

PEST
Model-Independent Parameter Estimation

User Manual Part II:

PEST Utility Support Software

(See part I for documentation of PEST, SENSAN and PEST-compatible global optimisers.)

7th edition published in 2018

Watermark Numerical Computing

Preface

Disclaimer
The user of this software accepts and uses it at his/her own risk.

The author does not make any expressed or implied warranty of any kind with regard to this

software. Nor shall the author be liable for incidental or consequential damages with or

arising out of the furnishing, use or performance of this software.

PEST Control Variables
See appendix A of part I of this manual for a complete specification of the PEST control file,

including a list of all PEST input variables and a description of their roles.

Bugs
If you discover a bug in PEST or any of its utilities, please report it to me, John Doherty, at

the following email address.

pestsupport@ozemail.com.au

Table of Contents

Table of Contents
1. Introduction .. 1

2. Files Types and Protocols .. 2

2.1 General .. 2

2.2 Parameter Value File ... 2

2.3 Observation Value File ... 2

2.4 Matrix File ... 3

2.4.1 General .. 3

2.4.2 Specifications .. 3

2.5 Uncertainty Files ... 4

2.5.1 Introduction ... 4

2.5.2 Specifications .. 5

2.6 Run Results File .. 9

2.7 PAROBS File .. 10

3. Checking Utilities .. 11

3.1 Introduction ... 11

3.2 TEMPCHEK ... 11

3.3 INSCHEK ... 12

3.4 PESTCHEK .. 13

3.5 SENSCHEK .. 14

3.6 JCOCHEK ... 15

4. Building and Altering a PEST Control File ... 16

4.1 Introduction ... 16

4.2 PESTGEN ... 16

4.3 PARREP .. 18

4.4 OBSREP .. 19

4.5 PARAMFIX .. 20

4.5.1 General .. 20

4.5.2 The Parameter Fix File .. 21

4.5.3 Running PARAMFIX ... 22

4.6 ADDREG1 .. 22

4.7 ADDREG2 .. 24

4.8 ADDCOVMAT ... 24

4.9 SUBREG1 ... 25

4.10 SIMCASE ... 26

4.11 WTFACTOR ... 26

4.12 PWTADJ1 ... 27

4.12.1 General .. 27

4.12.2 Running PWTADJ1 .. 28

4.13 PWTADJ2 ... 29

4.13.1 General .. 29

4.13.2 Using PWTADJ2 ... 31

4.14 PSTCLEAN .. 32

5. JCO File Construction and Manipulation .. 34

Table of Contents

5.1 Introduction ... 34

5.2 JACWRIT ... 34

5.3 JCO2MAT ... 35

5.4 MAT2JCO ... 35

5.5 JROW2MAT ... 35

5.6 JROW2VEC .. 36

5.7 JCOL2VEC ... 36

5.8 JCO2JCO .. 37

5.9 JCOTRANS .. 38

5.10 JCOPCAT ... 39

5.11 JCOORDER .. 39

5.12 JCOADDZ .. 41

5.13 JCODIFF ... 42

5.14 JCOSUM ... 42

5.15 JCOCOMB .. 43

5.15.1 General .. 43

5.15.2 Using JCOCOMB ... 44

5.16 JCOSUB .. 45

5.17 JCOZERO ... 45

5.18 JCOCHEK ... 46

5.19 WTSENOUT ... 46

5.19.1 General .. 46

5.19.2 Running WTSENOUT .. 47

6. Integrity of Finite-Difference Derivatives ... 49

6.1 Introduction ... 49

6.2 JACTEST .. 49

6.2.1 General .. 49

6.2.2 Using JACTEST .. 49

6.2.3 Using JACTEST in Parallel Mode .. 51

6.2.4 Stopping JACTEST ... 51

6.3 POSTJACTEST .. 51

6.4 MULJCOSEN ... 52

7. Model Pre- and Postprocessing .. 54

7.1 Introduction ... 54

7.2 PAR2PAR ... 54

7.2.1 General .. 54

7.2.2 Using PAR2PAR ... 56

7.2.3 Using PAR2PAR with PEST .. 58

7.3 OBS2OBS ... 62

7.3.1 General .. 62

7.3.2 OBS2OBS Input File ... 62

7.3.3 Running OBS2OBS ... 64

7.3.4 Some Uses of OBS2OBS .. 65

7.3.5 Some Notes on Using OBS2OBS ... 66

8. PEST Statistical Postprocessing .. 68

8.1 Introduction ... 68

Table of Contents

8.2 EIGPROC .. 68

8.2.1 General .. 68

8.2.2 Using EIGPROC ... 68

8.3 PCOV2MAT ... 70

8.4 INFSTAT .. 70

8.4.1 General .. 70

8.4.2 Using INFSTAT .. 71

8.5 INFSTAT1 .. 73

8.5.1 General .. 73

8.5.2 Using INFSTAT1 .. 74

8.6 SUPCALC ... 74

8.6.1 General .. 74

8.6.2 Using SUPCALC .. 75

8.7 IDENTPAR ... 77

8.7.1 General .. 77

8.7.2 Using IDENTPAR ... 78

8.8 PARAMID .. 80

8.8.1 General .. 80

8.8.2 Using PARAMID .. 81

8.9 SSSTAT .. 82

8.9.1 General .. 82

8.9.2 Theory and Concepts ... 82

8.9.3 Using SSSTAT .. 85

8.9.4 Some Further Comments .. 86

9. Super Parameters and Super Observations .. 88

9.1 Introduction ... 88

9.2 SVDAPREP .. 89

9.3 PCLC2MAT .. 89

9.4 SUPOBSPREP .. 90

9.4.1 General .. 90

9.4.2 Running SUPOBSPREP ... 91

9.4.3 What SUPOBSPREP Does ... 92

9.4.4 The New Model ... 93

9.4.5 Some Features of the New PEST Dataset ... 94

9.4.6 Using SVD-Assist with Super Observations ... 94

9.5 SUPOBSPAR .. 95

9.6 SUPOBSPAR1 .. 96

9.6.1 General .. 96

9.6.2 Theory ... 96

9.6.3 Running SUPOBSPAR1 ... 97

10. Linear Error and Uncertainty – Part I .. 99

10.1 Introduction ... 99

10.2 SCALEPAR .. 99

10.2.1 General .. 99

10.2.2 Running SCALEPAR .. 100

10.2.3 The New PEST Control File ... 102

Table of Contents

10.2.4 Calculating the Resolution Matrix of Native Parameters 103

10.3 PREDVAR1 .. 104

10.3.1 General .. 104

10.3.2 Using PREDVAR1 .. 106

10.4 PREDVAR1A ... 109

10.4.1 General .. 109

10.4.2 Using PREDVAR1A ... 109

10.5 PREDVAR1B ... 110

10.5.1 General .. 110

10.5.2 Theory ... 111

10.5.3 Using PREDVAR1B ... 111

10.6 PREDVAR1C ... 113

10.6.1 General .. 113

10.6.2 Theory ... 113

10.6.3 Using PREDVAR1C ... 115

10.7 PREDVAR2 .. 116

10.7.1 General .. 116

10.7.2 Using PREDVAR2 .. 117

10.8 PREDVAR3 .. 119

10.8.1 General .. 119

10.8.2 Using PREDVAR3 .. 120

10.9 PREDVAR4 .. 122

10.10 PREDVAR5 .. 122

10.10.1 General .. 122

10.10.2 Using PREDVAR5 .. 124

10.10.3 Observation Weights and Reference Variance .. 126

10.10.4 Parameter Scaling .. 126

