. 

Building an “Optimised PEST Control File” 

The next task, prior to running REGPRED, is to build a PEST control file in which initial 

parameter values are optimal, and in which “observations” are in fact the set of model outputs 

corresponding to these optimised parameters. The former can be achieved using the PARREP 

utility (and may have been done already to calculate sensitivities on the basis of optimised 

parameters). The second of the above tasks can be carried out using the OBSREP utility. 

After having run both of these programs an “optimised PEST control file” will have been 

produced. If NOPTMAX is set to 0 in this file and PEST is run in order to carry out just one 

model run, the (measurement) objective function should be zero.  

There is no need to remove regularisation observations and/or regularisation prior 

information from this file, for REGPRED will take care of this. However the following 

should be noted. 

1. If the optimised PEST control file does not instruct PEST to run in “regularisation” 

mode (as inherited from the files from which it was built), then the name of no 

observation group should begin with the string “regul”. 

2. It is possible that, during the regularised inversion process, one or more 

“observations” were “carried along” (with weights of zero) talking no part in the 

parameter estimation process, but were in fact model predictions of interest. This 

strategy allows calculation of derivatives of these predictions with respect to all model 

parameters. If this is the case, these “observations” may have been assigned to an 

observation group of their own. Unless there is only one such “observation” these 

observations should not be assigned to an observation group named “predict”, as this 

observation group has special significance when conducting predictive uncertainty 

analysis. If, however, there is only one observation assigned to the observation group 

“predict”, REGPRED will treat this as the prediction whose task it is for the 

predictive analysis process to maximise/minimise when it builds the predictive 

analysis PEST control file. 

12.9.4 Running REGPRED 

REGPRED’s Dialogue 

REGPRED commences execution with the prompt 

Enter name of existing PEST control file: 

Provide the name of an existing PEST control file containing optimised parameter and 

observation values; if you omit the “.pst” extension, REGPRED will automatically add this 

for you. Note that if parameter estimation was carried out using SVD-assist, this should not 

be a super-parameter PEST control file. Rather it should be a base parameter PEST control 

file (containing optimised parameter and observation values as discussed above). 



Nonlinear Error and Uncertainty 176 

 
 

After you have provided the name of this file, and after REGPRED verifies that this file 

exists, it prompts 

Does it contain optimised parameter and observation values?  [y/n]: 

If you answer “n” REGPRED’s reaction will be swift and decisive: 

Then use PARREP and OBSREP to build such a PEST control file. 

whereupon it will immediately cease execution.  

REGPRED’s next prompt is 

Use resolution or SVD matrix for null space projection? [r/s]: 

If the response to the above prompt is “r”, REGPRED prompts 

Enter name of corresponding resolution matrix file: 

As mentioned above, this resolution matrix file should have been produced by running 

RESPROC followed by RESWRIT after the PEST regularised inversion run through which 

estimated parameter values (and optimised model outputs) were obtained. 

REGPRED next asks 

Enter dimensions of solution space: 

This question may sometimes be difficult to answer. The SUPCALC utility can help. 

If, on the other hand, you had instructed REGPRED to read an SVD matrix instead of a 

resolution matrix, it will prompt 

Enter name of SVD matrix file: 

This must be a file with an extension of “.svd” produced during a previous PEST run in 

which PEST was instructed to use singular value decomposition as a solution device for the 

inverse problem. If the EIGWRITE variable was set to 1 on that run, the V matrix comprised 

of eigenvectors of Q1/2J is recorded during every iteration in this file. REGPRED next asks 

Get SVD for which iteration number? <Enter if 1>: 

If the singular value decomposition run was undertaken for the purposes of model calibration, 

enter the number of the last iteration undertaken. However if PEST was only run for one 

iteration, purely for the sake of obtaining this matrix, then a matrix will be produced only for 

iteration number 1. See below for a way in which this can be easily achieved based on 

existing sensitivities even if singular value decomposition had not been used as a solution 

device for the inverse problem. Note also that, ideally, the RLAMBDA1 control variable 

should be set to zero if PEST is run purely for the sake of obtaining this file, for then the 

contents of this file will not reflect the value of the Marquardt lambda.  

REGPRED’s next prompt is 

Enter dimensions of solution space: 

See above. 

Next, whether REGPRED reads a resolution matrix file or a SVD file, it prompts for the 

name of a parameter uncertainty file and for the name of an observation uncertainty file. 

Enter name of parameter uncertainty file:  

Enter name of observation uncertainty file:  

See section 2.5 of this manual for specifications of an uncertainty file. In the present context 

the purpose of the above files is to supply the C(k) and C(ε) matrices described above. Note 
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that if parameters are log-transformed through the parameter estimation process, then 

pertinent elements of C(k) must relate to the logs of these parameters. Note also that if the 

observation uncertainty file cites a PEST control file (because the weights in this file are the 

inverse of measurement uncertainties), it must not be the same PEST control file as that 

whose name was supplied to REGPRED following the first of its prompts. However it must 

provide uncertainty information for all observations and prior information equations cited in 

this PEST control file, except for those which belong to regularisation groups. 

REGPRED next prompts for the name of the file that it must write. 

Enter name for new predictive analysis PEST control file: 

This new PEST control file will exclude any regularisation observations and/or prior 

information cited in the original PEST control file. In this new PEST control file, PEST will 

be instructed to run in “predictive analysis” mode. It will also include a “predictive analysis” 

section containing control variables for the predictive analysis process. One of these variables 

is NPREDMAXMIN, which informs PEST whether the prediction of interest is to be 

maximised or minimised. In order to know this, REGPRED prompts 

Maximise or minimise prediction? [a/i]: 

Then it asks 

Enter value for PDO (<Enter> if 9.0): 

As is explained in chapter 8 of part I of this manual, PD0 is the objective function constraint 

imposed through the predictive maximisation/minimisation process. A value of 9.0 is 

equivalent to three standard deviations (because it is the square of 3) and hence to a two-sided 

confidence level of about 99.7% for normally distributed variables.  

If the PEST control file whose name is supplied to REGPRED contains an observation group 

named “predict”, and if that observation group contains a single observation, REGPRED next 

prompts 

Treat single member "obs" of observation group "predict" 

   as "the prediction" in new PEST control file?  [y/n]: 

where “obs” is replaced by the observation actually identified in the PEST control file.  If the 

answer to this question is “y”, REGPRED then asks 

Incorporate predictive noise in pred. anal. process  [y/n]: 

See chapter 8 of part I of this manual. As explained in that chapter, the existence of 

“predictive noise” can be incorporated into the predictive maximisation/minimisation process 

undertaken by PEST. If this is done, the PREDNOISE variable in the “predictive analysis” 

section of the PEST control file must be set to 1, and a non-zero weight must be supplied to 

the prediction comprising the single member of the observation group “predict”. This weight 

must be the inverse of the standard deviation of predictive noise. 

The Modified Model 

The model run by PEST as part of the predictive analysis process must compute g of equation 

12.9.7 on the basis of current parameter values. REGPRED modifies the model to be able to 

do this. On the assumption that the original model is a batch or script file (REGPRED will 

cease execution with an error message if the extension of the model filename is not “.bat”), 

REGPRED adds commands to the beginning of this file as it writes a new model batch file 

named regpredbat.bat which the new PEST control file will employ to run the model. 
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A template file named par###.tpl is added to the PEST input dataset, its corresponding model 

input file being named par###.mat. This contains the vector of parameter values k; note that 

only adjustable parameters are written to this file. The model then runs the VECLOG utility 

to take the logs of log-transformed parameters, producing a file named parlog###.mat. The 

transformation matrix file employed by VECLOG (which is written by REGPRED) is named 

partran###.mat.  

A difference is then taken between current (transformed) parameter values k and optimised 

parameter values k. The latter are stored in file refpar###.mat which is written by 

REGPRED; note that the values of log-transformed parameters are log-transformed before 

storage in this file. Vector differencing is undertaken by the MATDIFF utility, the k-k vector 

is written to a file named pardiff###.mat. 

The MATPROD utility is used to compute g using equation 12.9.9. D2
t
 (or V2

t if the singular 

value decomposition option is employed) is stored in file proj###.mat by REGPRED. g itself 

is written to file projdiff###.mat by MATPROD. This file is then read by a new instruction 

file (written by REGPRED) named proj###.ins. 

The elements of g are assigned to observations named projdiff1, projdiff2, etc. in the new 

PEST control file written by REGPRED. These in turn are assigned to the observation group 

projdiff to which the covariance matrix C(g) (computed using equation 12.9.10) is assigned in 

the “observation groups” section of the new PEST control file written by REGPRED.  

It is important to ensure that the VECLOG, MATDIFF and MATPROD executables reside in 

a directory cited in the PATH environment variable (or reside in the current working 

directory). If running Parallel PEST or BEOPEST, it is important to ensure that these 

executables are transferred to slave machines. 

12.9.5 Some Notes 

The following aspects of the input dataset written by REGPRED should be carefully noted. 

1. If, in the original PEST control file whose name is supplied to REGPRED, there is an 

observation group named “predict”, and if it contains more than one member, 

REGPRED will cease execution with an appropriate error message. Alternatively, if 

there is such a group and it contains only one member, REGPRED will prompt (as 

discussed above) for permission to treat this one member as the prediction whose task 

it is for PEST to maximise/minimise in the forthcoming predictive analysis process. If 

you do not want this, REGPRED will ask you to assign that observation to another 

observation group. If there is no observation group named “predict” in the original 

PEST control file REGPRED will create one. It is then your task to add an actual 

prediction to this PEST control file. A new instruction file (or an alteration made to an 

existing one) will also be required in order to provide PEST with the means to read 

this new prediction from the model output dataset. REGPRED issues a warning to this 

effect before finishing execution. 

2. As discussed above, observation and prior information weights are not transferred 

from the original PEST control file to the new one. Rather observation weights are 

assigned on the basis of observation uncertainties as supplied to REGPRED through 

an observation uncertainty file. However if any observation or prior information 

equation is assigned a weight of zero in the original PEST control file, it will also be 

assigned a weight of zero in the new PEST control file as this is taken as an indication 

that the user is not interested in this observation. 
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3. All regularisation observations and prior information equations are eliminated from 

the new PEST control file written by REGPRED. On many occasions of PEST usage 

regularisation constraints are limited solely to prior information. The elimination of 

these prior information equations from the new PEST control file has no adverse 

consequences. However where observations, rather than prior information equations, 

are eliminated from the PEST control file because they belong to a regularisation 

group, pertinent instruction files comprising the PEST input dataset need to be deleted 

or modified. It is your responsibility to undertake this task. (REGPRED reminds you 

of this before ceasing execution). 

4. If a “singular value decomposition” section exists in the original PEST control file, it 

is removed. 

5. Irrespective of the NOPTMAX (current number of iterations) setting in the original 

PEST control file, a NOPTMAX setting of 50 is provided to the new PEST control 

file. (This can prevent you from being severely disappointed if, on returning to your 

computer the morning after setting up PEST to run all night, you find that PEST has 

run the model only once in order to calculate the objective function, or that PEST ran 

for only one iteration in order to calculate parameter sensitivities because you forgot 

to alter the NOPTMAX setting.) 

6. Predictive analysis control variables written to the “predictive analysis” section of the 

new PEST control file by REGPRED are conservative. A line search is instigated, the 

control variables for this line search being such as to sample the line densely enough 

to detect the existence of a possible fall in the objective function followed by a rise 

before intersection of the PD0 contour. Also, convergence criteria are tight. If these 

settings are not suitable, you should alter them yourself. 

When PEST is run on the basis of the new PEST control file (it may be necessary to add the 

prediction to this file first as discussed above) the initial objective function should be zero. 

There may be an occasion or two when PEST will cease execution after the first iteration, 

saying that the “phi gradient is zero”. If this is the case, perturb the initial value of one of the 

parameters by a slight amount and re-commence PEST execution. 

12.9.6 Using the SVD Matrix Option 

If you wish to provide REGPRED with an SVD file instead of a resolution data file and you 

don’t already have one, then follow these steps. It is assumed that you have a PEST control 

file in which optimised parameter values are initial values, and that you have run PEST to 

produce a corresponding JCO file. 

1. Set NUMLAM to 1 and RLAMBDA1 to zero in the PEST control file. 

2. Remove all regularisation observations and prior information from this file; this can 

be facilitated using the SUBREG1 utility. 

3. Add a “singular value decomposition” section to this file. Be sure to set EIGWRITE 

to 1. 

4. Set NOPTMAX to 1. 

5. Use the JCO2JCO utility to create a JCO file corresponding to this new PEST control 

file. 

6. Start PEST on the basis of the new PEST control file using the “/i” switch. When 

prompted for the name of a JCO file, supply the name of the JCO file that was just 
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written by JCO2JCO. PEST will then undertake three model runs – one to compute 

the objective function, one to test an upgrade vector, and one on the basis of “best fit 

parameters”. However no model runs will be required for calculation of the Jacobian 

matrix, as this is read from the existing JCO file. 

12.10 ASSESSPAR 

12.10.1 General 

The ASSESSPAR utility can be used to assist in model-based hypothesis-testing.  

Suppose that a model has been calibrated. Suppose that it is then re-calibrated with an extra 

“observation” included in the calibration process, this being the value of a prediction of 

interest. (This is effectively done when using PEST in “pareto” mode.) If parameter values 

that emerge from this second calibration process are “unreasonable”, then the prediction can 

be deemed to be unlikely. 

The integrity of model-based hypothesis-testing conducted in this way rests upon the model’s 

ability to allow predictive values to be computed if, indeed, these values are compatible with 

an expert-knowledge-based assessment of hydraulic properties. In the groundwater modelling 

context, this will normally require that calibration be undertaken using highly-parameterized 

inversion, so that predictive possibilities are not artificially precluded by a parameterization 

scheme that is incapable of representing geologically realistic heterogeneity. Both the first 

and second calibration exercises discussed above will therefore probably employ Tikhonov 

regularisation in which preferred values are assigned to parameters through regularisation 

prior information. A PEST control file will probably therefore exist in which “expected 

parameter values” from a pre-calibration (or pre-re-calibration) point of view are represented 

as initial values within this file. Assessment of parameter sets which emerge from the 

hypothesis-testing calibration process is then based on differences between calibrated 

parameter values and these prior expected parameter values. ASSESSPAR allows this 

comparison to be made on a statistical basis.  

ASSESSPAR computes two variates, one a chi-square variate and one a normal variate. 

(Here it is assumed that prior parameter probabilities are multiGaussian in nature.) 

Optionally, a prediction-specific normal variate can be computed based on sensitivities of a 

prediction of interest to model parameters. If this is to be done, the model calibration dataset 

will need to include this prediction so that the sensitivity of this prediction to model 

parameters is available from a JCO file.  

If desired, other statistics can be calculated on the basis of information recorded in the 

ASSESSPAR output file. This file tabulates the values of “eigenparameters”; the standard 

deviation of each of these is 1.0, while each is statistically independent of other 

eigenparameters. If a Gaussian prior parameter distribution is assumed, parameter (and hence 

predictive) confidence intervals are readily calculated from the values of these 

eigenparameters. 

12.10.2 Theory 

The theory presented in this sub-section is taken from sections 8.3 and 8.5 of Doherty (2015). 

It is repeated here in a way that allows operation of the ASSESSPAR utility to be better 

understood. 

Let k denote a parameter set. Actually, let it denote the differences between an actual 
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parameter set and a “base” parameter set whose values are prior expected parameter values. 

Thus the expected value of the k parameter vector is the vector 0. 

Let the covariance matrix of k be denoted as C(k). Because C(k) must be a symmetric, 

positive-definite matrix, it can be written (through singular value decomposition) as 

 C(k) = EFEt         (12.10.1) 

where F is a diagonal matrix with positive diagonal elements. 

Let the “eigenparameter set” m be defined through the following transformation (which is the 

same as the Kahunen-Loève transformation discussed by Doherty, 2015). 

 m = F-1/2Etk         (12.10.2) 

It is easily verified that the covariance matrix of m, i.e. C(m), is the identity matrix I. Hence, 

by definition, the scalar variable mtm has a chi-square distribution with m degrees of 

freedom, where m is the number of elements of k and hence of m. Basic matrix manipulation 

demonstrates that 

 mtm = ktEF-1/2F-1/2Etk = ktEF-1Etk = ktC-1(k)k    (12.10.3) 

Hence ktC-1(k)k also has a chi-square distribution. Tables of probabilities associated with 

chi-square values are readily available; calculators are also available on the internet. Note that 

as the number of degrees of freedom increases, the chi-square distribution approaches a 

normal distribution with mean m and variance 2m. This relationship can be used to assess 

parameter credibility in highly parameterized cases as standard tables do not usually extend 

beyond m values of about 100. 