10.10.5 PREDUNC5 instead of PREDUNC4 .. 126

10.11 PARVAR1 .. 126

10.12 PREDUNC1 .. 127

10.12.1 General .. 127

10.12.2 Using PREDUNC1 .. 128

10.13 PREDUNC4 .. 129

10.14 PREDUNC5 .. 130

10.15 PREDUNC6 .. 130

10.16 PREDUNC7 .. 131

10.17 GENLINPRED .. 132

10.17.1 General .. 132

10.17.2 Tasks Carried out by GENLINPRED ... 132

10.17.3 Predictive Error Variance and Predictive Uncertainty 133

10.17.4 The Prior Covariance Matrix ... 134

10.17.5 Observations and Predictions .. 134

10.17.6 Making GENLINPRED Easier to Use .. 135

10.17.7 Using GENLINPRED ... 136

10.17.8 Error and Uncertainty Tables .. 140

10.17.9 Identifiability ... 140

Table of Contents

10.17.10 Pre- and Post-Calibration Parameter Contributions to Error/Uncertainty..... 141

10.17.11 PREDUNC Uncertainty Formulation .. 141

10.17.12 Flexibility .. 142

11. Linear Error and Uncertainty – Part II ... 143

11.1 Introduction ... 143

11.1.1 General .. 143

11.1.2 Concepts .. 143

11.1.3 Some Special Considerations .. 146

11.1.4 PEST Requirements .. 147

11.1.5 Program Versions .. 148

11.2 RESPROC ... 148

11.2.1 General .. 148

11.2.2 What RESPROC Does .. 148

11.2.3 Running RESPROC .. 149

11.2.4 SVD-Assisted Inversion .. 149

11.3 RESWRIT ... 150

11.4 PARAMERR ... 150

11.4.1 General .. 150

11.4.2 Using PARAMERR .. 150

11.5 PREDERR ... 151

11.5.1 General .. 151

11.5.2 Using PREDERR .. 152

11.6 PREDERR1 ... 153

11.7 PREDERR2 ... 153

11.8 PREDERR3 ... 154

11.9 REGERR ... 154

11.9.1 General .. 154

11.9.2 Running REGERR .. 154

12. Nonlinear Error and Uncertainty ... 156

12.1 Introduction ... 156

12.2 RANDPAR .. 157

12.2.1 General .. 157

12.2.2 Using RANDPAR ... 157

12.3 RANDPAR1 .. 159

12.4 PNULPAR .. 159

12.4.1 General .. 159

12.4.2 Using PNULPAR .. 161

12.4.3 What to do Next .. 162

12.5 RDMULRES ... 163

12.5.1 General .. 163

12.5.2 The RDMULRES Input File ... 165

12.5.3 Running RDMULRES .. 166

12.6 MULPARTAB .. 166

12.6.1 General .. 166

12.6.2 Using MULPARTAB .. 167

12.7 COMFILNME ... 168

Table of Contents

12.8 COMFILNME1 ... 169

12.9 REGPRED .. 170

12.9.1 General .. 170

12.9.2 Theory ... 170

12.9.3 Preparing for a REGPRED Run .. 174

12.9.4 Running REGPRED .. 175

12.9.5 Some Notes ... 178

12.9.6 Using the SVD Matrix Option .. 179

12.10 ASSESSPAR ... 180

12.10.1 General .. 180

12.10.2 Theory ... 180

12.10.3 Using ASSESSPAR .. 182

13. Latin Hypercube Sampling .. 184

13.1 Introduction ... 184

13.1.1 General .. 184

13.1.2 Using PEST with LHS .. 184

13.2 PHISTATS .. 186

13.3 LHS2PEST .. 187

13.3.1 General .. 187

13.3.2 LHS2PEST - Level 1 ... 188

13.3.3 LHS2PEST - Level 2 ... 188

13.3.4 LHS2PEST - Level 3 ... 189

13.4 PEST2LHS .. 191

13.4.1 General .. 191

13.4.2 Parameter Probability Distributions .. 191

13.4.3 PEST2LHS Usage Details ... 192

14. Miscellaneous Utilities... 197

14.1 Introduction ... 197

14.2 PARREDUCE ... 197

14.2.1 General .. 197

14.2.2 Theory ... 198

14.2.3 Using PARREDUCE ... 201

14.3 CALMAINTAIN .. 202

14.3.1 General .. 202

14.3.2 Theory ... 203

14.3.3 Using CALMAINTAIN .. 203

14.4 GENLIN .. 205

14.4.1 General .. 205

14.4.2 GENLIN Input File ... 205

14.4.3 Running GENLIN ... 207

14.5 PESTLIN ... 208

14.5.1 General .. 208

14.5.2 Using PESTLIN .. 209

14.6 DERCOMB1 ... 210

14.6.1 General .. 210

14.6.2 Using DERCOMB1 ... 211

Table of Contents

15. Matrix Manipulation Programs .. 212

15.1 Introduction ... 212

15.2 COV2COR .. 212

15.3 COVCOND ... 213

15.4 MAT2SRF ... 213

15.5 MATADD ... 214

15.6 MATCOLEX .. 214

15.7 MATDIAG .. 214

15.8 MATDIFF ... 215

15.9 MATINVP .. 215

15.10 MATJOINC .. 215

15.11 MATJOIND .. 216

15.12 MATJOINR .. 216

15.13 MATORDER .. 217

15.14 MATPROD ... 218

15.15 MATQUAD .. 218

15.16 MATROW .. 218

15.17 MATSMUL ... 219

15.18 MATSPEC .. 219

15.19 MATSVD .. 219

15.20 MATSYM ... 220

15.21 MATTRANS ... 220

15.22 MATXTXI .. 220

15.23 MATXTXIX ... 220

15.24 PEST2VEC ... 221

15.25 VEC2PEST ... 221

15.26 VECLOG .. 222

16. RRF and PAROBS Files .. 224

16.1 Introduction ... 224

16.2 RRFCAT ... 224

16.3 RRFCULL ... 224

16.4 RRFCLEAN .. 225

16.5 RRF2PAR ... 225

16.6 PAROBS2RRF .. 226

16.7 RRF2PAROBS .. 226

16.8 RRFAPPEND .. 227

16.9 MULPAROBSTAB .. 227

16.10 RRF2TAB ... 227

16.11 PARREP_RRF .. 228

16.12 RRFCALCPSI ... 228

16.12.1 General .. 228

16.12.2 Using RRFCALCPSI .. 229

16.13 RRF2JCO .. 229

16.13.1 General .. 229

16.13.2 Theory and Concepts ... 230

16.13.3 Using RRF2JCO .. 231

Table of Contents

17. References .. 233

Introduction 1

1. Introduction
This document is the second in a two part manual that describes PEST and its ancillary

software. The first part of this manual documents PEST (including Parallel PEST and

BEOPEST), the very basic SENSAN sensitivity analyser, and the PEST-compatible

CMAES_P and SCEUA_P global optimisers. This second part describes software that

complements and supports PEST, and that is distributed with PEST itself.

For the purpose of documentation, the utility programs described herein have been grouped

according to function, with separate chapters being devoted to separate functions. Within

each chapter programs are grouped according to similarity of task.

In contrast to ensuing chapters, chapter 2 of this manual does not describe any utility

programs. Instead it presents protocols for a number of files which are read and/or written by

these utilities.

Some of the programs described in this manual have been superseded by others but are still

distributed with PEST. These programs to which this applies are identified as such in the

description that follows. Their retainment in the PEST suite is based on the fact that newer

programs may do things slightly differently, or may omit some of the functionality of the

older programs which some users may find attractive. In one or two cases, incompatibilities

of which I am unaware may exist between newer versions of PEST and these superseded

utility programs. If you discover such incompatibilities, please notify me.

As is the case for part I of this manual, little theory is presented in this document. Instead the

reader is referred to the “PEST Book”; this is Doherty (2015), and is downloadable from the

PEST web pages. The PEST Book presents and derives equations on which most of the

utilities described herein are based. For those rare exceptions where the theory provided in

Doherty (2015) does not completely describe the operation of a particular utility program,

pertinent equations are presented in this manual.

In addition to the programs described in this second part of version 6 of the PEST manual,

two additional suites of utility programs can be downloaded from the PEST web pages at

http://www.pesthomepage.org

These are programs which expedite the use of PEST with groundwater and surface water

models. Also downloadable from the above site is the parameter list processor PLPROC

which supports parameterisation of complex spatial models. These all have their own

documentation that, along with the software itself, is downloadable from the PEST web

pages.

http://www.pesthomepage.org/

File Types and Protocols 2

2. Files Types and Protocols

2.1 General

This chapter provides specifications for some of the files used by utility programs discussed

herein. It is hoped that the collection of these specifications into a single chapter makes

reference to these specifications easier, and thus facilitates their construction and

manipulation.

2.2 Parameter Value File

The parameter value file is described in section 5.3.2 of part I of this manual. A parameter

value file is written by PEST whenever an improved set of parameters is obtained. At any

stage of the inversion process it thus contains the best set of parameters computed to date.

The expected extension of a parameter value file is “.par”; however when PEST is

conducting SVD-assisted inversion it also writes a parameter value file containing base

parameter values, this having an extension of “.bpa”.

A number of utility programs documented in this manual read and/or write parameter value

files. There may be some occasions where you may need to write a parameter value file

yourself for one of these programs to read. Fortunately this is easy, as its specifications are

simple. An example of a parameter value file is shown below.

single point

 ro1 1.00 1.0 0.0

 ro2 40.0 1.0 0.0

 ro3 1.00 1.0 0.0

 h1 1.00 1.0 0.0

 h2 10.0 1.0 0.0

Figure 2.1 A parameter value file.

The first line of a parameter value file cites the PEST character variables PRECIS and

DPOINT, the values for which are provided in the “control data” section of a PEST control

file. Then follows a line for each parameter. Each line contains a parameter’s name, its

current value and the values of the SCALE and OFFSET variables for that parameter as

supplied in the PEST control file.

Entries on all lines of a parameter value file must be separated by one or more spaces.

If a utility program writes a parameter value file, it normally refers to a PEST control file to

obtain values for PRECIS, DPOINT, SCALE and OFFSET. If you write this file yourself,

suitable values for these variables are “single”, “point”, “1.0” and “0.0” as shown in the

above figure.

2.3 Observation Value File

An observation value file contains two columns of data. The first is comprised of observation

names; in accordance with PEST protocol, these names should be 20 characters or less in

length and contain no spaces. The second column contains observation values. One or more

spaces should separate entries in each column.

Figure 2.2 illustrates an observation value file.

File Types and Protocols 3

 ar1 1.21038

 ar2 1.51208

 ar3 2.07204

 ar4 2.94056

 ar5 4.15787

 ar6 5.77620

 ar7 7.78940

 ar8 9.99743

 ar9 11.8307

 ar10 12.3194

 ar11 10.6003

 ar12 7.00419

 ar13 3.44391

 ar14 1.58278

 ar15 1.10381

 ar16 1.03085

 ar17 1.01318

 ar18 1.00593

 ar19 1.00272

Figure 2.2 An observation value file.

2.4 Matrix File

2.4.1 General

Many of the utility programs documented in this manual read and/or write so-called “PEST

matrix files”. Some convert Jacobian matrix files (i.e. JCO files) to and from this format so

that the Jacobian matrix can be easily manipulated using various matrix manipulation

utilities, and/or can be transferred between computing platforms that use different binary

protocols. Vectors (which are one-dimensional matrices) also use this format; this applies

particularly to predictive sensitivity vectors used in linear uncertainty and error analysis.