Let t be a scalar that is calculated from m (defined as above) through use of a vector j as 

 t = jtm          (12.10.4) 

Through the basic propagation of variance relationship, the variance of t is given by: 

 σ2
t = jtC(m)j = jtj        (12.10.5) 

If follows that if j is a unit vector then the variance (and hence standard deviation) of j is 1.0. 

If C(m) pertains to a normal distribution, then this provides us with a normal variate through 

which parameter credibility can be assessed. Useful options for j may include vectors for 

which all elements except that pertaining to a parameter of interest are zero while that 

pertaining to the parameter of interest is 1; this allows the credibility of the value of an 

individual parameter to be assessed.  

For predictive credibility assessment a more useful unit vector may be 

 j = v = w/(wtw)1/2        (12.10.6) 

where w encompasses sensitivities of a prediction of interest to elements of the 

eigenparameter set m.  

Suppose that the sensitivity of a prediction s to the real parameter set k is given by the vector 

y. Then 

s = ytk          (12.10.7) 

If w is calculated as 

 w = F1/2Ety         (12.10.8) 

then 
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 wtm = ytEF1/2F-1/2Etk = ytk = s      (12.10.9) 

the second last equality following from orthonormality of E. Because v is a unit vector, it 

follows that the scalar 

 s΄ = vtm = wtm/(wtw)1/2 = ytk/(wtw)1/2     (12.10.10) 

has a standard deviation of 1. From (12.10.8) it follows that 

 wtw = ytEF1/2F1/2Ety = ytC(k)y      (12.10.11) 

Hence 

 s΄ = ytk/[ytC(k)y]1/2        (12.10.12) 

has a standard deviation of 1. If C(k) pertains to a multi-Gaussian distribution, then s΄ is a 

standard normal variate. Its value is then easily employed for assessing parameter confidence 

in contexts such as that described above where parameter values are “calibrated” to ensure 

the occurrence of a prediction s. In doing so, predictive confidence is also assessed. 

Calibration to ensure the occurrence of a prediction can be achieved through a single 

calibration exercise in which the prediction is included in the calibration dataset; alternatively 

it can be achieved through using PEST in “pareto” mode. 

12.10.3 Using ASSESSPAR 

ASSESSPAR is run using the command 

assesspar parfile pestfile uncfile outfile [senfile] 

where 

parfile is a parameter value file, 

pestfile is a PEST control file containing prior expected parameter values, 

uncfile is a parameter uncertainty file, 

outfile is the eigenparameter output file, and 

senfile is an optional predictive sensitivity file. 

ASSESSPAR assumes that expected parameter values are housed as initial values in the user-

nominated PEST control file. The transformation status of parameters is also read from this 

file. As is normal practice, parameter sensitivities and uncertainties pertaining to parameters 

must pertain to the logs of parameters where parameters are denoted as log-transformed in the 

PEST control file. 

If a predictive sensitivity file is not supplied, then the normal variate s΄ of equation (12.10.12) 

is not calculated. Only the chi-square variable ktC-1(k)k is calculated in this case. Inversion 

of the C(k) matrix is undertaken using SVD. This may take a while where the matrix is large; 

the 64bit version of ASSESSPAR may then be required. 

Whether or not a predictive sensitivity vector is supplied, the output file written by 

ASSESSPAR lists all eigenparameters. If numerical singular value decomposition of C(k) is 

undertaken (which occurs if C(k) has any off-diagonal elements), these are listed in order of 

decreasing singular value. Otherwise they are listed in the same order as parameters in the 

PEST control file as there is then a one-to-one relationship between actual parameters and 

eigenparameters. Eigenparameters are the elements of the vector m of equation (12.10.2). 

Where C(k) pertains to a Gaussian distribution, then each of these are standard normal 

variates whose credibility is thereby easily assessed. 

The values of the chi-square variable and (when the predictive sensitivity file is supplied) the 
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values of the prediction-specific normal variate are each written to the screen and recorded in 

the ASSESSPAR output file. Note that the degrees of freedom associated with the chi-square 

distribution is the number of adjustable parameters contained in the PEST control file.  This 

is also listed to the screen and to the ASSESSPAR output file. 

Note also that a predictive sensitivity file is easily obtained from a PEST Jacobian matrix file 

using the JROW2VEC utility. 
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13. Latin Hypercube Sampling 
I would like to thank Sandia National Laboratories for funding the writing of the software 

documented in the present chapter. On a personal basis, thanks also go to Scott James, Bill 

Arnold (from SNL) and Paul Reimus (from LANL). 

13.1 Introduction 

13.1.1 General 

This chapter documents three utility programs which allow data interchange between PEST 

and the LHS program developed by Sandia National Laboratories. Use of these programs can 

facilitate calibration-constrained uncertainty analysis through combining the sampling 

efficiencies of the Latin hypercube scheme with the ability of PEST to modify randomly-

generated parameter sets in order to allow model outputs to match field data. 

A WINDOWS-compiled version of the LHS program named runlhs.exe is provided with 

PEST. It is run by typing its name at the screen prompt, followed by the name of its input file. 

Preparation of its input file can be undertaken using a standard text editor, or by translation 

from a PEST input dataset. The LHS software manual is also provided with PEST. It 

describes the algorithmic details of LHS, and provides specifications for its input file.  

The full reference for the LHS software manual is as follows. 

Swiler, L.P. and Wyss, G.D., 2004. A User’s Guide to Sandia’s Latin Hypercube Sampling 

Software: LHS UNIX Library/Standalone Version. Sandia National Laboratories, Report 

SAND2004-2439. 

13.1.2 Using PEST with LHS 

While the utility programs described in the present chapter facilitate use of PEST with LHS, 

you will nevertheless be required to undertake a certain amount of PEST setup yourself when 

using these two packages together. Hopefully, however, the task of passing parameter values 

between them is made easier through use of these programs. 

Two possible strategies for joint use of PEST and LHS are now discussed. Other possibilities 

are left to the user’s imagination. 

Calibration-Constrained Random Parameter Fields – Method 1 

The aim of all calibration-constrained random parameter field generation is to sample the 

posterior probability distribution of a parameter set. Strategies such as Markov chain Monte 

Carlo can achieve this; however they may not be useable in contexts where model run times 

are large. Hence approximate and more model-run-efficient methods may need to be used 

instead. One such method is the null space Monte Carlo (NSMC) method available through 

the PEST suite. Ideally, it should be possible to realise further efficiencies through combining 

this with the Latin hypercube sampling methodology. 

A possible strategy for combining NSMC and LHS is as follows. 

1. Calibrate a model. 

2. Construct a PEST input dataset in which calibrated parameters feature as initial 

parameter values.  
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3. Run PEST to obtain a Jacobian matrix based on calibrated parameter values. 

4. Generate parameter samples based on the prior probability distribution and prior 

parameter values using LHS. 

5. Use the PNULPAR utility to obtain a secondary set of samples that, through 

differencing with the calibrated parameter set and null space projection, should 

“almost calibrate” the model, while retaining null space randomness. 

6. Undertake a series of re-calibration operations using SVD-assist as per the NSMC 

methodology. Recall from section 10.6.3 of part I of this manual that NSMC achieves 

computational efficiency through  

a. differencing a random parameter field with a calibrated parameter field and 

removal of any solution space parameter components of this difference which 

compromise goodness of fit between model outputs and field data (achieved 

using PNULPAR, as stated above); 

b. use of a limited number of super parameters for parameter adjustment; 

c. re-use of a global set of super parameter sensitivities for the initial re-

calibration iteration as applied to all random, null-space-projected parameter 

sets. 

If desired, Tikhonov constraints could be introduced to the suite of PEST runs required to 

lower the calibration objective function to a suitably low level. These could constrain 

parameter sets to deviate minimally from their initial LHS-sampled and null space projected 

values in achieving the desired objective function. 

Calibration-Constrained Random Parameter Fields – Method 2 

In the above methodology, the LHS method is employed for sampling of the prior parameter 

probability distribution. Calibration constraints are then applied to these samples through 

removal of solution space components that compromise goodness of model-to-measurement 

fit, while retaining null space components which (by definition if the model is linear) do not 

affect that fit. An alternative strategy is to sample the posterior parameter probability 

distribution (or an approximation to it) using the LHS sampling methodology. A possible 

strategy is as follows. 

1. Calibrate a model. 

2. Construct a PEST input dataset in which calibrated parameters feature as initial 

parameter values. 

3. Run PEST to obtain a Jacobian matrix based on calibrated parameter values. 

4. Use the PEST PREDUNC7 utility to obtain a linear approximation to the posterior 

parameter covariance matrix. 

5. Use the PEST MATSVD utility to obtain eigencomponents of this covariance matrix. 

6. Using these eigencomponents, define a set of independent parameters of unity 

variance (see below). 

7. Sample these independent parameters using LHS and then back-transform these 

samples to obtain samples of native parameter values (see below). 
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8. (Perhaps) use PNULPAR to effect further removal of unwanted solution space 

components from the above-generated random parameter sets. 

9. Using the NSMC method as described above, alter these parameter fields such that 

they respect calibration constraints. 

10. Alternatively, if the dimensions of the null space are not very large, adjust each of 

these parameter fields in order to lower the objective function by running PEST with 

the “/i” switch. The first (and possibly only) iteration required to lower the objective 

function to a suitable level is then obtained “for free”, using the same, already-

computed, Jacobian matrix calculated using the calibrated parameter set. 

Transformation of parameters to achieve statistical independence is now briefly described.  

Suppose that the parameter set k has a covariance matrix C(k). Undertake singular value 

decomposition of this covariance matrix to obtain matrices E and F such that 

 C(k) = EFEt         (13.1.1) 

In equation (13.1.1) F is a diagonal matrix containing the eigenvalues of C(k) arranged from 

highest to lowest while E is an orthonormal matrix, i.e. a matrix whose columns are 

orthogonal unit vectors. Using standard propagation of covariance relationships it is easily 

shown that the vector m defined through transformation of k as 

 m = F-1/2Etk         (13.1.2) 

is comprised of elements mi that are statistically independent and that have unit standard 

deviation. If the mi are individually sampled using LHS, an equivalent set of k parameters can 

be calculated from thus-sampled m vectors through the relationship 

 k = EF1/2m         (13.1.3) 

In implementing equations 13.1.2 and 13.1.3, the expected values of parameters should be 

subtracted from the actual parameter values before transformation, and then added back after 

transformation. 

13.2 PHISTATS 

Although it was written to expedite use of the Sandia LHS program with PEST, use of 

PHISTATS is broader than this. It can be used on its own, or as part of any batch file that 

undertakes repeated PEST runs. It provides a mechanism for an up-to-date reporting of the 

status of those runs, and of their ability to lower (or not) the objective function. 

PHISTATS is run using the command 

phistats recfile N 

where recfile is the name of a PEST run record file, and N is any integer supplied by the user. 

If run inside a loop recorded in a batch file, N will probably be the index of the loop control 

variable which, under normal operation, will be incremented after each pass through the loop. 

When executed in the above manner, PHISTATS reads the nominated run record file. Note 

that an extension of “.rec” is presumed; if this is omitted it will be added to the user-supplied 

filename automatically. PHISTATS then writes the following information to the screen. 

• initial objective function; 

• initial contributions to the objective function by all observation groups; 
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• initial measurement and regularisation objective functions (if PEST is run in 

“regularisation” mode); 

• initial predictive and predictive error terms (if PEST is run in “predictive analysis” 

mode). 

• all of the above statistics as recorded at completion of PEST execution. 

Note that PHISTATS will cease execution with an error message if it is asked to read a run 

record file that documents the outcomes of a PEST run in which PEST is run in “pareto” 

mode. 

Not also that the integer N supplied on the command line does not affect PHISTATS’s 

reading of the run record file, or which file it reads. This index is, however, reported to the 

screen together with the objective function information that it provides. The user is therefore 

informed of the current loop index. 

13.3 LHS2PEST 

13.3.1 General 

LHS2PEST provides a linkage between PEST and the LHS program written by Sandia 

National Laboratories. It facilitates the undertaking of multiple PEST runs, each based on a 

different set of Latin hypercube parameter value samples generated by LHS.  

PEST runs can be undertaken for a number of purposes. If the NOPTMAX control variable is 

set to 0, then PEST will simply run the model once, calculate the objective function and 

different components thereof, calculate and record some statistics, and then cease execution. 

If NOPTMAX is set to -1 or -2, PEST will calculate the Jacobian matrix, this comprising 

sensitivities of members of the observation dataset to the different parameters. If NOPTMAX 

is set to a positive number, then PEST will undertake parameter estimation; for each 

parameter estimation run, initial parameter values can thus be Latin hypercube samples of the 

various parameters.  

For NOPTMAX not set to zero, the following should be noted. 

• If a model is linear with respect to its parameters, sensitivities recorded in the 

Jacobian matrix are independent of parameter values. 

• If undertaking repeated parameter estimation based on different LHS-generated initial 

parameter values, and this process does not employ the SVD-assist methodology (do 

not confuse this with singular value decomposition as a solution device for the inverse 

problem), consider running PEST with the “/i” switch so that it can re-use the same 

Jacobian matrix on its first iteration for each of these parameter estimation exercises. 

Presumably this matrix will have been calculated using a representative set of 

parameter values - ideally prior expected parameter values. (Note that in the batch file 

written by LHS2PEST - see below - the command to run PEST is not accompanied by 

this switch; you must add it to the pertinent command yourself.) 

• Through use of the ADDREG1 utility, Tikhonov constraints can be implemented 

which promulgate maximum adherence of adjusted parameter values to initial 

parameter values; maximum respect for LHS samples as parameters are adjusted to 

satisfy calibration constraints is thereby maintained.  
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Use of LHS2PEST is predicated on the assumption that a PEST input dataset and 

corresponding LHS input dataset exist. It is also assumed that the same parameters have the 

same names in both of these datasets. (As will be discussed, either of the files comprising 

these dataset can possess other parameters as well.) Adherence to this protocol will require 

that parameter name lengths be restricted to 12 characters or less in the LHS input dataset, as 

this is the character length limit for a parameter name employed by PEST.  

It is further assumed that LHS has been run, and that an LHS output file with parameter 

sample values has thus been recorded. LHS2PEST reads these samples, and builds a set of 

PEST parameter values files, each recording the values associated with one sample set. 

(Parameter value files are described in section 2.2 of this manual.) These files can be used in 

similar ways to those written by the RANDPAR utility. In particular, through sequential use 

of the PARREP utility, parameter sets contained in these files can be used as initial values in 

a sequence of PEST control files. PEST can then use these control files to undertake 

sequential runs for any of the reasons discussed above. 

The tasks performed by LHS2PEST depend on the command that is used to run it. The 

commands, and the tasks that correspond to these commands, are now described.  

13.3.2 LHS2PEST - Level 1 

The simplest way to run LHS2PEST is to invoke the command 

lhs2pest lhsoutfile parfilebase 

where 

lhsoutfile  is the name of an LHS output file that includes parameter sample 

values, and 

parfilebase  is the filename base of a set of PEST parameter values files.  

If run using the above command, LHS2PEST does the following. 

• It reads the names of parameters which are featured in the LHS output file. If any of 

these names are greater than 12 characters in length, LHS2PEST reports this as an 

error and then ceases execution. 

• It reads the Latin hypercube samples associated with these parameters. 

• For each Latin hypercube sample set, it writes a single PEST parameter value file 

which contains the values of these samples.  

Suppose that parfilebase is supplied as “random”. Then the parameter value files written by 

PEST are named random1.par, random2.par, etc. LHS2PEST writes as many of these files as 

there are sample sets in the LHS output file. Sequence numbers are preserved in writing these 

files. Hence, in the above example, file randomN.par contains values pertaining to the N’th 

Latin hypercube sample generated by LHS.  

The following protocols are adopted in writing these parameter value files. 