2.4.2 Specifications

The specifications of a matrix file are illustrated by example. A PEST-compatible matrix file

holding a matrix with three rows and four columns is illustrated in Figure 2.3.

 3 4 2

3.4423 23.323 2.3232 1.3232

5.4231 3.3124 4.4331 3.4442

7.4233 5.4432 7.5362 8.4232

* row names

apar1

apar2

apar3

* column names

aobs1

aobs2

aobs3

aobs4

Figure 2.3 An example of a matrix file.

The first line of a matrix file contains 3 integers. The first two integers (NROW and NCOL)

indicate the number of rows and the number of columns in the following matrix. The next

integer (named ICODE) is a code, the role of which is discussed shortly.

Following the header line is the matrix itself. The matrix is read row by row, with each row

File Types and Protocols 4

beginning on a new line. Entries within a line must be separated by one or more spaces; they

can wrap to the next line if desired. Because matrix elements are read using FORTRAN list-

directed input, a compact option for representation of repeated numbers within a matrix row

is available. Thus, for example, the line

5*3.0, 3*2.4, 2*4.4

is equivalent to the line

3.0 3.0 3.0 3.0 3.0 2.4 2.4 2.4 4.4 4.4

If ICODE is set to 2, the string “* row names” must follow the matrix. This string must be

recorded on the line immediately after the last line of the matrix. On the following and

ensuing NROW lines must be recorded NROW character strings; each of these strings is the

name associated with the respective row of the matrix. Names must be 20 characters or less

in length. The string “* column names” must follow that. NCOL column names must then

follow in a similar format.

For a square matrix ICODE can be set to “1”. This indicates that rows and columns are

associated with the same names (as is the case for a covariance matrix or a resolution matrix).

In this case the string “* row and column names” follows the matrix. The pertinent names are

listed on the NROW lines following that.

A special ICODE value is reserved for diagonal matrices. If NCOL is equal to NROW, then

ICODE may be set to “-1”. In this case only the diagonal elements of the matrix need to be

presented following the integer header line; these should be listed one to a line as illustrated

in the figure 2.4. Following that should be the string “* row and column names” (for if

ICODE is set to “-1” it is assumed that these are the same), followed by the names

themselves.

5 5 -1

4.5

4.5

2.4

7.53

5.32

* row and column names

par1

par2

par3

par4

par5

Figure 2.4 A matrix file containing a diagonal matrix.

2.5 Uncertainty Files

2.5.1 Introduction

Many of the utility programs discussed herein require that you provide a file containing

parameter uncertainties. These can be prior or posterior uncertainties, but are normally the

former. Thus this file must contain the contents of the C(k) matrix which is referred to

extensively in Doherty (2015). This matrix is fundamental to linear parameter and predictive

error/uncertainty analyses implemented in utility programs documented in this manual.

Some utilities also require that a C() matrix be provided for characterisation of measurement

noise; others glean this matrix directly from a PEST control file. As is demonstrated below,

for those utilities that require it, an uncertainty file can also be used to specify the stochastic

File Types and Protocols 5

characteristics of measurement noise.

All of the utility programs described herein which read an uncertainty file also read a PEST

control file (and often the Jacobian matrix file associated with that PEST control file as well).

This PEST control file defines the inversion or uncertainty analysis problem which respective

utility programs must solve. The names of entities cited in an uncertainty file must refer to

those cited in this PEST control file. Note, however, that it is not always necessary that all

entities cited in an uncertainty file be also cited in the PEST control file. Redundancy of

information presented in an uncertainty file is often allowed.

2.5.2 Specifications

Figure 2.5 illustrates an uncertainty file.

An example of an uncertainty file

START STANDARD_DEVIATION

 std_multiplier 3.0

 ro9 1.0

 ro10 1.0

 ro4 1.0

END STANDARD_DEVIATION

START COVARIANCE_MATRIX

 file "mat.dat"

 variance_multiplier 1e-2

END COVARIANCE_MATRIX

START COVARIANCE_MATRIX

 file "cov.mat"

 variance_multiplier 1.0

 parameter_list_file “list.dat”

END COVARIANCE_MATRIX

START COVARIANCE_MATRIX

 file "cov1.mat"

 first_parameter kpp1

 last_parameter kpp129

END COVARIANCE_MATRIX

START PEST_CONTROL_FILE

 file "te st.pst"

 variance_multiplier 2.0e2

END PEST_CONTROL_FILE

Figure 2.5 Example of an uncertainty file.

An uncertainty file allows the user some flexibility in characterising the uncertainty of a

group of entities comprising a vector quantity (for example parameters k or measurement

errors). Three such options are presently available. These are

1. a list of individual entity standard deviations;

2. a covariance matrix file; and

3. weights assigned to individual elements listed in the “observation data” section of a

PEST control file.

A single one of these options can be used to specify the entirety of a k or ε covariance

matrix. Alternatively, different mechanisms can be used within the same uncertainty file to

characterise different parts of the total covariance matrix.

File Types and Protocols 6

An uncertainty file is subdivided into blocks. Each block implements one of the mechanisms

of uncertainty characterisation described above. Collectively all the blocks characterise the

uncertainty of a set of entities comprising a vector quantity (for example all parameters that

are involved in an inversion or uncertainty analysis process). An uncertainty file can have as

many blocks as desired. However the following rules must be observed.

1. Any one uncertainty file can be used to characterize the uncertainty of either

parameters or measurements (i.e. observations), but not both.

2. Parameters and observations cited in an uncertainty file, and the files cited therein, are

matched by name to those featured in a PEST control file which defines a particular

inverse problem.

3. The uncertainty of an individual element of an overall k or vector can be

characterised in only one way. Thus, for example, any particular element of a k or ε

vector cannot be cited in a STANDARD_DEVIATION block of an uncertainty file if

it is also cited in a matrix provided through a COVARIANCE_MATRIX block of the

same uncertainty file.

4. If a parameter is log-transformed in the current inverse or uncertainty analysis

problem (as specified in the PEST control file which governs that problem), then

specifications of variance, covariance or standard deviation provided in the

uncertainty file must pertain to the log (to base 10) of the parameter. In general, the

utilities described in this manual provide no checks for this, for they have no way of

knowing the transformation status of parameter variances and standard deviations

provided in an uncertainty file; it is thus the user’s responsibility to ensure that this

protocol is observed.

5. An uncertainty file used for the characterisation of C(k) cannot include a

PEST_CONTROL_FILE block.