• All parameters are given a SCALE of 1 and an OFFSET of 0. 

• The PRECIS and DPOINT control variables are given values of “single” and “point” 

respectively. 

13.3.3 LHS2PEST - Level 2 

When run using the command 



Latin Hypercube Sampling 189 

 
 

lhs2pest lhsoutfile parfilebase pestfile 

where pestfile is the name of a PEST control file, LHS2PEST reconciles parameters 

represented within a PEST control file with those represented in the LHS output file. In 

particular, it informs the user if any parameters cited in the LHS output file are not cited in 

the PEST control file; it also informs the user if any parameters cited in the PEST control file 

are not cited in the LHS output file. 

When recording parameter value files LHS2PEST adopts the following protocols when run in 

the above way. 

• The only parameters which are recorded in these files are those which are featured in 

the PEST control file. Hence a parameter that is cited in the LHS output file but is not 

cited in the PEST control file is not recorded in the parameter value files written by 

LHS2PEST. 

• Where a parameter is cited in the PEST control file, but not featured in the LHS 

output file, it is provided with the same value in all parameter value files, this being 

its initial value as recorded in the PEST control file.  

• All parameters which feature in both PEST control and LHS output files are given 

Latin hypercube sample values as recorded in the LHS output file. Note that this 

occurs regardless of whether they are adjustable, fixed or tied in the PEST control file. 

Provide them with alternative names in the latter file if you do not want this to 

happen. 

• If an LHS-generated sample for a particular parameter has a value which exceeds the 

upper bound for that parameter as recorded on the PEST control file, or is lower than 

that parameter’s lower bound, then you will be notified of this. At the same time the 

sampled parameter value is clipped to respect these bounds. 

• If a parameter is featured in the PEST control file, but not in the LHS output file, and 

if that parameter is tied to a parameter whose value is informed by the LHS output 

file, the value of the tied parameter is adjusted in accordance with the LHS-supplied 

value for its parent parameter. If, in doing this, its upper or lower bound is 

transgressed, it is adjusted back to its upper or lower bound and a warning is issued. 

• The SCALE and OFFSET value provided to each parameter in LHS-recorded 

parameter value files is that with which it is provided in the PEST control file. 

• Values for PEST control variables PRECIS and DPOINT recorded in the headers to 

parameter value files are equivalent to those used in the PEST control file read by 

LHS2PEST. 

Parameter value files written by LHS2PEST when run in level 2 mode are thus perfectly 

compatible with the PEST control file cited on the LHS2PEST command line. 

13.3.4 LHS2PEST - Level 3 

To activate LHS2PEST level 3 functionality, it must be run using the following command. 

lhs2pest lhsoutfile parfilebase pestfile batchfile 

In this case LHS2PEST does everything that level 2 functionality requires. However it also 

writes a batch file through which PEST can be run repeatedly based on the parameter value 

file sequence that LHS2PEST also generates. An example batch file is shown below. 
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@echo off 

rem ############################################################ 

rem Delete an existing record file. 

rem ############################################################ 

 

del /P record.dat 

echo > record.dat 

 

rem ############################################################ 

rem Do all the PEST runs. 

rem ############################################################ 

 

for /L %%i in (1,1,100) do ( 

parrep random%%i.par temp1.pst t###.pst 

del t###.rec 

pest t###.pst 

copy t###.res t###%%i.res 

phistats t###.rec %%i >> record.dat 

) 

Figure 13.1 A batch file written by LHS2PEST. 

The batch file written by LHS2PEST runs PEST repeatedly through a processing loop. This 

loop is traversed as many times are there are Latin hypercube samples provided in the LHS 

output file. On each occasion on which PEST is run, the PARREP utility is first run in order 

to write a new PEST control file which is identical to the PEST control file nominated on the 

LHS2PEST command line except for the fact that its initial parameter values are those 

provided by the respective parameter value file, and hence constitute LHS-generated Latin 

hypercube parameter sample values. This PEST control file is named t###.pst. After each 

PEST run, the PEST residuals file (named t###.res) is copied to file t###N.res) where N is 

the run index. Hence you can inspect the details of model-to-measurement fit calculated on 

the basis of all Latin hypercube parameter sets. If you do not want these files saved, comment 

out or delete the respective line from the batch file. Alternatively, request that other PEST 

files be saved by adding other commands of a similar type within the processing loop 

provided in the batch file. 

Each PEST run is followed by a PHISTATS run. This provides you with the opportunity to 

inspect a file named record.dat (rename this file in the batch file if you wish) at any loop 

count, and at the end of the loop altogether when all PEST runs have been completed. This 

file lists the sequence of objective functions that have been calculated on the basis of the 

different Latin hypercube sample sets that have been used until the time of inspection. At the 

start of the loop an existing file of this name (i.e. record.dat) is deleted. The batch file 

prompts for permission to delete this file before it actually does this. 

When run in level 3 mode, LHS2PEST writes the following message to the screen just before 

it terminates execution. 

Note:- 

The value for NOPTMAX for all PEST runs initiated through the batch file 

will be 0. 

 

If this is not your intention, alter NOPTMAX to an appropriate value in the 

PEST control file supplied in the command line. 

Figure 13.2 Warning written to screen by LHS2PEST on cessation of level 3 execution. 
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See the discussion of the NOPTMAX variable earlier in this section (and in part I of this 

manual). NOPTMAX is an integer; it is the first variable on the 9th line of the PEST control 

file. 

13.4 PEST2LHS 

13.4.1 General 

PEST2LHS builds an input file for the LHS program using information contained within a 

PEST control file, possibly supplemented by a PEST-compatible parameter uncertainty file 

(see section 2.5 of this manual for specifications of this file type). The LHS program can then 

be run to generate a suite of Latin hypercube samples of parameters featured in the original 

PEST control file. These samples can then be used by PEST for calculation of objective 

functions, or for more complex tasks such as model calibration based on these samples as 

initial values. (Creation of a PEST input dataset based on LHS-generated samples can be 

accomplished using the LHS2PEST program described above.) 

The LHS input file written by PEST2LHS is simple. Of the many options that LHS provides 

for its input dataset, PEST2LHS supports only a few. The user is advised to alter the 

PEST2LHS-generated LHS input file him/herself to request options not supported by 

PEST2LHS if these are required. Because it supports only a few LHS options and employs 

many defaults, use of PEST2LHS is relatively easy. Adoption of simplicity in its design 

specifications, accompanied by a recommendation for the user to directly edit the LHS input 

file written by PEST2LHS him/herself to gain access to more complex LHS functionality, is 

based on the premise that provision of a complex input dataset to PEST2LHS would be just 

as difficult (if not more difficult) than supplying a complex input dataset to LHS directly 

through editing of the latter’s input file. 

13.4.2 Parameter Probability Distributions 

PEST-suite programs which require characterization of parameter uncertainty can receive 

such characterization through a “parameter uncertainty file”. As is documented in section 2.5 

of this manual, this file can provide standard deviations for individual parameters; it can also 

reference other files which provide covariance matrices for groups of parameters. 

PEST2LHS, too, can read a parameter uncertainty file (and covariance matrix files cited 

therein) in order to obtain specifications for the uncertainties of parameters cited within a 

PEST control file, these being required for specification of probability distributions on the 

LHS input file which it writes. However its design is such that if it employs variances and 

covariances read from a parameter uncertainty file, it simultaneously assumes that all 

adjustable parameters cited in the PEST control file which it reads are described by either a 

normal distribution (if they are untransformed) or a log-normal distribution (if they are log-

transformed).  

If a parameter is log-transformed then the uncertainty information pertaining to that 

parameter provided in a parameter uncertainty file must pertain to the log to base 10 of that 

parameter. As stated above, such information will constitute either the standard deviation of 

the parameter, or its variance and covariances with other parameters supplied through a 

covariance matrix file cited in the parameter uncertainty file. To maintain compatibility with 

other PEST-suite programs, the assumption of base-10 logarithms in the parameter 

uncertainty file is maintained; PEST2LHS makes the conversion to natural logarithms when 

writing an LHS input dataset.  
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If a parameter is cited as untransformed in a PEST control file (i.e. if it has a PARTRANS 

value of “none” in the “parameter data” section of that control file), then the uncertainty 

information contained in a parameter uncertainty file, or in any covariance matrices cited in 

that file, must pertain to the native parameter. 

As an alternative to obtaining parameter uncertainty information from a parameter 

uncertainty file, PEST2LHS can calculate parameter uncertainty statistics itself from 

parameter bounds provided in the PEST control file. If PEST2LHS is asked to do this, it does 

not then need to read a parameter uncertainty file at all. Furthermore, if this option for 

parameter uncertainty characterization is taken, the user can choose between the uniform, 

triangular and normal probability distributions for expressing that uncertainty. These 

distributions are assigned on a parameter group by parameter group basis. (Recall that 

parameter groups are named in the “parameter groups” section of a PEST control file and that 

individual parameters are assigned to these groups within the “parameter data” section of that 

file.) 

Regardless of whether parameter uncertainties are supplied through an uncertainty file, or are 

calculated from parameter bounds, PEST2LHS provides you with two options for denoting 

the parameter value at which the probability distribution is at its peak. The first option is to 

calculate this parameter value as the midpoint of the interval spanned by a parameter’s lower 

and upper bounds (or the midpoint of the interval spanned by the natural logs of a 

parameter’s lower and upper bounds if the parameter is log-transformed in the PEST control 

file). The second is to use a parameter’s initial value as provided in the PEST control file (or 

its natural log if the parameter is log-transformed) as the parameter value of peak probability. 

(Note that this is not applicable to the uniform probability distribution as this distribution has 

no maximum.) 

Where PEST2LHS specifies that a parameter is normally or log-normally distributed when 

recording its probability distribution specifications on an LHS input file, this distribution is 

actually specified as a bounded distribution. The bounds that are applied to this distribution 

are the same as those placed on parameter values in the PEST control file. This ensures that 

Latin hypercube samples do not transgress these bounds. Where a uniform or triangular 

probability distribution is employed, respect for parameter bounds is built into the probability 

distribution specifications themselves. 

PEST2LHS assigns probability distributions only to adjustable parameters (i.e. to parameters 

that are neither fixed nor tied to a parent parameter in the PEST control file which it reads). 

Tied and fixed parameters are therefore not featured in the LHS input file written by 

PEST2LHS. 

13.4.3 PEST2LHS Usage Details 

In contrast to many programs of the PEST suite, PEST2LHS does not receive its usage 

information through command line arguments. This is because it requires more information 

than can conveniently be provided through a limited number of such arguments. Hence it 

prompts the user for the information which it needs. 

PEST2LHS commences execution with the prompt 

Enter name of PEST control file: 

On having received the name of this file, PEST2LHS checks for its existence, and then reads 

it. Having done this, it issues the following prompt. 

There are two options for specifying parameter probability distributions: 
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   For (log)normal distributions and an uncertainty file            - enter 1 

   For user-specified distributions with bounds-derived descriptors - enter 2 

Enter your choice: 

As stated above, PEST2LHS supports two options for specifying parameter uncertainties. 

The first option is for all of these to be provided through a traditional PEST uncertainty file. 

The second is for probability distributions to be provided on a parameter group by parameter 

group basis. As PEST2LHS behaviour is somewhat specific to the selected option, its two 

different modes of parameter uncertainty specification are now discussed separately. 

User-Specified Distributions 

Regardless of which option is selected in response to the above prompt, PEST2LHS’s next 

prompt is 

For maximum value of non-uniform distributions:- 

   If halfway between (log) bounds                     - enter 1 

   If parameter initial value from PEST control file   - enter 2 

 Enter your choice: 

Complete specification of the triangular and normal distributions requires that a parameter 

value of maximum probability be specified. In the case of the normal distribution, 

PEST2LHS can calculate this maximum probability value in either of the two ways specified 

in the above prompt. In the first case, the peak of the distribution is calculated to correspond 

to the mean of the parameter’s lower and upper bounds as recorded in the PEST control file. 

In the second case it is associated with a parameter value equal to the initial value for the 

pertinent parameter as read from the PEST control file. Note that this second option can lead 

to a non-symmetrical probability distribution.  

Where a parameter is log-transformed (which for PEST2LHS is decreed as being 

incompatible with selection of a triangular distribution as the log-triangular distribution 

option is not supported by LHS) the parameter abscissa calculated by PEST2LHS for the 

peak value of what LHS refers to as the “underlying distribution” depends on which of the 

above options is selected. If the second option is selected, then the value of peak probability 

will be the natural log of the parameter’s initial value. If the first option is selected, then the 

value of highest probability will be the average of the natural logs of a parameter’s lower and 

upper bounds, these being specified in the PEST control file. 

PEST2LHS next writes the following text to the screen. 

Parameter probability distributions must now be provided. This must be done 

on a group-by-group basis. 

 

Select uniform/triangular/normal distributions as [u/t/n]. 

 

Note that triangular is not allowed if some group members are log-

transformed. 

Then, for each parameter group featured in the PEST control file, PEST2LHS asks 

Enter distribution for parameter group "param_group" [u/t/n]: 

Enter “u”, “t” or “n” as appropriate. PEST2LHS constructs parameter probability 

distributions in the following way. 

• If a uniform distribution is requested, the distribution extends between the parameter’s 

lower and upper bounds as declared in the PEST control file. It the parameter is log-
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transformed, PEST2LHS informs LHS that the parameter’s distribution is log-

uniform. Otherwise it is uniform. 

• If a parameter group is endowed with a triangular distribution PEST2LHS first checks 

whether any member of that group is log-transformed. If any parameter within the 

group is, in fact, log-transformed, then PEST2LHS informs the user of this and 

repeats the above prompt. If no group member is log-transformed, then each 

parameter within the group is endowed with a triangular probability distribution 

whose bounding zero probability points are the lower and upper parameter bounds (as 

specified in the PEST control file), and whose peak probability point is either the 

midpoint of the bounds interval, or the parameter’s initial value, as already discussed. 

• If the “normal” option is selected in response to the above prompt, then each 

parameter within the group is awarded either a normal distribution (if it is 

untransformed) or a log-normal distribution (if the parameter is log-transformed in the 

PEST control file). If a parameter is untransformed and if in response to a previous 

prompt the parameter value of maximum probability is selected as the midpoint of the 

lower-to-upper bounds interval, then the standard deviation of the normal distribution 

is calculated as a sixth of the distance between the parameter’s upper and lower 

bounds; the bounds are thus decreed to span a probability range of 99.7%. However 

these are made to span 100% of its probability range by declaring to LHS that the 

normal distribution is bounded, with the bounds supplied to LHS coinciding with 

parameter bounds provided in the PEST control file.  

• If the normal option is selected and a parameter is log-transformed, the abscissa 

corresponding to the maximum value of the “underlying normal distribution” required 

by LHS is calculated as the midpoint of the distance between the natural logs of the 

parameter’s bounds (i.e. the average of its natural logged lower and upper bounds), or 

is calculated as the natural log of the parameter’s initial value; see above. If, in 

response to the pertinent previous prompt, the parameter value of maximum 

probability is selected as the midpoint of the lower-to-upper parameter bounds 

interval, then the standard deviation of the “underlying normal distribution” is 

calculated as a sixth of the difference between the natural logs of the parameter’s 

lower and upper bounds. A bounded log-normal distribution is then specified to LHS, 

with bounds coinciding with the natural logs of the parameter’s lower and upper 

bounds. 

• If, in either of the transformed or untransformed normal distribution cases, the 

parameter value of maximum likelihood is specified as the parameter’s initial value 

(or its log), the standard deviation ascribed to the (log)normal distribution associated 

with that parameter is equated to a third of the distance between the (log of) the 

parameter’s initial value and (the log of) its lower or upper bound, whichever is 

further away. The bounded (log)normal distribution whose specifications are supplied 

to LHS may thus be asymmetric. 

Uncertainty File 

We begin this subsection by repeating a previous PEST2LHS prompt. 

There are two options for specifying parameter probability distributions: 

   For (log)normal distributions and an uncertainty file            - enter 1 

   For user-specified distributions with bounds-derived descriptors - enter 2 

Enter your choice: 
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As stated above, the PEST2LHS internal algorithm is such that use of a parameter uncertainty 

file implies selection of a (log)normal distribution for all parameters. The choice between a 

normal and a log-normal distribution is made on the basis of the transformation status of each 

parameter as specified in the PEST control file. On all occasions the (log)normal distribution 

is bounded, the bounds being those supplied as upper and lower parameter bounds in the 

PEST control file. 

Following the above prompt, PEST2LHS’s next prompt is (regardless of which of the above 

options is selected) 

For maximum value of non-uniform distributions:- 

   If halfway between (log) bounds                     - enter 1 

   If parameter initial value from PEST control file   - enter 2 

Enter your choice: 

The mean of the (log)normal distribution as it applies to each parameter is calculated on the 

basis of the response to this prompt. If the first of the above options is selected, and if a 

parameter is untransformed, PEST2LHS calculates the mean of the parameter’s distribution 

as the mean of its upper and lower parameter bounds. If a parameter is log-transformed, the 

mean of the LHS “underlying normal distribution” (i.e. the distribution pertaining to the 

natural log of the parameter) is calculated as the mean of the natural logs of the parameter’s 

upper and lower bounds. 

If the second of the above options is chosen, the mean assigned to the parameter’s normal 

distribution is the parameter’s initial value if the parameter is untransformed. Alternatively, if 

the parameter is log-transformed, the mean of the “underlying normal distribution” is 

calculated as the natural log of the parameter’s initial value as specified in the PEST control 

file. 

PEST2LHS next asks 

Enter name of parameter uncertainty file: 

The format of this file is described section 2.5 of this manual. As therein described, each 

parameter can be assigned a standard deviation; alternatively, groups of parameters can be 

assigned a covariance matrix. Where a parameter is untransformed, these apply to native 

parameters. Where a parameter is log-transformed they apply to the logged (to base 10) 

parameters. 

Where a parameter uncertainty file is provided, PEST2LHS uses standard deviations from 

that file to assign standard deviations to parameter probability distributions that it provides to 

LHS. Where a parameter is untransformed, its standard deviation is directly transferred to the 

LHS input file. Where a parameter is log-transformed, PEST2LHS transfers the standard 

deviation from the uncertainty file to the LHS input file as the standard deviation of that 

parameter’s “underlying normal probability distribution”. However in doing so, account is 

taken of the fact that the parameter uncertainty file assumes log transformation to base 10 of 

parameters whereas LHS uses natural logs. Note also that when a parameter features in a 

covariance matrix cited in the parameter value file, its (log)standard deviation is calculated as 

the square root of its variance as cited in that file. 

Where a covariance matrix is provided for groups of parameters, PEST2LHS evaluates 

correlations between individual parameter pairs so that these can be recorded on the LHS 

input file; these correlations can thereby be taken into account in generating Latin hypercube 

sample sets. Where parameters are log-transformed, PEST2LHS calculates correlations 

pertaining to native parameters from the information provided in a pertinent covariance 
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matrix, notwithstanding the fact that this information pertains to logged (to base 10) 

parameters. This satisfies LHS input requirements with respect to the CORR keyword. 

Correlations supplied to LHS are calculated from native variances/covariances using the 

usual formula for calculation of correlation coefficients. That is 
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Where necessary, variances and covariances of untransformed parameters are calculated from 

those of their log-transformed counterparts using the formula 
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where νi and νj are means of the normal distribution pertaining to the logs of parameters i and 

j, and δi, δj and δij are the log parameter covariance matrix elements pertaining to these 

parameters. Means are calculated in the manner described above (i.e. as logged parameter 

range midpoints, or as logs of initial parameter values, according to the user’s selection). 

In the unlikely event that a covariance matrix is supplied for a group of parameters of which 

some are log-transformed and some are not, PEST2LHS simply uses covariances from the 

composite group covariance matrix in order to compute correlation coefficients for parameter 

pairs. These correlation coefficients are then written directly to the LHS input file. 

LHS Input Files 

Regardless of the methodology selected for specification of parameter probabilities, 

PEST2LHS’s final prompts are 

Enter filename base for LHS files:  

How many parameter sample sets must be generated?  

Enter random number seed (a big integer):  

Suppose that you respond to the first of the above responses with the name “file”. PEST2LHS 

will then write an LHS input file named file.dat. In that file it will specify that the LHS 

sample data output file (this being associated with the LHS keyword LHSOUT) is named 

file.lsp and that the LHS-generated message file (this being associated with the LHS keyword 

LHSMSG) is named file.msg. 

The other two prompts are self-explanatory. 
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14. Miscellaneous Utilities 

14.1 Introduction 

This chapter documents a number of utilities that do not fall into any of the categories defined 

by the previous chapters of this manual.  

PARREDUCE suggests an optimal parameter reduction strategy in contexts where model run 

times are high and parameter parsimony is the only regularisation option. CALMAINTAIN 

derives a new parameter set where certain parameters in an existing parameter set have had 

their values altered; ideally, the new parameter set compensates for the altered values of the 

original parameter set in a way that maintains the model in a calibrated state. PESTLIN, and 

its partner program GENLIN, construct a linear model from a nonlinear model. This model 

can then be used as a fast-running surrogate for the original model where this is required for 

numerically intensive tasks such as optimisation. DERCOMB facilitates PEST usage where a 

model can calculate its own derivatives. It amalgamates derivatives computed by two 

different models into a single file which can then be read by PEST. 

14.2 PARREDUCE 

14.2.1 General 

“PARREDUCE” stands for “parameter reduction”.  This utility can be used to ascertain the 

cost, in terms of model-to-measurement misfit, of a reduction in the number of parameters 

employed by a model.  Better still, it can be used to compare the effectiveness of different 

parameter reduction strategies, where “effectiveness” is based on the assumption that those 

parameter reduction strategies are better which incur simplification-induced misfit the least. 

Use of PARREDUCE assumes that parameter reduction can occur in one of three ways: 

• Through removal of parameters from a PEST control file; 

• Through fixing parameters within a PEST control file (which is the same as removing 

them); and/or 

• Through tying certain parameters to other parameters, so that the parent parameters 

are estimated with their child parameters “riding on their backs”. (This is effectively 

the same as parameter amalgamation.) 

Reduction in the number of parameters employed by a model has the obvious advantage that 

the time required for PEST to calibrate the model is thereby reduced. However savings in 

computational burden come at a cost; in particular, when the number of parameters employed 

by a model is reduced, the objective function achieved through the calibration process may 

increase. Generally, the extent to which this occurs will only be known after PEST has been 

run to calibrate the simplified model. It is possible that PEST can achieve just as good a fit 

with a simplified parameter set as with a complex parameter set by adjusting simplified 

parameter values appropriately. However if the simplified parameter set does not span the 

calibration solution space of the complex model, model-to-measurement fit will be 

compromised.  

The PARREDUCE utility can be used not just for optimisation of model simplification; it can 

also be used to examine how best to add parameters to a model. A modeller may commence 

the complexifying processing by adding many parameters to a model – more than he/she 



Miscellaneous Utilities 198 

 
 

ultimately wishes to add. He/she can then test different ways of amalgamating the 

supplementary parameters in ways that reflect expert knowledge of, for example, underlying 

geological variability, before deciding on an ultimate parameter complexification strategy 

that achieves most reduction in the objective function with the least number of additional 

parameters. Parameter simplification thus takes place as the second step of an overall 

parameter complexification process. 

PARREDUCE provides information on the relative cost of different simplification strategies. 

It does this by providing an indication of the expected increase in the objective function 

incurred by use of fewer model parameters. It must be pointed out however, that the numbers 

which it calculates are indicative only. No account is taken of the contribution made by 

measurement noise to the objective function. Nor is account taken of simplification that has 

already been undertaken in building the original, pre-simplified model. Furthermore 

calculations undertaken by PARREDUCE rely on a linearity assumption. Sensitivities on 

which linear analysis is based are calculated using the parameter set currently employed by 

the model. 

14.2.2 Theory 

The theory presented in this subsection summarises that presented in section 7.5 of Doherty 

(2015). 

Let the action of a complex model on its parameters be described by the matrix Z. Use of a 

matrix as a substitute for the model implies that the relationship between model parameters 

and model outputs is linear. Let k be the parameter set employed by a “complex” model. 

Under calibration conditions 

 h = Zk + ε         (14.2.1) 

where 

h is the vector of measurements comprising the calibration dataset; and 

ε is the vector of noise associated with elements of this dataset. 

Measurement noise is now assumed to be zero so that attention can be focussed on the 

outcomes of parameter simplification. Let the vector p comprise a simplified parameter set.  

Let model outputs o corresponding to measurements h be computed by the simplified model 

using the matrix X. Thus 

 o = Xp          (14.2.2) 

Note that the Z and X matrices used by PARREDUCE are, in fact, weighted sensitivity 

matrices; observation weights are provided through a PEST control file. 

Let the relationship between Z and X be described by a matrix relationship of the form 

 X = ZL         (14.2.3) 

Often L is a kind of “selection matrix”. Thus, for example, if the parameter scheme employed 

by the simplified model is comprised of zones of piecewise constancy, and the complex 

model allows for the existence of a greater number of these zones defined through 

subdivision of the broad scale zonation scheme embodied in X, then the value assigned to 

each element of k is equal to that of the element of p that characterizes the broad scale zone 

in which the k element lies. The L matrix is thus comprised of appropriately-positioned 1’s 

and 0’s.  
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Use of PARREDUCE does not require that the matrix L be explicitly defined. However its 

use assumes that two PEST control files exist, one embodying a complex parameter set and 

the other containing a simpler parameter set defined in ways discussed above (i.e. parameter 

omission, tying and fixing). For these types of parameter simplification, X is easily calculated 

from Z. Calculations undertaken by PARREDUCE are in fact exactly the same as those 

undertaken by JCO2JCO when it is presented with two PEST control files, one of which is a 

simplification of the other. In both cases the Z matrix occupies the JCO file corresponding to 

the complex PEST control file. 

Let the covariance matrix of the prior probability distribution of k be denoted as C(k). This 

therefore describes the “innate variability” of parameters k, this being the encapsulation of 

expert knowledge applied to k. PARREDUCE can be asked to assume that C(k) is the 

identity matrix I. Alternatively it can be asked to assume that C(k) is a diagonal matrix in 

which each parameter is statistically independent of all other parameters, and in which the 

standard deviation of each parameter is calculated to be a quarter of the difference between 

upper and lower parameter bounds provided in the PEST control file. If a parameter is log-

transformed the covariance matrix applies to the log of each parameter; parameter bounds are 

therefore logged before differencing in this case. The diagonal elements of C(k) are 

parameter variances, these being squares of parameter standard deviations. 

Residuals incurred by parameter simplification are expressed as 

 r = Zk – Xp         (14.2.4) 

If a model is not calibrated at all (and Xp is effectively 0), then the covariance matrix of 

residuals, denoted here as Cu(r), is readily calculated as 

 Cu(r) = ZC(k)Zt        (14.2.5) 

In this formula, “u” signifies “uncalibrated”. Now suppose that the model Z is calibrated. Let 

it be assumed that this is done using truncated singular value decomposition; note that if the 

inverse problem is not ill-posed then this is the same as using the Gauss-Marquardt-

Levenberg methodology of model calibration. A parameter set k is thereby computed as 

 k = Vz1S
-1

z1U
t
z1h        (14.2.6) 

Here the “z” subscript indicates that singular value decomposition is performed on the Z 

matrix. Meanwhile the “1” subscript indicates partitioning of pertinent matrices, and 

restriction of their contents to the solution subspace of parameter space, i.e. the subspace that 

is retained after singular value truncation. See Doherty (2015) for details. Post-calibration 

residuals are then calculated as 

 rz = Zk – Zk         (14.2.7) 

Non-zero-valued residuals calculated through equation (14.2.7) can occur as an outcome of 

the existence of small non-zero singular values to the right of the singular value truncation 

point. These comprise the Sz2 matrix not represented in equation (14.2.6). As Doherty (2015) 

explains, retainment of these singular values in the inversion process would result in 

amplification of measurement noise; hence the subspace of parameter space that is associated 

with these residuals is relegated to the null space to forestall this occurrence.  

With a little matrix manipulation, equation (14.2.7) becomes 

 rz = Uz2Sz2V
t
z2k        (14.2.8) 

The covariance matrix of Z-calibration residuals can then be calculated as 
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 Cz(r) = Uz2Sz2V
t
z2C(k)Vz2Sz2U

t
z2      (14.2.9) 

If 

 Cz(k) = I         (14.2.10) 

this becomes 

 Cz(r) = Uz2S
2

z2U
t
z2        (14.2.11) 

The diagonal elements of Cz(r) provide the variances of Z-calibration residuals 

corresponding to the observations h. The square roots of these variances provide their post-

calibration standard deviations.  

It is important to note that calculation of Cz(r) in the manner described above is based on two 

assumptions. These are as follows. 

• Measurement noise is zero; 

• The model Z is “perfect” in the sense that it is able to fit the data perfectly; that is, 

“structural noise” makes no contribution to r. 

Cz(r) can thus be very small. For the types of analyses that PARREDUCE is asked to perform 

this is fine. Its purpose is to provide a means of comparison of residuals that emerge from 

calibration of the Z model with those that emerge from calibration of various simplified X 

models. 

Where an X model is calibrated in place of the Z model, equation (14.2.7) is replaced by 

equation (14.2.4); that is 

 rx = Zk – Xp         (14.2.12) 

where p  is calculated as 

 p = Vx1Sx1
-1Ut

x1h        (14.2.13) 

Here the subscript “x” indicates that singular value decomposition is undertaken on X rather 

than on Z. Substitution of equation 14.2.13 and equation 14.2.1 (with ε assumed to be 0) into 

equation 14.2.12 yields  

 rx = Zk – XVx1S
-1

x1U
t
x1Zk       (14.2.14) 

which (after a little matrix manipulation) becomes 

 rx = (I – Ux1U
t
x1)Zk = Ux2U

t
x2Zk      (14.2.15) 

The covariance matrix of residuals emerging from calibration of a simplified model is then 

calculated as 

 Cx(r) = Ux2U
t
x2ZC(k)ZtUx2U

t
x2      (14.2.16) 

which, if C(k) is equal to I, becomes 

 Cx(r) = Ux2U
t
x2ZZtUx2U

t
x2       (14.2.17) 

Once again, the diagonal elements of Cx(r) represent the variances of individual elements of 

r; the square roots of these represent their standard deviations. 

Different simplification strategies can be compared through comparing Cx(r) matrices 

calculated using equation (14.2.16) for different X matrices. A simple summary statistic is the 

sum of elements along the diagonal of Cx(r). This is denoted as Φx as it is an objective 

function. Thus 
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Φx = tr(Cx(r))         (14.2.18) 

where tr() is the matrix trace operator. Φx can be thought of as the contribution made to the 

overall calibration objective function by parameter simplification. If this number is low (or 

even zero), it indicates that the simplified model retains enough adjustable parameters to 

guarantee a fit with field data that is very little worse than that which would prevail through 

calibration of the original Z model. This does not mean that simplification is therefore 

“ideal”. It is possible that the simplified parameters play roles that compensate for model 

defects in achieving this level of fit. Nevertheless it does indicate that enough parameters 

exist for a good fit between model outputs and field data to be attained, and that these 

parameters therefore span the solution space of the Z model. 

In the subsurface reservoir modelling context, different simplification strategies (embodied in 

different X matrices) may result from alternative representations of the presence, locations 

and geometries of zones of piecewise constancy reflecting rock types of contrasting, but 

relatively homogeneous, hydraulic properties. Lower values for Φx arising from some of 

these tested dispositions may indicate better representation of subsurface features in the 

model domain. 

14.2.3 Using PARREDUCE 

PARREDUCE is run using the command  

parreduce pestfile1 pestfile2 eigthresh outfile [/b]  

where 

pestfile1  is a PEST control file for which a JCO file exists, 

pestfile2  is a PEST control file in which some parameters are tied and/or fixed, 

eigthresh is an eigenvalue truncation threshold, 

outfile is the name of the PARREDUCE output file, and 

/b  activates optional parameter bounds scaling. 

Use of PARREDUCE assumes that you have constructed a PEST control file embodying 

complex parameterization, and that you have run PEST to obtain a corresponding JCO file 

(for example by setting NOPTMAX to -2 in the PEST control file and then running PEST). 

You must then construct another PEST control file in which all observations are the same as 

in the original PEST control file, but in which some parameters are tied to other parameters, 

some parameters are fixed, and/or some parameters are omitted altogether. This constitutes 

the second PEST control file which must be cited in the PARREDUCE command line above. 