6. As presently programmed, an uncertainty file used for characterisation of C() must

not include a COVARIANCE_MATRIX block. Note however that most of the

utilities described herein do not actually obtain C() specifications from an

uncertainty file. Instead they obtain it directly from the PEST control file which

defines the inverse problem. Hence rarely will you need to include a

PEST_CONTROL_FILE block in an uncertainty file; uncertainty files are mainly

used for specifying C(k) rather than C().

Each block of an uncertainty file must begin with a START line and finish with an END line

is illustrated in figure 2.5; in both cases the type of block must be correctly characterised

following the START and END designators. Within each block, data entry must follow the

keyword protocol. Thus each line must comprise a keyword, followed by the value

(numerical or text) associated with that keyword. Filenames must be surrounded by quotes if

they contain spaces. With one exception (the std_multiplier keyword in the

STANDARD_DEVIATION block), keywords within a block can be supplied in any order;

some can be omitted if desired. Keywords and block names are case insensitive.

Blank lines can appear anywhere within an uncertainty file. So too can comment lines; these

are recognised through the fact that their first character is “#”.

Each of the blocks appearing in an uncertainty file is now discussed in detail.

File Types and Protocols 7

2.5.2.1 The STANDARD_DEVIATION Block

In a STANDARD_DEVIATION block, entity names (individual parameters or observations)

are listed one to a line followed by their standard deviations. As stated above, if a parameter

is log-transformed in the parameter estimation process, then this standard deviation should

pertain to the log (to base 10) of the parameter. Parameters/observations can be supplied in

any order. Optionally a std_multiplier keyword can be supplied in the

STANDARD_DEVIATION block; if so, it must be the first item in the block. All standard

deviations supplied on ensuing lines are multiplied by this factor (the default value of which

is 1.0).

Parameters/observations cited in a STANDARD_DEVIATION block are assumed to be

uncorrelated with other parameters/observations. Thus off-diagonal elements of C(k) or C()

corresponding to these items are zero. Pertinent diagonal elements of C(k) and C() are

calculated by squaring standard deviations (after multiplication by the std_multiplier).

If a parameter is featured in a STANDARD_DEVIATION block but is not featured in the

PEST control file which forms the basis of the current inverse problem, it is ignored.

2.5.2.2 The PEST_CONTROL_FILE Block

Only two keywords are permitted in this block, these being the file and variance_multiplier

keywords; the latter is optional, the default value being 1.0.

The name of a PEST control file should follow the file keyword. Programs such as

PARAMERR which read this section of an uncertainty file only read the “observation data”

section of the PEST control file cited in the PEST_CONTROL_FILE block. For any

particular observation cited in this section that is also featured in the current inverse problem

(as defined by the PEST control file read by utilities which use an uncertainty file for

characterisation of measurement noise), its variance is calculated from the weight w cited in

the PEST control file as (1/w)2. This variance is then multiplied by the variance_multiplier

before insertion into the appropriate diagonal element of C(). Corresponding off-diagonal

elements of C() are assumed to be zero.

As stated above, in contrast to the PARAMERR utility, most utilities described in this manual

calculate C() directly from the PEST control file which defines the inverse or uncertainty

analysis problem which it is their task to solve. Hence for most linear analyses as

implemented by utility programs documented herein, an uncertainty file does not need to

contain a PEST_CONTROL_FILE block.

2.5.2.3 The COVARIANCE_MATRIX Block

Where a parameter uncertainty file provides one or more covariance matrices, each for a

subgroup of k which shows within-group parameter correlation, all of these matrices are

collectively included in a larger C(k) matrix, together with variances calculated from

parameter standard deviations supplied in one or more STANDARD_DEVIATION blocks

which may also be featured in the parameter uncertainty file. Optionally, all elements of a

user-supplied covariance matrix provided through a COVARIANCE_MATRIX block can be

multiplied by a factor. This factor (for which the default value is 1.0) is supplied following

the variance_multiplier keyword.

Different options are available for storage of the matrix housed in the covariance matrix file

cited in a COVARIANCE_MATRIX block. Matrix storage may follow the PEST matrix file

protocol described in section 2.4. If this is the case, then the first line of this file must include

File Types and Protocols 8

3 integers, the first two of which (specifying the number of rows and columns in the matrix)

must be identical. The third integer must be “1” or “-1”. The matrix itself must follow this

integer header line. Elements within this matrix must be space-delimited; rows can be

wrapped onto consecutive lines, but each new matrix row must start on a new line. This

matrix must be followed by the string “* row and column names”. Following this must be the

names of the parameters to which the matrix pertains. If the matrix file follows this protocol

then the COVARIANCE_MATRIX block must be identical in format to the first of the

COVARIANCE_MATRIX blocks shown in figure 2.5; it can only feature a file keyword and

an optional variance_multiplier keyword.

The PLPROC parameterization utility supplied with PEST writes matrix files whose format is

slightly different from that described in section 2.4. This format retains a three-integer

header. The first two numbers in this header must specify the number of rows and number of

columns in the matrix. The third number must be “1” or “-1”; 1 indicates that the matrix is

non-diagonal while -1 specifies a diagonal matrix. The matrix itself follows this header line.

However the matrix is not followed by a list of row and column names; instead the end of the

file coincides with the end of the matrix. In this case the COVARIANCE_MATRIX block

must adopt either the second or third protocols illustrated in figure 2.5. For the second option

the user provides a file in which parameters are listed one to a line. There must be as many

such lines are there are rows/columns in the covariance matrix. This information links matrix

rows and columns to parameters featured in the current inverse problem. Alternatively, the

third protocol can be followed. In this case the COVARIANCE_MATRIX block must

contain both of the first_parameter and last_parameter keywords. These refer back to the

PEST control file which defines the current inverse problem. Parameters within this PEST

control file between and including the user-nominated first_parameter and last_parameter

parameters are then associated with rows and columns of the covariance matrix, with the

ordering of parameters in the matrix file being the same as that in the PEST control file.

Naturally, the number of parameters in this implied parameter list must be the same as the

number of rows and columns in the covariance matrix.

In all of the above cases the variance_multiplier keyword is optional. If omitted, it is

assumed to be 1.0.

The following should be noted.

1. A covariance matrix must be positive definite.

2. If the first or second of the above COVARIANCE_MATRIX block protocols is

adopted, then the order of rows and columns of the covariance matrix (which

corresponds to the order of parameters listed either within the matrix file itself or in a

user-supplied parameter list file) is arbitrary. Any of the utility programs documented

herein which reads a parameter uncertainty file will re-arrange matrix rows and

columns so that they correspond to the order of adjustable parameters supplied in the

PEST control file on which the current inverse problem is based.

3. A user-supplied covariance matrix need not describe all of the parameters associated

with the current inverse problem, for it need only pertain to a subset of these. Other

parameters can be associated with other COVARIANCE_MATRIX blocks and/or can

be cited in one or more STANDARD_DEVIATION blocks supplied in the same

uncertainty file. However a covariance matrix must not be associated with any

parameters which do NOT pertain to the current inverse problem.

4. If a parameter is log-transformed, the variance and covariances pertaining to that

File Types and Protocols 9

parameter as supplied in a covariance matrix file must in fact pertain to the log of that

parameter.

2.6 Run Results File

PEST_HP writes a run results file if it is run with the “/f” switch, or if the RRFSAVE control

variable is set to “rrfsave”. This file records the outcomes of a series of model runs.

Parameter values, and the values of model outputs calculated using these parameter values,

are recorded for all of these runs.

The run results file is an ASCII (i.e. text) file; figure 2.6 illustrates its contents.

* case dimensions

 104 1445

* parameter names

k_ppt1

k_ppt2

..

* observation names

well01_1

well02_1

..

* parameter set index

 1

* parameter values source

file prandom1.par

* parameter values

 0.8218973

 1.136450

..

* model output values

 4.106813

 2.810568

..

* parameter set index

 2

* parameter values source

file prandom2.par

* parameter values

 1.694685

 1.741825

etc

Figure 2.6 Part of a run results file.

The first part of a run results file is its “header”. This is comprised of three subsections. Each

subsection begins with a line on which is recorded the “*” character, followed by a space,

followed by the name of the subsection. The first subsection (“case dimension”) list the

number of parameters and observations that are featured in the run results file. (Note that

prior information equations are not featured in a run results file.) Then, in the “parameter

names” and “observation names” sections, the names of parameters and observations are

listed.

Following the header section, a series of sets of parameter values and corresponding model

output values (i.e. the model-generated counterparts to observations) are provided. Each of

these sets is endowed with a “parameter set index”. Run results file protocol dictates that

these indices start at 1, and are incremented by 1 for each parameter and corresponding model

output set. Parameter values are listed in the “parameter values” subsection, while model

File Types and Protocols 10

output values are listed in the “model output values” subsection. A further subsection is

entitled “parameter values source”. This section must contain a single entry; it allows the

program which writes the run results file to record where the parameter values came from.

This may assist later processing of the file.

Two model output values have special meaning. If the value of any model output associated

with a particular parameter set is -1.1E35, this is indicative of a failed model run. Meanwhile,

a model output value of -1.22E35 indicates an abandoned model run. Normally all model

outputs associated with a particular parameter set will be endowed with these values if even

one of them is.

2.7 PAROBS File

The first part of a PAROBS file is identical to a parameter value file. It lists parameter names

and values, together with parameter SCALE and OFFSET values; normally the later are 1.0

and 0.0 for all parameters. As for a parameter value file, the first line of a PAROBS file

contains values for the PEST control variable PRECIS and DPOINT.

Immediately following parameter values are model-calculated values for observations. Each

line in this section of the file has two entries. The first is an observation name; the second is

the model-calculated value of that observation. Model output values of -1.11E35 and

-1.22E35 have the same meaning as for a run results file.

Figure 2.7 shows part of a PAROBS file.

single point

 k_ppt1 3.95511010 1.000 0.000

 k_ppt2 3.49892220 1.000 0.000

 k_ppt3 0.704972890 1.000 0.000

 k_ppt4 0.658135090 1.000 0.000

 k_ppt5 1.34603540 1.000 0.000

..

 k_ppt103 2.20401640 1.000 0.000

 k_ppt104 5.436436300E-02 1.000 0.000

 well01_1 5.74087200

 well02_1 5.56643400

 well03_1 5.73060000

 well04_1 4.14758000

etc

Figure 2.7 A PAROBS file.

Checking Utilities 11

3. Checking Utilities

3.1 Introduction

This chapter documents utility programs that can be used to test the integrity of a PEST input

dataset, and/or various components of that dataset. They are normally used prior to running

PEST, either during the initial stages of inverse problem definition, or later in the process

when PEST datasets are manipulated with addition or subtraction of Tikhonov regularisation

and/or in preparation for post-calibration linear or nonlinear uncertainty analysis.

A utility for checking a SENSAN input dataset is also described in this chapter.

3.2 TEMPCHEK

Program TEMPCHEK checks that a PEST template file follows the correct protocol.

Specifications and syntax for PEST template files are provided in chapter 2 of part I of this

manual.

If provided with a set of parameter values, TEMPCHEK can also be used to generate a model

input file from a template file. It populates a model input file with parameter values in the

same way that PEST does. Once a model input file has been built, the model can be run on

the basis of this file. It can then be verified that the model experiences no difficulties in

reading a model input file generated by TEMPCHEK, and therefore by PEST.

TEMPCHEK is run using the command

tempchek tempfile [modfile [parfile]]

where

tempfile is the name of a template file,

modfile is the name of a model input file to be generated by TEMPCHEK

(optional), and

parfile is the name of a PEST parameter value file (also optional).

The simplest way to run TEMPCHEK is to use a command such as

tempchek model.tpl

When invoked in this way, TEMPCHEK simply reads the template file model.tpl, checking it

for breaches of PEST protocol. It writes any errors that it finds to the screen. If desired, these

errors can be redirected to a file using the “>” symbol on the TEMPCHEK command line.

Thus to run program TEMPCHEK, directing it to write any errors found in the template file

model.tpl to the file errors.chk, the following command should be used.

tempchek model.tpl > errors.chk

If no errors are encountered in the template file, TEMPCHEK informs you of this through an

appropriate screen message. This message also informs you of the number of parameters that

TEMPCHEK identified in the template file. TEMPCHEK lists these parameters in a file

named file.pmt, where file is the filename base of the template file which it reads. If the

template file has no extension TEMPCHEK simply adds the extension “.pmt” to the name of

the template file. If desired, this file can be easily modified to become a parameter value file.

TEMPCHEK can then be used to generate a model input file on the basis of parameter values

which you provide in this modified file (see below).

Checking Utilities 12

If a parameter is cited more than once in a template file, the parameter is nevertheless written

only once to file file.pmt; also, it is counted only once when TEMPCHEK sums the total

number of parameters featured in the template file.