No JCO file need accompany this second PEST control file. 

The EIGTHRESH variable must be set between 0.0 and 1.0. This is the ratio of squared 

singular values of the weighted Z matrix (i.e. Q1/2Z) which determines where singular value 

truncation occurs. (The ratio is taken of each squared singular value to the largest squared 

singular value.) As is explained by Doherty (2015), this value should be set at a level that 

minimizes post-calibration predictive error variance. The latter falls as EIGTHRESH is 

reduced below 1.0, for the inclusion of extra singular values expands the solution space 

(spanned by the vectors which comprise the columns of V1) and shrinks the null space 

(spanned by the vectors which comprise the columns of V2). Beyond a certain value of this 

truncation threshold however, post-calibration predictive error variance starts to rise due to 

amplification of measurement noise. EIGTHRESH should never be set lower than about 

5E-7, as this is the level at which amplification of numerical noise seriously degrades 

predictive performance of a calibrated model. (EIGTHRESH is the same variable that 
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appears in the “singular value decomposition” section of a PEST control file.) 

If the optional “/b” switch appears in the PARREDUCE command line, then PARREDUCE 

estimates C(k) by assuming that the differences between parameter upper and lower bounds 

define four standard deviations for each parameter, and that no correlation exists between 

parameters. Alternatively, if the “/b” switch is omitted, C(k) is assumed to be the identity 

matrix I. This may be suitable for comparing different simplification strategies where all 

parameters are log-transformed, and where all sensitivities with respect to these parameters 

are thereby effectively normalized by their values. 

A PARREDUCE output file for a small problem is provided below. The first column 

provides the names of observations used in the inversion process. The second column 

provides the square roots of the diagonal elements of Cu(r) calculated using equation (14.2.5). 

The third column provides the square roots of the diagonal elements of Cz(r) calculated using 

equation (14.2.9), while the last column contains the square roots of the diagonal elements of 

Cx(r) calculated using equation (14.2.16). The traces of the pertinent C(r) matrices are shown 

at the bottom of each column. 

Residual standard deviations (no measurement noise assumed) 

 

Observation           No_calibration         Calibration_with_Z     Calibration_with_X 

  ar1                    0.7916715              5.1651679E-02          0.1171594     

  ar2                    0.7531351              4.6104210E-02          0.1354490     

  ar3                    0.7147344              4.6648685E-02          5.9892814E-02 

  ar4                    0.6894756              2.4442489E-02          6.2925528E-02 

  ar5                    0.6692790              4.8524822E-02          7.2914701E-02 

  ar6                    0.6568247              4.2261614E-02          3.2690919E-02 

  ar7                    0.6470027              3.2050366E-02          3.4495961E-02 

  ar8                    0.6399243              5.3340646E-02          4.8791286E-02 

  ar9                    0.6358643              3.1437273E-02          9.4707001E-02 

  ar10                   0.6321911              4.1518229E-02          0.1373004     

  ar11                   0.6304041              5.1209897E-02          9.2412584E-02 

  ar12                   0.6291723              2.0590739E-02          6.4143446E-02 

  ar13                   0.6287475              5.1769681E-02          0.1718363     

  ar14                   0.6325852              3.4882597E-02          7.6345205E-02 

  ar15                   0.6576022              2.2096805E-02          8.9699859E-02 

  ar16                   0.7414070              4.2101009E-02          0.1366652     

  ar17                   0.8908967              2.1390807E-02          6.5164786E-02 

  ar18                    1.040221              7.5365578E-03          3.0688386E-02 

  ar19                    1.140819              3.0784107E-02          0.1014441     

 

  sum_of_squares          6.869226              5.8772489E-05          2.5599931E-03 

Figure 14.1 A PARREDUCE output file. 

14.3 CALMAINTAIN 

14.3.1 General 

Suppose that you have calibrated a model, and that you have built a PEST control file in 

which initial parameter values are calibrated parameter values. Suppose also that you have set 

NOPTMAX to -2 in this file and run PEST in order to obtain a JCO file in which finite-

difference derivatives are calculated based on the calibrated parameter set. 

Suppose now that you wish to alter the values of a number of parameters from those in this 

PEST control file, and would like to adjust the values of other parameters to compensate for 

this so that the model remains calibrated. The purpose of CALMAINTAIN is to perform 

these compensatory parameter value alterations. The success achieved by CALMAINTAIN 

in computing a set of parameters which maintain the model in a calibrated state despite user-

adjustment of the values of other parameters will depend on a number of factors. These 

include the following. 
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• The linearity of model outputs with respect to parameters (as is explained below, 

CALMAINTAIN uses linear theory to compute a new set of parameters); 

• The degree to which the model was de-calibrated by adjusting the values of some of 

its parameters in the first place; 

• The extent to which the existence or otherwise of a null space makes parameter 

compensation possible. 

14.3.2 Theory 

Let the action of a (linearized) model Z on its parameters k under calibration conditions be 

described by the equation 

 h = Zk + ε         (14.3.1)  

where ε is a vector of measurement noise. If the parameter set k is partitioned into two sets of 

parameters k1 and k2, and if measurement noise is neglected, this equation becomes 
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If parameters k2 are altered by δk2, the model will remain in a calibrated state if a set of 

alterations δk1 to k1 can be found such that 

 Z1δk1 = -Z2δk2        (14.3.3) 

This can only occur if 
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        (14.3.4) 

That is, if the matrix Z has a null space. If it does not have a null space, or if equation 14.3.3 

cannot be solved because one or a number of elements of δk2 lies entirely within the solution 

space, then δk1 should be chosen such that the right side of equation 14.3.4 is minimized. If 

this is done, then the model maintains respect for the calibration dataset as much as possible 

following user-alterations to k2.  

CALMAINTAIN solves equation 14.3.3 in the exact sense if it can, and in the least squares 

sense if it cannot. Thus it finds a δk1 to compensate for a user-imposed δk2. 

Note that the starting equation for CALMAINTAIN’s calculations is actually not equation 

14.3.1 at all; instead it uses the following equation, where Q is the weight matrix. 

 Q1/2h = Q1/2Zk + Q1/2ε       (14.3.5)  

14.3.3 Using CALMAINTAIN 

CALMAINTAIN prompts the user for its input data as this is more convenient than supplying 

these data on the command line. Its first prompt is 

Enter name of PEST control file: 

CALMAINTAIN opens the PEST control file. At the same time it ensures that a 

corresponding JCO file exists. (The contents of this file become the Z matrix of the above 

equations). Next it asks 

Enter name of parameter adjustment file: 

An example of a parameter adjustment file follows. 
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# Example of a parameter adjustment file 

k_ppt30    0.8 

k_ppt31    2.6 

 

k_ppt32    0.8 

 

# Here is another comment 

k_ppt33    1.0 

k_ppt34    0.8 

k_ppt35    0.8 

k_ppt36    0.5 

k_ppt37    1.8 

Figure 14.2 Example of a parameter adjustment file. 

Each line of a parameter adjustment file must have two entries. The first entry is the name of 

a parameter. The second entry is the new value of that parameter. Blank lines are ignored. 

Comment lines (which begin with the “#” character) are also ignored. 

CALMAINTAIN will object if you attempt to adjust the value of a fixed or tied parameter. 

However it is acceptable to adjust the value of a parent parameter to which other parameters 

are tied; the child parameters are automatically adjusted if this is the case. 

CALMAINTAIN next asks for the name of the parameter value file that it must write. The 

prompt is 

Enter name for output parameter value file: 

It then asks the following three questions. 

Use SVD or LSQR to solve equation? [l/s]: 

Truncate at how many singular values: 

Adopt what fraction of upgrade vector: 

As is apparent from the first of the above questions, you have the choice of using either 

LSQR or singular value decomposition to solve equation 14.3.3. LSQR is faster than singular 

value decomposition where parameter numbers are high, but can sometimes be less precise. 

The second of the above prompts allows you to limit the propensity for numerical noise to 

contaminate the solution of equation 14.3.3. The best response to this question varies with 

context. Based on limited experience at the time of writing, it is suggested that a value equal 

to the number of adjusted parameters featured in the parameter adjustment file may work 

well. “Damping” of parameter compensation can also be used to limit contamination of the 

solution to equation 14.3.3 by numerical noise; therefore a value of between 0.0 and 1.0 is a 

suitable answer to the third of the above questions (normally closer to 1.0 than 0.0.). Some 

trial and error may be necessary to find the best response to the second and third of the above 

questions in any particular modelling context. 

Once all of the above questions have been answered, CALMAINTAIN performs the 

calculations indicated above, and then writes the requested parameter value file. The values 

assigned to parameters in this file are the user-adjusted values (for those parameters which 

are cited in the parameter adjustment file), together with values for other parameters which 

are altered in such a way as to maintain the model in as much of a calibrated state as possible. 

If desired, the PARREP utility can be used to insert parameter values recorded in this file into 

a PEST control file. If NOPTMAX is set to zero in this file, PEST can be used to run the 

model and calculate an objective function. In this way adherence to calibration constraints 

can be tested. 
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14.4 GENLIN  

14.4.1 General 

“GENLIN” stands for “general linear model”. The main purpose of GENLIN is to 

complement PESTLIN functionality (see below) through which a nonlinear model can be 

replaced by its linearised equivalent for purposes such as predictive uncertainty analysis and 

other kinds of optimisation. However GENLIN can also be employed on a stand-alone basis 

without the use of PEST at all. 

GENLIN calculates its outputs h from its inputs k using the equation 

h = h0 + M(k – k0)        (14.4.1) 

where M is a matrix, and h, h0, k and k0 are vectors. For the sake of conformity with PEST 

terminology (and in conformity with use of GENLIN as an adjunct to PESTLIN), the k 

vector will normally contain parameter values while the h vector will contain the model-

generated counterparts to field measurements, or simply “observations” in PEST parlance. k0 

and h0 are parameter and observation offsets. 

The matrix M is a “sensitivity matrix”, or Jacobian matrix of a linearised model. It must have 

as many rows as there are elements of h and as many columns as there are elements of k. 

GENLIN allows parameters to be log-transformed. In this case, columns of the M matrix 

corresponding to log-transformed parameters must contain sensitivities with respect to the 

logs of respective parameters. Under these circumstances, GENLIN outputs are calculated as 

h = h0 + M[log(k) – log(k0)]       (14.4.2) 

where the log is taken to base 10. 

14.4.2 GENLIN Input File 

GENLIN requires an input file in which specifications for the linear model are supplied. An 

example of a GENLIN input file is shown below. Such a file is easily prepared with a text 

editor. 
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* dimensions 

5  19 

* parameters 

ro1  log     4.0   2.0 

ro2  log     4.0   2.0 

ro3  log     4.0   2.0 

h1   none    2.0   0.0 

h2   none    2.0   0.0 

* observations 

ar1    2.0 

ar2    2.0 

ar3    2.0 

ar4    2.0 

ar5    2.0 

ar6    2.0 

ar7    2.0 

ar8    2.0 

ar9    2.0 

ar10   2.0 

ar11   2.0 

ar12   2.0 

ar13   7.0 

ar14   7.0 

ar15   7.0 

ar16   7.0 

ar17   7.0 

ar18   7.0 

ar19   7.0 

* sensitivities 

ves1.jco 

Figure 14.3 A GENLIN input file. 

A GENLIN input file must contain four sections in the order shown above. Each section must 

be named as shown, with the name preceded by the “*” character and a space. The contents 

of each of these sections are now described. 

Dimensions Section 

The line following the “dimensions” section header must contain two integers, these being 

the number of “parameters” and number of “observations” comprising the linear model. Once 

GENLIN has read these dimensions it can allocate array storage for the data to follow. 

Parameters Section 

There must be as many lines in this section of the GENLIN input file as the number of 

parameters specified in the “dimensions” section of the file. Each such line must contain four 

entries. The first is a parameter name (twelve characters or less in length), the second is its 

transformation state (“log” or “none”), the third is its current value (k in the above 

equations), while the fourth is its “offset value” (k0 in the above equations).  

The following should be noted. 

• In contrast to a PEST control file, parameters cannot be tied or fixed in a GENLIN 

input file; they can only be log-transformed or untransformed. 

• Actual parameter and offset values, and not their log-transformed counterparts, must 

be supplied irrespective of the transformation status of individual parameters. Where a 

parameter is designated as log-transformed, GENLIN takes care of logarithmic 
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transformation itself. 

Observations Section 

This section must contain as many lines as the number of observations specified in the 

“dimensions” section of the GENLIN input file. Each such line must contain two entries. The 

first is the observation name (twenty characters of less in length), while the second is the 

observation offset value (h0 in the above equations). 

Sensitivities Section 

The “sensitivities” section of the GENLIN input file must contain just one line, this being the 

name of a file containing the sensitivity of each linear model output with respect to each 

parameter (i.e. the elements of the matrix M in the above equations). If the filename 

extension is “.jco”, GENLIN assumes that this matrix is stored in a PEST binary Jacobian 

matrix file (i.e. a JCO file).  If not, ASCII storage in matrix file format is assumed; the format 

of this kind of file is discussed in section 2.4 of this manual. Note that the JCO2MAT utility 

can be used to convert a JCO file to a matrix file. 

It is important that the sensitivity file matches the specifications for the linear model as set 

out in the GENLIN input file. That is, the number of rows in the sensitivity matrix must be 

the same as the number of observations in the GENLIN input file. Similarly, the number of 

columns in the sensitivity matrix must be the same as the number of parameters in the 

GENLIN input file. Ideally, the names should match as well, though this is not essential – see 

below. Whether or not this is the case, the ordering of parameters and observations must be 

the same in both of these files. 

It is also important to note that, as discussed above, if a parameter is cited as log-transformed 

in a GENLIN input file, the sensitivity of all observations to that parameter provided in the 

sensitivity file must pertain to the log of that parameter. Fortunately this is easily 

accomplished if PEST is employed to calculate parameter sensitivities. 

14.4.3 Running GENLIN 

GENLIN is run using the command 

GENLIN infile outfile [derivfile] [/c] 

where 

 

infile  is a GENLIN input file, 

outfile  is a GENLIN output file,  

derivfile  is an optional derivatives output file, and 

/c  is an optional name-checking switch. 

GENLIN writes its output file in matrix file format as a one-column matrix (i.e. as a vector). 

Rows of this matrix retain the same names as observations supplied in the GENLIN input file 

while the single column is provided with the arbitrary name col1. 

Optionally, GENLIN can check that parameter names provided in the GENLIN input file 

match those provided in a JCO file, or column names provided in an ASCII sensitivity matrix 

file. It can also check that observation names provided in the GENLIN input file match those 

provided in a JCO file, or row names provided in an ASCII sensitivity matrix file. It can also 

check that parameter and observation ordering is the same in both cases. This checking 

functionality is activated using the optional “/c” switch on the command line. GENLIN does 
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not perform much checking in addition to this. In its normal role it will be run repeatedly by 

PEST as part of some kind of optimisation process. In this context it is not necessary that 

extensive, and possibly time-consuming, checks of all aspects of input data integrity be 

checked on every occasion that GENLIN is run. 

Another GENLIN option is the writing of a “derivatives file”. This file is useful when 

GENLIN is employed in conjunction with PEST, providing it with “model-generated 

derivatives” as an alternative to finite-difference derivatives, thereby saving PEST the need to 

carry out many GENLIN runs in the course of its execution. See chapter 12 of part I of this 

manual for documentation of PEST’s external derivatives functionality. Note that, in 

accordance with PEST’s requirements, derivatives written to this file pertain to native 

parameters rather than to log-transformed parameters; hence where parameters are log-

transformed the entries of this file will differ from those of the GENLIN input sensitivity file. 

14.5 PESTLIN 

14.5.1 General 

Use of PESTLIN assumes that a complete PEST input dataset exists for parameter estimation 

(regularised or otherwise), or predictive uncertainty analysis. It also assumes that a Jacobian 

matrix file exists for this dataset, together with a run record file in which parameter values 

pertinent to this Jacobian matrix are recorded. On the basis of this Jacobian matrix PESTLIN 

writes a GENLIN (see above) input dataset, encapsulating a linearised form of the model. It 

also writes a new PEST control file so that (regularised) inversion or predictive uncertainty 

analysis can be undertaken on the basis of the linearised model. Because this linearised model 

will generally run much faster than the real model, concepts can be tested and/or approximate 

solutions to these types of problems can be obtained, very quickly indeed. 