If you wish to use TEMPCHEK to generate a model input file you must supply it with the

name of the template file upon which the model input file is based, the name of the model

input file which it must generate, and the values of all parameters named in the template file.

To run TEMPCHEK in this fashion, enter a command such as

tempchek model.tpl model.in

or

tempchek model.tpl model.in pestcase.par

The name of the parameter value file is optional. If you don't supply a name, TEMPCHEK

generates the name itself by replacing the extension used in the template filename with the

extension “.par”; if the template file has no extension, “.par” is simply appended to the name

of the template file. Hence the naming convention of the parameter value file is in accordance

with that used by PEST which generates such a file at the end of every iteration of its

inversion process. See section 2.2 of this manual for specifications of a parameter value file.

TEMPCHEK writes a model input file in an identical fashion to the way that PEST writes a

model input file. Thus the PRECIS, DPOINT and parameter-specific SCALE and OFFSET

variables cited in a parameter value file have the same roles when this file is used by

TEMPCHEK as they do when it is used by PEST.

If TEMPCHEK finds a parameter in a template file which is not listed in the parameter value

file which it is asked to read, it terminates execution with an appropriate error message.

However the parameter value file can contain more parameters than are cited in the template

file; these extra parameters are ignored when generating the model input file. This situation

may occur if your model has a number of input files and each has a complimentary template

file. A single parameter value file can be used to provide values for parameters cited in all

template files.

3.3 INSCHEK

INSCHEK checks PEST instruction files. Like TEMPCHEK it can be used in two modes. In

the first mode it simply checks that an instruction file has no syntax errors and respects the

specifications set out in section 2.3 of part I of this manual. In its second mode of operation it

is able to read a model output file using the directions contained in the instruction file; it then

writes a file listing all observations cited in the instruction file together with the values of

these observations as read from the model output file. In this way you can verify that not only

is your instruction set syntactically correct, but that it reads a model output file in the way it

should.

INSCHEK is run using the command

inschek insfile [modfile]

where

insfile is a PEST instruction file, and

modfile is a model output file to be read by INSCHEK (optional).

The simplest way to run INSCHEK is to use a command such as

inschek myfile.ins

Checking Utilities 13

When invoked in this way, INSCHEK simply reads the instruction file myfile.ins, checking

that every instruction is valid and that the instruction set is consistent. If it finds any errors it

writes appropriate error messages to the screen. If you wish, you can redirect this screen

output to a file by using the “>” symbol on the command line. Thus to run INSCHEK such

that it records any errors found in the instruction file myfile.ins to the file errors.chk, use the

command

inschek myfile.ins > errors.chk

If no errors are found in the instruction file myfile.ins, INSCHEK informs you of how many

observations it identified in the instruction set and lists these observations to file.obf, where

file is the filename base (i.e. the filename without its extension) of insfile; if insfile has no

extension, the extension “.obf” is simply appended to the filename.

For an instruction set to be useable by PEST it must do more than simply obey PEST

protocol; it must also read a model output file correctly. You can check this by invoking

INSCHEK with a command such as

inschek myfile.ins modelout.dat

When run in this way, INSCHEK first checks myfile.ins for syntax errors; if any are found it

writes appropriate error messages to the screen and does not proceed to the next step.

Alternatively, if the instruction set contained in myfile.ins is error free, INSCHEK reads the

model output file modelout.dat using the instruction set. If any errors are encountered in this

process, INSCHEK generates an appropriate error message and abandons execution; such

errors may arise if, for example, INSCHEK finds a blank space where a number should be,

encounters the end of the model output file before locating all observations, etc. However if

INSCHEK reads the file without trouble, it lists all observations cited in the instruction set,

together with their values as read from modelout.dat to file.obf, where file is the filename

base of insfile; in the present example this is file myfile.obf. Figure 2.2 shows a typical

INSCHEK-generated observation value file.

3.4 PESTCHEK

PESTCHEK should be used when all preparations for a PEST run are complete, i.e. when all

template files, instruction files and the PEST control file which “brings it all together” have

been prepared. PESTCHEK reads the PEST control file, making sure that all necessary items

of information are present in this file and that every item is consistent with every other item

(for example that logarithmically-transformed parameters do not have negative lower bounds,

that RELPARMAX is greater than unity if at least one parameter is free to change sign during

the inversion process, etc.). As PEST does not carry out consistency checks such as these, it

is essential that PESTCHEK be used to check all input data prior to running PEST.

PESTCHEK also carries out some of the tasks undertaken by programs TEMPCHEK and

INSCHEK in that it checks all template and instruction files cited in the PEST control file for

correct syntax. Unlike TEMPCHEK and INSCHEK however, PESTCHEK does not generate

a model input file nor read a model output file; nevertheless it does check that all parameters

and observations cited in the PEST control file are also cited in the template and instruction

files referenced in the PEST control file, and that parameters and observations cited in

template and instruction files are also listed in the PEST control file.

PESTCHEK is run using the command

pestchek case

Checking Utilities 14

where

case is the filename base of a PEST control file.

No filename extension should be provided here; an extension of “.pst” is added

automatically. This is the same filename base as that which should be provided to PEST on

its command line; see section 5.1 of part I of this manual. PESTCHEK reads an identical

dataset to PEST.

PESTCHEK writes any errors that it encounters to the screen. If you wish, error messages

can be redirected to a file using the “>” symbol on the PEST command line. Thus to check

the dataset contained in the PEST control file, calib.pst, and the template and instruction files

cited therein, directing any error messages to the file errors.chk, invoke PESTCHEK using

the command

pestchek calib > errors.chk

If PESTCHEK finds one or a number of errors in your input dataset it is important that you

re-run PESTCHEK on the dataset after you have corrected the errors. This is because

PESTCHEK may not have read all of your input dataset on its first pass; depending on the

errors it finds, it may not be worthwhile (or possible) for PESTCHEK to read an input dataset

in its entirety once an error condition has been established. Hence, once you have rectified

any problems that PESTCHEK may have identified in your input dataset, you should submit

it to PESTCHEK again, being content that the data is fully correct and consistent only when

PESTCHEK explicitly informs you that this is the case.

Optionally, PESTCHEK can be run using a command line switch. If PESTCHEK is run using

the command

pestchek case /s

then PESTCHEK does not check any of the template and instruction files cited in the PEST

control file for errors and for consistency with the PEST control file itself. In fact, it does not

even check to see whether these files actually exist; instead it confines its checking to the

PEST control file itself. Nor does PESTCHEK issue any warning messages, for these too are

suppressed when it is run with the “/s” switch.