In most cases the easiest way to build a linearised equivalent of a PEST input dataset 

(including a linearised equivalent of the model) is as follows. 

1. As stated above, build an entire PEST input dataset based on the real model. Ensure 

that this dataset is correct and consistent using the PESTCHEK utility. 

2. Set NOPTMAX to -1 in the pertinent PEST control file.  

3. Run PEST. PEST will undertake enough model runs to calculate the Jacobian matrix. 

Then it will cease execution, recording initial parameter values, together with 

uncertainty statistics (if these are calculable), on its run record file. 

4. Run PESTLIN. 

Alternatively, PESTLIN can be run at the end of an entire parameter estimation process. In 

this case the Jacobian matrix file will contain sensitivities with respect to optimised 

parameter values (or, if a minor improvement in parameter estimates occurred on the last 

iteration, with respect to near-optimised parameter values). Meanwhile the run record file will 

record optimised parameter values, together with model-generated counterparts to 

measurements comprising the calibration dataset calculated on the basis of these optimised 

parameter values (unless PEST is run using SVD-assist, in which case the PARREP utility 

should be employed to construct such a run record file by first constructing a new PEST 

control file on the basis of optimised parameters and then running PEST in the manner 

described above). 
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14.5.2 Using PESTLIN 

PESTLIN is run using the command 

pestlin pestincase pestoutcase linbasename [/d] 

 

where 

pestincase  is the filename base of a PEST input dataset, 

pestoutcase  is the filename base of a PEST output dataset, 

linbasename  is the filename base of a GENLIN linear model dataset, and 

/d  (optionally) activates PEST external derivatives functionality. 

PESTLIN undertakes the following tasks. 

1. It reads the PEST control file whose name is obtained by adding the extension “.pst” 

to pestincase supplied on the PESTLIN command line to obtain specifications of the 

current parameter estimation problem. 

2. It reads the corresponding Jacobian matrix file pestincase.jco in order to obtain 

sensitivities of model outputs to all adjustable parameters. 

3. It reads the corresponding run record file pestincase.rec in order to obtain the values 

of adjustable parameters on which basis sensitivities were calculated (or, as described 

above, numbers which are close to these values), as well as corresponding model 

outputs. (These will become parameter and observation offsets in the GENLIN input 

dataset written by PESTLIN.)  

4. It writes a GENLIN input file named linbasename.in, where linbasename is supplied 

on the PESTLIN command line. Through this file GENLIN is instructed to write an 

output file named linbasename.out, and to read sensitivities of adjustable parameters 

from the file pestincase.jco. If the “/d” switch is set on the PESTLIN command line, 

GENLIN is also instructed to write a PEST-compatible external derivatives file 

named linbasename.drv.  

5. It writes an instruction file named linbasename.ins through which GENLIN-generated 

observation values can be read. 

6. It generates a template file named linbasename.tpl through which a GENLIN input 

file can be written by PEST based on current parameter values. 

7. It writes a PEST control file named pestoutcase.pst which formulates the same 

parameter estimation problem as that formulated by the original PEST control file 

pestincase.pst, but this time on the basis of a linearised model run using GENLIN. 

PEST can then be run on the basis of pestoutcase.pst. If PESTLIN is run with the “/d” switch 

on its command line, PEST execution should be very fast. Even if it is not, and PEST then 

calculates linear model derivatives using finite differences, use of PEST on the linearised 

model should still be much faster than use of PEST in conjunction with the original model 

due to the fact that the former will probably have a vastly smaller run time than the latter. 

Note that the GENLIN dataset constructed by PESTLIN does not make mention of fixed or 

tied parameters. Existence of the latter, however, is automatically taken into account through 

the fact that sensitivities of parent parameters are a function of the sensitivities of any 

parameters that are tied to them; their optimised values are thus also a function of these 

parameters. Note also that because tied and fixed parameters are missing from the PESTLIN-
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constructed PEST input dataset, parameters recorded in pestoutcase.par parameter value files 

lack these parameters. Fortunately, PARREP can still be employed to insert parameter values 

found in pestoutcase.par parameter value files into the original PEST input dataset 

encapsulated in pestincase.pst to create a new PEST control file. In creating the new PEST 

control file, tied parameters are simply assumed to maintain the same ratio with their parent 

parameters as their initial values do. The fact that tied parameters are missing from a 

parameter value file does not affect their ability to be included in a new PEST control file 

written by PARREP. 

14.6 DERCOMB1 

14.6.1 General 

“DERCOMB” stands for “derivatives combination”. The “1” suffix was included in the name 

of this utility in anticipation of the fact that it may not be the last utility written to perform a 

similar role. 

DERCOMB1 was written for use in calibration contexts where a model provides its own 

derivatives. As explained in chapter 12 of part I of this manual, these are read from an 

external derivatives file written by the model. This file can be of a compressed or 

uncompressed type. 

Where a model run by PEST is comprised of different executable programs, each of which 

can compute derivatives of its own outputs with respect to some or all of the parameters 

involved in the current PEST run, then the derivatives file written by each of them will be 

incomplete. The role of DERCOMB1 is to build a complete derivatives file by combining 

such partial derivatives files. 

DERCOMB1 must be provided with the names of two derivatives files. The first of these 

must be a standard PEST external derivatives file which is “complete” in the sense that its 

dimension are NOBS×NPAR where NPAR and NOBS are the numbers of parameters and 

observations respectively employed by PEST. Such a file may have been produced, for 

example, by the ASENPROC Groundwater Data Utility program. Elements of the derivatives 

matrix that ASENPROC cannot compute are supplied with a dummy value of -1.11E33, this 

being PEST’s expected value for derivative matrix elements which have not been determined.  

The second derivatives file must be in PEST matrix file format (see section 2.4 of this manual 

for specifications of this file type). A derivatives file in matrix format is written, for example, 

by the ZONE2VAR1 Groundwater Data Utility program. Like the first file, this file must also 

contain derivatives of model outputs with respect to parameters as its elements. However, 

unlike the first file, it is not necessary that all parameters and observations cited in the PEST 

control file be cited in this file. Thus the matrix can have dimensions that are smaller than 

NOBS×NPAR. The names of the observations and parameters to which the derivatives in this 

file pertain are provided as matrix row and column names respectively. Each one of these 

must correspond to an observation or parameter featured in the PEST control file for the 

current problem. 

DERCOMB1 reads the first derivatives file, and then the second derivatives file. It verifies 

that the first has dimensions of NOBS×NPAR. (It does not check parameter and observation 

names in this file, as this file does not need to provide these; it is simply assumed that 

parameters and observations are represented in the same order in this file as they are 

represented in the PEST control file which defines the current inverse problem.) 
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DERCOMB1 then reads the matrix file. Each derivative represented in the matrix file then 

relaces the corresponding derivative represented in the external derivatives file. DERCOMB1 

then writes a new external derivatives file with these modified derivatives. 

14.6.2 Using DERCOMB1 

DERCOMB1 is run using the command 

DERCOMB1 pestfile matfile derfile1 derfile2 

where 

pestfile is the name of a PEST control file, 

matfile is the name of matrix file, 

derfile1 is the name of an existing external derivatives file, and 

derfile2 is the name of a new external derivatives file. 

As stated above, the existing PEST external derivatives file must contain a derivatives matrix 

(represented in either full or compressed form) with dimensions of NOBS×NPAR, where 

NOBS is the number of observations cited in the PEST control file and NPAR is the number 

of parameters cited in this file. The matrix file must contain a matrix whose dimension are 

equal to or less than these; however all observations and parameters cited as row and column 

names in the matrix file must also be cited in the PEST control file (though not necessarily in 

the same order). DERCOMB1 replaces derivatives read from the existing external derivatives 

file with those read from the matrix file. It then writes a new external derivatives file with the 

upgraded derivatives. If the original derivatives file is supplied in compressed format, then 

the new derivatives file written by DERCOMB1 will also employ compressed format. (Note 

that DERCOMB1 does not read or write binary derivatives files.) 

DERCOMB1 will normally be run as part of a model batch or script file cited in the 

“derivatives command line” section of a PEST control file. It will run after the model 

component that writes the external derivatives file as well as the model component that writes 

the matrix file of derivatives. Where there are many model executables and each of them 

calculate some of the derivatives required by PEST, DERCOMB1 may be run multiple times 

as part of the one model. 
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15. Matrix Manipulation Programs 

15.1 Introduction 

This chapter documents a series of matrix manipulation programs.  

Many of the PEST utility programs documented in this manual read and/or write files which 

contain matrices. The format used for these files is documented in section 2.4 of this manual. 

Often-used matrices include the following. 

• The Jacobian matrix recorded by PEST; 

• The JtQJ, or so-called “normal matrix”, used by PEST as a basis for solution of an 

over-determined inverse problem; 

• Observation covariance matrices supplied to PEST instead of observation weights; 

• Parameter and measurement noise covariance matrices used in error and uncertainty 

analysis; and 

• Predictive sensitivity vectors (recall that a vector is simply a one-dimensional matrix) 

used in predictive error and uncertainty analysis. 

A number of programs documented in chapter 5 of this manual provide translation 

capabilities between JCO and matrix files. They are 

• JCO2MAT, which rewrites a Jacobian matrix housed in a JCO file in PEST matrix 

file format; 

• MAT2JCO, which rewrites a Jacobian matrix stored in PEST matrix file format as a 

JCO file; 

• JROW2VEC, which extracts a row from a JCO file, recording the contents of that 

row as a vector (i.e. as a matrix with only one column); 

• JROW2MAT, which extracts a row from a JCO file, recording the contents of that 

row as a matrix (with only one row). 

In contrast to other chapters of this manual, programs are described in alphabetical order in 

the present chapter. 

15.2 COV2COR 

COV2COR calculates a correlation coefficient matrix from a covariance matrix. It reads the 

former from a file which observes PEST matrix file format and writes the latter to a file 

which observes the same format. The matrix in the former file must satisfy the following 

requirements. 

1. It must be square. 

2. None of its diagonal elements must be zero or less.  

3. Its row and column names must be identical. 

COV2COR is run using the command 

cov2cor covfile corfile 

where 

covfile  is the name of the matrix file holding the covariance matrix, and 

corfile  is the name of the file to which the corresponding correlation coefficient 
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matrix is written. 

15.3 COVCOND 

Suppose that an arbitrary vector x is partitioned into two separate parts x1 and x2. That is 

 x = 








2

1

x

x
         (15.3.1) 

Let C(x), the covariance matrix of x, be correspondingly partitioned as 

 C(x) = 








2221

1211

CC

CC
        (15.3.2) 

Suppose further that the elements of x2 become known. Then, if there is correlation between 

at least some members of x2 and some members of x1 (resulting in non-null C12 and C21 

submatrices), the conditioned C11 matrix C´11 is calculable as 

 C´11 = C11 – C12C
-1

22C21       (15.3.3) 

COVCOND computes C´11, that is, the conditional covariance matrix of a subset of random 

variables, based on the premise that the complimentary subset becomes known. It is run using 

the command 

covcond covfile1 listfile covfile2 

where 

covfile1 contains a covariance matrix (i.e. C(x) in the above explanation), 

listfile contains a list of random variables whose values are assumed known, and 

covfile2 contains the conditional covariance matrix pertaining to the variables 

whose values are not known (i.e. C´11 in the above explanation). 

As is explained in section 2.4 of this manual, a PEST-compatible matrix file includes a list of 

row and column names. For a covariance matrix file, row and column names are the same; 

presumably, these are the names of random variables whose stochastic structure is described 

by the covariance matrix. The listing file (this being the second COVCOND command line 

argument) must contain a list comprised of the names of some of these variables, written one 

to a line. No header, or other information, is required in this file. 

15.4 MAT2SRF 

MAT2SRF rewrites a matrix in SURFER grid file format. This can be a particularly useful 

device for viewing a resolution matrix (see utilities such as RESPROC and RESWRIT 

described elsewhere in this manual). A highly diagonally-dominant resolution matrix 

indicates (as the name suggests) good “resolution” of parameters through the parameter 

estimation process. A “blurry” resolution matrix which is only mildly diagonally-dominant 

indicates an inability of the calibration process to capture parameterisation detail, this arising 

from information deficits in the calibration dataset. 

MAT2SRF is run using the command 

mat2srf matfile gridfile [threshold] 

where 

matfile  is the name of a matrix file, 
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gridfile  is the name of a SURFER grid file, and 

threshold  is a blanking threshold. 

Upon commencement of execution MAT2SRF reads the matrix contained in the matrix file. 

It then rewrites the matrix contained therein in SURFER grid file format to file gridfile. Note 

that MAT2SRF automatically adds an extension of “.grd” to this filename unless it possesses 

this extension already. 

MAT2SRF provides the option of blanking matrix elements whose absolute values are above 

a certain threshold. This threshold is optionally supplied as the last element of the MAT2SRF 

command line. If it is omitted, no such blanking takes place unless a matrix element has an 

absolute value greater than 1.70141e38, this being SURFER’s “natural” blanking threshold. 

When a matrix is plotted (and shaded/contoured) in SURFER, rows and columns of this 

matrix appear in the same order in the SURFER plot as they do in the numerical 

representation of the matrix in the corresponding matrix file. 

15.5 MATADD 

MATADD adds one matrix to another. It is run using the command 

mattadd matfile1 matfile2 matoutfile 

where matfile1 and matfile2 are files containing the matrices to be added, while matoutfile 

contains the file to which MATADD writes the summation of the two supplied matrices. 

The following should be noted. 

1. Two supplied matrices must have the same number of rows and columns if they are to 

be added. 

2. If row and column names differ in substance or in order between the two supplied 

matrix files, MATADD transfers those provided in matfile1 to the summation matrix 

recorded in file matoutfile. However it warns the user of the name-incompatibility 

between the matrices contained in matfile1 and matfile2. MATADD does not 

therefore re-order the rows and columns of one matrix in order to ensure 

correspondence with that of the other matrix. If the number of rows and columns are 

the same in each matrix file, the matrices are simply added, and a warning message is 

written to the screen. 

15.6 MATCOLEX 

MATCOLEX stands for matrix columns extract. Using this utility, the first ncol columns are 

extracted from a matrix and rewritten as a new matrix to a new matrix file. MATCOLEX is 

run using the command 

matcolex matfile ncol matoutfile 

where matfile contains an arbitrary, rectangular m×n matrix. A new m×ncol matrix is written 

to the matrix file matoutfile.  

If ncol is supplied as negative, then the last ncol columns of a matrix are extracted; these 

columns are written to the new matrix file in reverse order.  

15.7 MATDIAG 

MATDIAG extracts the diagonal of a matrix, writing it as a vector (i.e. as a one-column 
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matrix). However certain conditions must be met for MATDIAG to do its job. These are as 

follows. 

1. The matrix must be square; 

2. The row and column names of the matrix must be the same. 

MATDIAG is run using the command 

matdiag matfile matoutfile 

where  

matfile is the name of a file holding a square matrix, and  

matoutfile  is the name of the matrix file to which extracted diagonal elements of the 

matrix are written. 

MATDIAG provides the rows of the one-column matrix which it records to matoutfile with 

the same names as the rows of original matrix. The single column of the new matrix is given 

the name “col1”. 

15.8 MATDIFF 

MATDIFF is identical to MATADD except for the fact that it undertakes matrix differencing 

instead of matrix addition. 

15.9 MATINVP 

MATINVP calculates the inverse of a positive definite matrix. It is run using the command 

matinvp matfile matoutfile 

where  

matfile contains the matrix to be inverted, and  

matoutfile  contains the matrix to which the inverse is written.  

If the matrix contained in matfile is not positive definite, MATINVP ceases execution with an 

appropriate error message. 

15.10 MATJOINC 

MATJOINC reads two matrices which have the same number of columns, and for which 

corresponding column names are the same in each matrix. It forms a new matrix by joining 

these two matrices in the column direction. Thus suppose that the two existing matrices are 

named A and B. MATJOINC combines these matrices into the single matrix C constructed as 









=

B

A
C          (15.10.1) 

MATJOINC is run using the command 

matjoinc matfile1 matfile2 matoutfile 

where 

matfile1  is the name of a matrix file holding the first matrix, 

matfile2  is the name of a matrix file holding the second matrix, and 

matoutfile  is the new matrix file. 
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The following should be noted. 

1. MATJOINC will not join two existing matrices if any column name in the first 

matrix differs from that of its corresponding column in the second matrix. 

2. MATJOINC will not join two existing matrices if any row name in the first matrix 

is the same as a row name in the second matrix (for then the resulting matrix 

would have duplicate row names). 

3. Row and column names from the existing matrices are transferred to the new 

matrix. 

4. If the resulting, combined, matrix is a diagonal matrix, MATJOINC writes the 

joined matrix in diagonal matrix format (see section 2.4) for the sake of storage 

efficiency. 

15.11 MATJOIND 

MATJOIND reads two matrices of arbitrary dimensions. It then forms a new matrix in which 

the two are combined in a diagonal sense. Thus suppose that the two existing matrices are 

named A and B. MATJOIND combines these matrices into a single matrix C of the form 









=

B0

0A
C          (15.11.1) 

MATJOIND is run using the command 

matjoind matfile1 matfile2 matoutfile 

where 

matfile1 is the name of a matrix file holding the first matrix, 

matfile2 is the name of a matrix file holding the second matrix, and 

matoutfile is the new matrix file. 

The following should be noted. 

1. MATJOIND will not join two existing matrices if any column name in the first 

matrix is the same as a column name in the second matrix. 

2. MATJOIND will not join two existing matrices if any row name in the first matrix 

is the same as a row name in the second matrix. 

3. Row and column names from the existing matrices are transferred to the new 

matrix. 

4. If the resulting, combined, matrix is a diagonal matrix (which can only occur if the 

two existing matrices are themselves diagonal), MATJOIND writes the joined 

matrix in diagonal matrix format (see section 2.4) for the sake of storage 

efficiency. 

15.12 MATJOINR 

MATJOINR reads two matrices which have the same number of rows, and for which 

corresponding row names are the same in each matrix. It forms a new matrix by joining these 

two matrices in the row direction. Suppose that the two existing matrices are named A and B. 

MATJOINR combines these matrices into a single matrix C of the form 
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 BAC =          (15.12.1) 

MATJOINR is run using the command 

matjoinr matfile1 matfile2 matoutfile 

where 

matfile1 is the name of a matrix file holding the first matrix, 

matfile2 is the name of a matrix file holding the second matrix, and 

matoutfile is the new matrix file. 

The following should be noted. 

1. MATJOINR will not join two existing matrices if any row name in the first matrix 

differs from that of its corresponding row in the second matrix. 

2. MATJOINR will not join two existing matrices if any column name in the first 

matrix is the same as a column name in the second matrix (for then the resulting 

matrix would have duplicate column names). 

3. Row and column names from the existing matrices are transferred to the new 

matrix. 

4. If the resulting, combined, matrix is a diagonal matrix, MATJOINR writes the 

joined matrix in diagonal matrix format (see section 2.4) for the sake of storage 

efficiency. 

15.13 MATORDER 

The purpose of MATORDER is to re-order the rows and columns of a matrix. It is run using 

the command 

matorder matfile1 matfile2 matoutfile 

where  

matfile1 is the name of a matrix file holding the matrix to be re-ordered, 

matfile2 is the name of a “reordering matrix”, and 

matoutfile is the name of a new matrix file which will hold the reordered matrix. 

MATORDER commences execution by reading the matrix contained in file matfile1. It then 

reads file matfile2. If the number of rows and columns in the matfile2 matrix is not the same 

as the number of rows and columns in the matfile1 matrix, MATORDER ceases execution 

with an appropriate error message. MATORDER then verifies that there are no duplicate 

column names in each of the matfile1 and matfile2 matrices, and that there are also no 

duplicate row names.  

Next MATORDER reorders the matfile1 matrix such that its rows have the same order as the 

rows of the matfile2 matrix, and such that its columns have the same order as the columns of 

the matfile2 matrix. (Ordering is by row and column name.) It then records the re-ordered 

matfile1 matrix in file matoutfile. 

It is important to note that the matrix in file matfile2 is not actually used by MATORDER; 

only the row and column names are used. Thus any matrix can be employed. If the matrix has 

a large number of rows and/or columns, and if file matfile2 is being prepared by hand, don’t 

forget the shorthand manner in which matrix elements can be stored; see section 2.4. For 

example each row of a 1000-column null matrix 0 can be represented using the string 
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“1000*0.0”. 

15.14 MATPROD 

MATPROD calculates the product of two matrices. That is, it calculates C where C=AB. 

Note that calculation of C is only possible if the number of columns of A is equal to the 

number of rows of B. Ideally the names of the rows of A should be the same as the names of 

the columns of B. MATPROD will not object if this is not the case; however it will issue a 

warning. 

MATPROD is run using the command 

matprod matfile1 matfile2 matoutfile 

where matfile1 and matfile2 contain the A and B matrices respectively; matoutfile will 

contain the C matrix upon completion of MATPROD execution. 

15.15 MATQUAD 

MATQUAD evaluates the quadratic form ytMy where y is a vector and M is a square matrix. 

It is run using the command 

matquad vecfile matfile matoutfile 

where 

vecfile  is the name of a matrix file holding the vector y,  

matfile  is the name of a matrix file holding the matrix M, and 

matoutfile  is the output matrix file. 

The following should be noted. 

1. MATQUAD requires an input vector y. However this vector is actually read as a n×1 

matrix from a standard matrix file. 

2. Even though ytMy is a scalar, MATQUAD writes this scalar as a 1×1 matrix to the 

matrix file outfile. However it also writes it to the screen. 

3. MATQUAD will issue a warning message if the names of the rows of the vector y are 

not the same as those of the rows of M. It will also issue a warning message if the 

rows of M are named differently from the columns of M. 

15.16 MATROW 

MATROW extracts a row of a matrix. It then re-writes that row as a “row matrix” to a matrix 

file.  

An interesting use of MATROW is the extraction of a row of a resolution matrix. The 

MATTRANS utility can then be used to write row entries in the vertical direction rather than 

in the horizontal direction. For those parameters which correspond to pilot points (or other 

point-based geographical entities), geographical coordinates are easily pasted in adjacent 

columns. Gridding and contouring of this data then allows graphical viewing of the averaging 

process that attends the estimation of spatial model parameters where their estimation takes 

place through an ill-posed inverse problem. 

MATROW is run using the command 

matrow matfile rowname matoutfile 
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where 

matfile is the name of a matrix file,  

rowname is the name of a row of the matrix contained in matfile, and 

matoutfile is the name of a new matrix file containing the nominated row of the first 

matrix. 

15.17 MATSMUL 

MATSMUL multiplies a matrix by a scalar. It is run using the command 

matsmul matfile number matoutfile 

where 

matinfile is a file containing a matrix, 

number is the scalar multiplier, and 

matoutfile is the file to which the new matrix is written. 

15.18 MATSPEC 

MATSPEC lists some useful matrix specifications to a nominated text file, namely: 

1. the number of rows and columns in the matrix; 

2. the row/column numbers/names of highest and lowest matrix elements; 

3. the row/column numbers/names of highest and lowest absolute matrix elements; 

4. the row/column numbers/names of highest and lowest diagonal elements; 

5. the row/column numbers/names of highest and lowest absolute diagonal elements. 

MATSPEC is run using the command 

matspec matfile outfile 

where  

matfile is the name of a file holding a matrix, and  

outfile is the name of the text file to which matrix properties are written. 

15.19 MATSVD 

MATSVD undertakes singular value decomposition of an arbitrary m × n matrix. Suppose 

that this matrix is named Z. Then singular value decomposition of Z leads to computation of 

the matrices U, S and V where 

 Z = USVt         (15.19.1) 

In the above equation U is an m × m orthonormal matrix, V is an n × n orthonormal matrix 

and S is a “rectangular diagonal” matrix of dimension m × n containing the singular values of 

Z. These are real and non-negative, and are returned in descending order by MATSVD. The 

first min(m,n) columns of U and V are the normalised left and right singular vectors of Z. 

MATSVD is run using the command 

matsvd matfile umatfile smatfile vtmatfile 

where 

matfile  is a user-supplied matrix file containing an arbitrary rectangular matrix Z, 

umatfile contains the SVD-generated U matrix, 
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smatfile contains a square j×j S (singular value) matrix where j is the smaller of m 

and n, and 

vtmatfile contains the SVD-generated n×n Vt matrix. 

Note that while S as represented in the above equation is an m×n matrix, it is only recorded 

as a j×j matrix by MATSVD (singular values beyond this are zero). The fact that it is square 

allows it to be written with an ICODE value of -1 (i.e. as a list of numbers – see section 2.4 of 

this manual). This allows the user to much more easily inspect the singular values of Z than if 

they were recorded in a large rectangular matrix of predominantly zero elements. 

15.20 MATSYM 

MATSYM reads a square matrix A. It forms a symmetric matrix as (A + At)/2, writing this 

matrix to a user-nominated file. MATSYM is run using the command 

matsym matfile matoutfile 

where 

matfile is the name of a matrix file containing a square matrix, and 

matoutfile is the name of a new matrix file to which MATSYM writes the symmetric 

matrix, calculated as above. 

15.21 MATTRANS 

MATTRANS reads a matrix file. It writes another matrix file containing the transpose of the 

matrix contained in the first file. It is run using the command 

mattrans matfile matoutfile 

where 

matfile is the name of a matrix file, and 

matoutfile is the name of a new matrix file containing the transpose of the first 

matrix. 

15.22 MATXTXI 

MATXTXI calculates (XtX)-1 where X is a user-supplied matrix for which the number of 

columns does not exceed the number of rows. It is run using the command 

matxtxi matfile matoutfile 

where matfile contains the X matrix. After completion of MATXTXI execution matoutfile 

contains the matrix (XtX)-1. 

15.23 MATXTXIX 

MATXTXIX calculates (XtX)-1Xt where X is a user-supplied matrix for which the number of 

columns does not exceed the number of rows. It is run using the command 

matxtxi matfile matoutfile 

where matfile contains the X matrix. After completion of MATXTXIX execution matoutfile 

contains the matrix (XtX)-1Xt. 
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15.24 PEST2VEC 

PEST2VEC reads a PEST control file. A template file of a single column matrix file is then 

written based on adjustable parameters cited within this control file; so too is the matrix file 

itself, using initial parameter values recorded in the PEST control file. A complementary 

transformation vector file (the second matrix file required by the VECLOG utility) is also 

written. PEST2VEC also writes a new PEST control file in which the template file and 

associated matrix file are added to its “model input/output” section. 

PEST2VEC expedites the process of allowing parameter value matrix manipulation to be 

implemented as part of a model run by PEST during a parameter estimation or predictive 

analysis process. The model, as run by PEST, will probably need to be upgraded (normally 

by adding lines to the model batch file) such that one or more of the matrix manipulation 

utilities documented in the present chapter are run; if any parameters are log-transformed the 

command to run VECLOG will need to precede all other matrix operations undertaken 

through this batch file. The result of such parameter manipulation is likely to be a matrix 

itself. VEC2PEST can be used to alter a PEST control file to accommodate the inclusion of 

these results in the parameter estimation and/or predictive analysis processes; VEC2PEST 

will also write an instruction file through which the outcomes of such matrix manipulation 

can be read by PEST. 

PEST2VEC is run using the command 

pest2vec pestfile1 pestfile2 tplfile matfile logfile 

where 

pestfile1 is an existing PEST control file, 

pestfile2 is a new PEST control file written by PEST2VEC in which the template 

file and new matrix file are cited in the “model input/output” section, 

tplfile is a template file of a matrix file, 

matfile is a matrix file citing the initial values of adjustable parameters as 

recorded in the PEST control file, and 

logfile is the name of a transformation vector file for the use of the VECLOG 

utility. 

15.25 VEC2PEST 

VEC2PEST facilitates the use of matrix manipulation outcomes by PEST. This can be useful 

where parameters, or parameter projections, must be subjected to constraints imposed by a 

covariance matrix when maximizing or minimizing a key model prediction as part of a 

predictive analysis process (see the REGPRED utility documented elsewhere in this manual). 

Thus, as part of this process, PEST parameters can be written to a matrix file, logarithmically 

transformed as appropriate, and then possibly projected onto a subspace of parameter space 

using matrix multiplication utilities described herein. The outcome of such a parameter 

manipulation process will be a single column matrix (i.e. a vector) residing in a matrix file. 

VEC2PEST generates an instruction file with which the components of this vector can be 

read by PEST, and alters an existing PEST control file to include these vector elements as 

observations. 

In undertaking these activities, VEC2PEST observes the following protocols. These may not 

be suitable for all occasions. Hence it is essential that a VEC2PEST-modified PEST input 

dataset be checked with the comprehensive error checking utility PESTCHEK. 
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1. Observation names are denoted as the names of the rows of the single column matrix 

to which they correspond. 

2. An observation group name is formulated as a text string that is common to all of the 

new observation names; if such a string cannot be found, the name of the new 

observation group is provided as “mat_data”. 

If these protocols result in conflicts with existing names, the situation must be remedied by 

direct editing of the PEST control and instruction files generated by VEC2PEST. 

VEC2PEST is run using the command 

vec2pest vecfile pestfile1 pestfile2 insfile2 [covfile] 

where 

vecfile  is the name of a matrix file containing a single-column matrix, 

pestfile1  is the name of an existing PEST control file to be modified by 

VEC2PEST, 

pestfile2  is the name of a new PEST control file to be written by VEC2PEST 

containing the new observations, 

insfile2  is the name of an instruction file through which the nominated matrix file 

will be read by PEST, and 

covfile is the name of an optional covariance matrix file for the new observation 

group. 

The covariance matrix file covfile may have been prepared by utility software such as 

PARAMERR or PREDUNC7. Note that VEC2PEST does not check for the existence of the 

optionally nominated covariance matrix file. It simply places its name at the appropriate 

location within the PEST control file which it generates, opposite the name of the new 

observation group in the “observation groups” section of this file. 

15.26 VECLOG 

VECLOG reads two matrix files, each of which must contain a single column matrix (i.e. a 

vector). The second of these vectors must contain elements which are either 0, 1 or -1. For 

each element of the second vector which is 1, the corresponding element of the first vector is 

log (to base 10) transformed by VECLOG in forming the corresponding element of a new 

vector. For each element of the second vector which is -1, the corresponding element of the 

first vector becomes a power of 10 in computing the corresponding element of the new 

vector; that is, the corresponding element of the new vector is computed as 10x where x is the 

pertinent element of the first vector. For each element of the second vector which is 0, the 

corresponding element of the first vector remains unchanged, and is thus directly transferred 

to the new vector. After transformation in this manner, VECLOG writes the new vector to a 

new matrix file. 

VECLOG is run using the command 

veclog matfile1 matfile2 matoutfile 

where 

matfile1 contains the first vector, 

matfile2 contains the second vector, and 

matoutfile is the name of a new matrix file to which the transformed vector is 

written. 
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Note that if any element of the first vector for which log transformation is sought is zero or 

negative, VECLOG will cease execution with an appropriate error message. Note also that if 

any element of the new vector is computed to exceed 1036, it is recorded as 1036 to avoid 

numerical overflow. 
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16. RRF and PAROBS Files 

16.1 Introduction 

An “RRF file” is a “run results file”. This file type is produced by PEST_HP. It contains the 

parameter values used in a suite of PEST runs, together with model-calculated observation 

values. Specifications for this file type are provided in section 2.6. 

A “PAROBS file” is similar to a parameter value file. However, in addition to the values of 

parameters, it also contains the values of model outputs calculated using the parameters. In 

contrast to an RRF file, it contains only one set of parameter values and only one set of model 

output values. Specifications for a PAROBS fare provided in section 2.7. 

16.2 RRFCAT 

RRFCAT concatenates two run results files. Before it does so, it checks for compatibility 

between the files. In particular, it checks that the number of parameters and observations, and 

the names of the parameters and observations, are the same in each file. RRFCAT can 

accommodate a different ordering of parameter and observations in the two files; in this case 

the ordering in the first file is transferred to the final file.  

RRFCAT is run using the following command.  

rrfcat rrfinfile1 rrfinfile2 rrfoutfile 

where: 

rrfinfile1 is an existing run results file, 

rrfinfile2  is another existing run results file, and 

rrfoutfile  is a new run results file formed by concatenation of the existing run 

results files. 

In concatenating the two files, parameter set indices are renumbered, starting at 1. Also if any 

model output pertaining to a particular parameter set includes a “null result” (this being 

marked by any model output value that is less than -1.0e35 for a particular model run), the 

parameter/model-output set is not transferred to the new run results file.  

16.3 RRFCULL 

Each parameter and model output set featured in a run results file is characterized by a 

parameter set index. This integer index is listed directly after the “* parameter set index” 

header that accompanies each parameter set. Parameter set indices should be sequential and 

start at 1. 

RRFCULL reads a run results file, together with a “culling file”. The latter file should 

contain a list of parameter set indices, one to a line. Optionally, a line in the culling file can 

commence with a “#” character; the line is then ignored. RRFCULL writes a new run results 

file. Parameter sets characterized by parameter set indices listed in the culling file are 

ommitted from the latter file. Parameter sets in this new file are provided with new indices. In 

accordance with the protocol for a run results file, these indices are sequential, and start at 1. 

RRFCULL is run using the following command.  

rrfcull rrfinfile cullfile rrfoutfile 
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where: 

rrfinfile is an existing run results file, 

cullfile   is a culling file, and 

rrfoutfile  is the culled run results file. 

16.4 RRFCLEAN 

RRFCLEAN reads an existing run results file and writes a new one. In writing the new run 

results file, it performs the following actions on data that is resident in the existing run results 

file. 

• It removes parameter sets for which model output values indicate a failed or 

abandoned model run. (If any model output value is less than -1.0e35 for a particular 

parameter set, this is taken as a sign of model run failure or abandonment; this 

protocol is employed by PEST_HP when it writes a run results file.) 

• If data pertaining to the final parameter set is missing from the existing run results 

file, then no data pertaining to the final parameter set is written to the new run results 

file. 

• If required, parameter set indices are re-numbered, starting at 1 and increasing by 1 

for each new parameter set. 

RRFCLEAN is run using the command 

rrfclean rrffile1 rrffile2 

where: 

rrffile1  is the name of an existing run results file, and 

rrffile2 is the name of the new run results file written by RRFCLEAN. 

16.5 RRF2PAR 

RRF2PAR writes a series of parameter value files, based on the contents of a run results file. 

Parameter value files can be used by programs such as PARREP for conducting a series of 

model runs, perhaps for the purpose of exploring predictive uncertainty. (If this is the case, 

the run results file will have been written by a program that has not only calculated sets of 

parameter values, but has also calculated model output values - probably under calibraton 

conditions - associated with each of these sets.) 

RRF2PAR is run using the command 

rrf2par rrffile parfilebase index1 index2 

where: 

rrffile  is the name of an existing run results file, 

parfilebase is the filename base of the set of parameter value files which 

RRF2PAR must write, 

index1 is the initial parameter value index, and  

index2 is the final parameter value index. 

Parameter value indices in a run results file should be arranged in increasing order, starting at 

1. Suppose that RRF2PAR is run using the following command. 
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 rrf2par file.rrf parfile 10 20 

Then RRF2PAR reads file file.rrf to obtain parameter values. (It ignores model output 

values). It gathers parameter values associated with parameter set indices 10 to 20 (inclusive), 

recording these in parameter value files parfile10.par, parfile11,par…parfile20.par. 

16.6 PAROBS2RRF 

PAROBS2RRF reads a sequence of PAROBS files. It builds a single run results file in which 

the contents of all of the PAROBS files are recorded. 

PAROBS2RRF is run using the following command. 

parobs2rrf filebase i1 i2 rrffile 

where: 

filebase is the filename base of a set of PAROBS files (an extension of 

“.parobs” is assumed), 

i1   is the PAROBS file starting index, 

i2   is the PAROBS file ending index, and 

rrffile   is the run results file which PAROBS2RRF writes. 

Suppose, for example, that PAROBS2RRF is run using the command: 

 parobs2rrf case 1 200 outfile.rrf 

PAROBS2RRF will attempt to read files case1.parobs, case2.parobs…case200.parobs. It 

will record parameter values and corresponding model output values that it reads from these 

files in the run results file outfile.rrf. If any of case*.parobs files are missing, then 

PAROBS2RRF will report this to the screen, but will continue its processing of the sequence 

of PAROBS files. In accordance with the run results file protocol, parameter set indices in the 

run results file will continue to be sequential, regardless of the missing PAROBS file; hence 

parameter set indices will not coincide with PAROBS file indices where a PAROBS file is 

missing. However each set of parameter and model output values can still be linked to a 

PAROBS file through the “parameter value source” descriptor associated with each 

parameter set recorded in the run results file. 

16.7 RRF2PAROBS 

RRF2PAROBS extracts a single set of parameter values and corresponding model output 

values from a run results file. It writes these to a PAROBS file. 

RRF2PAROBS is run using the command 

rrf2parobs rrffile psetindex parobsfile 

where: 

rrffile   is the name of a run results file, 

parsetindex is a parameter set index cited in this file, and 

parobsfile is the name of the PAROBS file which RRF2PAROBS must write. 
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16.8 RRFAPPEND 

RRFAPPEND appends parameter and model output values read from a PAROBS file to the 

end of a run results file. However, it only does this if the names and ordering of parameters 

and model outputs in the PAROBS file are the same as those in the run results file. The 

parameter set index provided to the new dataset is obtained by incrementing the last 

parameter set index found in the run results file. 

RRFAPPEND is run using the command 

rrfappend parrobsfile rrffile 

where: 

parrobsfile is the name of an existing PAROBS file, and 

rrffile  is the name of an existing run results file. 

If RRFAPPEND detects any inconsistencies between parameter names and ordering in the 

PAROBS and run results files, it ceases execution with an error message. It does the same if 

it encounters an error in either file. If it encounters an unexpected end to the run results file, it 

will still append the contents of the PAROBS file to the end of this file. However it will leave 

two empty lines between the current end of the run results file and the beginning of the 

appended data.  

If the run results file to which RRFAPPEND must append parameter and model output data 

does not exist, then RRFAPPEND creates this file and writes a header to it. 

16.9 MULPAROBSTAB 

MULPAROBSTAB performs a very similar role to that of the MULPARTAB utility. 

However it operates on a suite of PAROBS files rather than on a suite of parameter value 

files. Because of this, it writes two output files, one in which the values of parameters are 

tabulated and one in which the values of model outputs are tabulated. 

MULPAROBSTAB is run using the command 

mulparobstab parobsfile listfile outfile1 outfile2 

where 

parobsfile  is a generic PAROBS filename, 

listfile  contains a list of integer indices,  

outfile1  is the name of a tabular output file in which parameter values are 

recorded, and 

outfile2 is the name of a tabular output file in which model output values are 

recorded. 

16.10 RRF2TAB 

RRF2TAB performs a simular role to MULPAROBSTAB, in that it produces two tabular 

data files. However it reads parameter and model output values from a run results file rather 

than from a series of PAROBS files. It is run using the command 

rrf2tab rrffile outfile1 outfile2 

where 

rrffile  is a run results file, 



 RRF and PAROBS Files 228 

 
 

outfile1  is the name of a tabular output file in which parameter values are 

recorded, and 

outfile2 is the name of a tabular output file in which model output values are 

recorded. 

16.11 PARREP_RRF 

PARREP_RRF performs a similar function to PARREP in that it writes a new PEST control 

file which is identical to an existing PEST control file, except for the fact that parameters in 

the new PEST control file have new values. For PARREP, those values are read from a 

parameter value file. For PARREP_RRF, new parameter values are read from a run results 

file.  

PARREP_RRF is run using the command 

parrep_rrf rrffile parsetindex pestfile1 pestfile2 

where 

rrffile  is the name of a run results file, 

parsetindex (an integer) is a parameter set index cited in this file, 

pestfile1  is the name of an existing PEST control file, and 

pestfile2  is the name for the new PEST control file. 

16.12 RRFCALCPSI 

16.12.1 General 

RRFCALCPSI reads a run results file. As well as reading a run results file, RRFCALCPSI 

reads a PEST control file. This file may be the same as that which PEST_HP used for the run 

on which it actually wrote the RRF file. Alternatively, it may be different. If it is different, it 

must employ the same parameters and the same observations as those featured in the run 

results file. However any or all of the following can be different between the PEST control 

file whose name is supplied to RRFCALCPSI and that on which production of the run results 

file was based: 

• the ordering of parameters and observations; 

• the weights and/or covariance matrices associated with observations; 

• the measured values assigned to observations; 

• the groups to which observations are assigned; 

• whether or not prior information is employed, and the nature of that prior information; 

• the mode in which PEST_HP was run (for example “estimation” or “regularisation”). 

For each parameter and model output set that it finds in the run results file, RRFCALCPSI 

calculates the objective function pertaining to each observation group, as well as the total 

objective function. Included in these objective functions are contributions made by prior 

information. It is important to note, however, that in calculating these objective function 

components, RRFCALCPSI employs weights, covariance matrices, and prior information 

equations featured in the PEST control file whose name is provided to it, and not those in the 

original PEST control file used by PEST_HP (or any other software) to write the run results 

file. Objective functions calculated by RRFCALCPSI are tabulated in a columnar data file 
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that is easily imported into a spreadsheet package such as EXCEL. Also recorded is the 

parameter set index from the run results file, as well as the reason for each model run; the 

latter is written in the “parameter values source” component of each run record in the run 

results file. 

16.12.2 Using RRFCALCPSI 

RRFCALCPSI is run using the following command. (Type its name at the command-line 

prompt if you forget, and RRFCALCPSI will remind you.) 

rrfcalcpsi rrffile pestfile psifile 

 where   

rrffile  is the name of a run results file, 

pestfile  is the name of a PEST control file, and 

psifile    is a file in which objective functions will be recorded. 

Note the following: 

• The run results file is assumed to have an extension of “.rrf”. If this is omitted, 

RRFCALCPSI will add this extension to the name which you provide. 

• The PEST control file must have an extension of “.pst”. If this is omitted, 

RRFCALCPSI will add this extension to the name which you provide. 

• The file written by RRFCALCPSI can have any extension. Its extension should be 

included with its name when issuing the above command. 

As is described in specifications for a run results file (see section 2.6 of this document), 

model output values of -1.11E35 in the run results file indicate a failed model run, while 

model output values of -1.22E35 indicate an abandoned model run. RRFCALCPSI calculates 

objective function values of -1.11E35 and -1.22E35 for these occasions.  

If any prior information is present in the PEST control file whose name is supplied to 

RRFCALCPSI, objective functions corresponding to this prior information are calculated, 

together with those pertaining to model outputs. Prior information outcomes do not depend 

on model outputs. They only depend on parameter values; these are read from the run results 

file. 

If the PEST control file whose name is supplied to RRFCALCPSI instructs PEST to run in 

“regularisation” mode, then the regularisation weight factor used in calculation of the 

objective functions associated with regularisation groups is equal to the initial weight factor 

(i.e. WFINIT) supplied in the “regularisation” section of the PEST control file. 

If the PEST control file whose name is supplied to RRFCALCPSI instructs PEST to run in 

“pareto” mode, then no weight factors are employed. Weights and covariances matrices 

recorded in the PEST control file are used directly.  

16.13 RRF2JCO 

16.13.1 General 

RRF2JCO reads a run results file. It calculates a binary Jacobian matrix file (i.e. a JCO file) 

based on parameters and model outputs that are recorded in this file. 
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16.13.2 Theory and Concepts 

Let the vector h represent model outputs under calibration conditions. Thus, for a linearized 

model: 

 h = Zk          (16.13.1) 

The previous equation can be expanded as follows. 
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Suppose now that random realizations of parameters k are generated using the variance-

covariance matrix C(k). The covariance matrix Chk relating model outputs to random 

parameters can be calculated as follows. 
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so that 

 Chk = ZC(k)         (16.13.4) 

Chk can be calculated empirically based on the outputs of many model runs that employ 

samples of C(k). Based on these model outputs, an approximation to the sensitivity matrix 

(i.e. the Jacobian matrix) Z can be calculated from equation 16.13.4 as 

 Z = ChkC
-1(k)         (16.13.5) 

RRF2JCO calculates C-1(k) using the equation 

 C-1(k) = US-1Ut        (16.13.6) 

where U and S are obtained through singular value decomposition of C(k). Prior to its 

inversion, C(k) can optionally be calculated empirically from the values of parameters 

featured in the run results file. If it is singular, this does not affect its inversion through 

16.13.6; zero-valued singular values are simply ignored. 

RRF2JCO calculates the value of element (i,j) of Chk from the outcomes of n model runs 

based on n random parameter sets using the equation: 
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where ih is calculated as: 
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and 
jk is calculated as: 
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If Ckk is calculated empirically, a similar equation is employed. Optionally the user can 

supply values for ih and 
jk for use in equation 16.13.7 (and in a similar equation pertaining 

to Ckk) him/herself. 

16.13.3 Using RRF2JCO 

RRF2JCO is run using the following command. (Type its name at the command-line prompt 

if you forget; and RRF2JCO will remind you.) 

rrf2jco pestfile mfile/nul/pst ufile/nul rrffile jcofile [sthresh] 

 where   

pestfile  is the name of a PEST conrol file, 

mfile/nul/pst is the name of an optional mean value file (in PAROBS format), 

ufile/nul is the name of an optional parameter uncertainty file, 

rrffile  is the name of a run results file,  

jcofile   is the name of the Jacobian matrix file which RRF2JCO writes, and 

sthresh  is an optional singular value truncation ratio. 

Immediately on commencement of execution, RRF2JCO reads a PEST control file. While 

RRF2JCO does not use parameter or observation values from this file, it must nevertheless 

read a PEST control file in order to obtain the transformation status of each parameter. As is 

described elsewhere in PEST documentation, if a parameter is log-transformed then 

sensitivities recorded in the JCO file must pertain to the log (to base 10) of the parameter. 

If the PEST conrol file which RRF2JCO reads contains prior information, this is represented 

in the JCO file which RRF2JCO writes. 

RRF2JCO obtains the variance-covariance matrix C(k) in either of two ways. If random 

parameter values on which model runs were based were generated using parameter 

uncertainties specified in a parameter uncertainty file (see section 2.5 of this manual), C(k) 

can be calculated from the contents of this uncertainty file. Alternatively, RRF2JCO 

calculates an empirical C(k) matrix from the parameter values which appear in the run results 

file. Specifiy the name of a parameter uncertainty file as RRF2JCO’s third command line 

argument if you wish that C(k) be obtained in the former way; specify “nul” for the name of 

the parameter uncertainty file to choose the latter option. 

Where a covariance matrix is calculated empirically, it may not be invertible. In fact it 

certainly will not be invertible if the number of random parameters sets on which calculation 

of an empirical C(k) is based is less than the number of elements of k. In this case singular 

values featured in the S matrix of equation 16.13.6 must be truncated before being inverted. 

RRF2JCO will automatically truncate at (n-1) singular values, where n is the number of 

random parameter sets featured in the run results file. However, through appropriate choice 

of the sthresh command-line parameter, RRF2JCO can be asked to truncate at that point 

where the ratio of a particular singular value to the first singular value is equal sthresh. 

RRF2JCO employs a default sthresh value of 5.0e-7.  

Optionally, RRR2JCO can read mean parameter and model output values used in calculation 

of the Chk empirical covariance matrix (see equation 16.13.7), and the optional empirical Ckk 

covariance matrix, from a PAROBS file. Provide the name of the PAROBS file as the second 

RRF2JCO command line argument; alternatively supply a name of “nul” for the PAROBS 
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file for mean model output and parameter values to be calculated using equations 16.13.8 and 

16.13.9. 

RRF2JCO provides one further alternative for calculation of mean values. This is activated 

by providing the string “pst” instead of the name of a PAROBS file or “nul” for the second 

RRF2JCO command line argument. With this argument, RRF2JCO uses parameter values 

listed in the PEST control file cited as RRF2JCO’s first command line argument as mean 

parameter values. It searches for corresponding model output values in the run results file 

which is cited as its fourth command line argument. If the run results file does not include the 

parameter set cited in the PEST conrol file, RRF2JCO automatically sets the second 

command line argument to “nul”; hence parameter and observation means are computing by 

averaging values in the run results file. 
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