3.5 SENSCHEK

SENSAN, described in chapter 17 of part I of this manual, is a basic PEST-compatible

sensitivity analyser. It has its own control file which cites template and instruction files which

are used to respectively write model input files and read model output files. Parameter vales

used as a basis for sensitivity analysis are provided to SENSAN through a parameter

variation file.

SENSAN checks the contents of a SENSAN control file, and all other files cited therein, for

correctness and consistency. It is run using the command

senschek sencase

where sencase is the name of a SENSAN control file. If the latter possesses an extension of

“.sns”, then this extension can be omitted from the filename.

SENSCHEK writes its error messages to the screen. It is important to note that if it detects

certain errors early in the SENSAN control file, it may not proceed with its checking of the

remainder of this file, nor of the template and instruction files cited in the SENSAN control

file, nor of the parameter variation file pertaining to the current case. Thus it is important to

Checking Utilities 15

ensure that once a SENCHEK-identified error has been rectified, SENSCHEK is run again.

Only when SENSCHEK explicitly informs you that no errors have been detected in the entire

SENSAN input dataset is it safe to run SENSAN.

3.6 JCOCHEK

Program JCOCHEK reads a PEST control file and a corresponding Jacobian matrix file (i.e.

JCO file), checking that the two are compatible with each other. It is run using the command

jcochek case

where case is the filename base of the PEST control file. JCOCHEK reads case.pst as well as

case.jco, checking that all adjustable parameters and observations cited in the first of these

files are cited in the second, and that there are no observations or parameters cited in the JCO

file that are not also cited in the PEST control file.

It is important to note that special treatment is accorded to prior information. In particular

1. If prior information is provided in the PEST control file, but is not cited in the JCO

file, JCOCHEK declares the two files as being compatible, but issues a warning about

the absence of prior information.

2. If prior information is cited in both files, JCOCHEK does not check that sensitivities

recorded in the JCO file are the same as respective prior information parameter

coefficients recorded in the PEST control file; it issues a warning to this effect.

Building and Altering a PEST Control File 16

4. Building and Altering a PEST Control File

4.1 Introduction

Some of the utility programs described in this chapter are used repeatedly during the

parameter estimation and uncertainty analysis processes. PARREP, PWTADJ1, PWTADJ2,

ADDREG1, SUBREG1 and WTFACTOR are examples of these. PESTGEN is an older

program whose role has largely been supplanted by members of the PEST Groundwater and

Surface Water Utility suites. The latter can build complex PEST input datasets which include

spatial parameters such as pilot points, and time-series observations such as river flow and

quantities derived therefrom. The OBSREP utility can be used in conjunction with PARREP

to build a PEST input dataset comprised of calibrated parameters together with model-

calculated observations based on these parameters. This can provide a starting point for

model-based hypothesis testing. PARAMFIX and SIMCASE are older programs that may

still find some use in PEST input dataset manipulation.

4.2 PESTGEN

PESTGEN generates a PEST control file. In most cases this file will need to be modified

before PEST is run, as PESTGEN generates default values for many of the PEST input

variables recorded in this file; it is probable that not all of these default values will be

appropriate for your particular problem.

PESTGEN is run using the command

pestgen case parfile obsfile

where

case is the case name. No filename extension should be supplied; PESTGEN

automatically adds the extension “.pst” to case in order to form the

filename of the PEST control file which it writes.

parfile is a parameter value file, and

obsfile is an observation value file.

Specifications of a parameter value file are provided in section 2.2 of this manual while

specifications of an observation value file are provided in section 2.3. The former file must

include all parameters used in the current case; these parameters may be cited in one or a

number of template files. Similarly, the observation value file must provide the names and

values of all observations used in the current problem; the observations may be cited in one

or a number of instruction files. The observation values provided in this file may be

field/laboratory measurements or, if PEST is being run on theoretical data, model-generated

observation values. In the latter case INSCHEK may be used to generate the file; if there are

multiple model output files, observation value files generated on successive INSCHEK runs

can be concatenated to form an appropriate observation value file to provide to PESTGEN.

PESTGEN commences execution by reading the information contained in files parfile and

obsfile, checking this information for correctness and consistency. If there are any errors in

either of these files, PESTGEN lists these errors to the screen and terminates execution.

Alternatively, if these files are error-free, PESTGEN then generates a PEST control file.

Files parfile and obsfile provide PESTGEN with the names of all parameters and

observations which need to be listed in the PEST control file. They also provide PEST with

Building and Altering a PEST Control File 17

initial parameter values (these must be provided in the second column of the parameter value

file), the SCALE and OFFSET for each parameter (in the third and fourth columns of the

parameter value file), the laboratory or field measurement set (in the second column of the

observation value file), and values for the variables PRECIS and DPOINT (on the first line of

the parameter value file). For all other variables listed in the PEST control file, PESTGEN

uses default values.

For the parameter and observation value files shown in figures 2.1 and 2.2, the PESTGEN-

generated PEST control file is shown in figure 4.1.

pcf

* control data

restart estimation

 5 19 5 0 1

 1 1 single point 1 0 0

 5.0 2.0 0.3 0.03 10

 3.0 3.0 0.001

 0.1

 30 0.01 3 3 0.01 3

 1 1 1

* parameter groups

ro1 relative 0.01 0.0 switch 2.0 parabolic

ro2 relative 0.01 0.0 switch 2.0 parabolic

ro3 relative 0.01 0.0 switch 2.0 parabolic

h1 relative 0.01 0.0 switch 2.0 parabolic

h2 relative 0.01 0.0 switch 2.0 parabolic

* parameter data

ro1 none relative 1.00000 1.00000E+10 1.00000E+10 ro1 1.0000 0.00000 1

ro2 none relative 40.0000 1.00000E+10 1.00000E+10 ro2 1.0000 0.00000 1

ro3 none relative 1.00000 1.00000E+10 1.00000E+10 ro3 1.0000 0.00000 1

h1 none relative 1.00000 1.00000E+10 1.00000E+10 h1 1.0000 0.00000 1

h2 none relative 10.0000 1.00000E+10 1.00000E+10 h2 1.0000 0.00000 1

* observation groups

obsgroup

* observation data

ar1 1.21038 1.0 obsgroup

ar2 1.51208 1.0 obsgroup

ar3 2.07204 1.0 obsgroup

ar4 2.94056 1.0 obsgroup

ar5 4.15787 1.0 obsgroup

ar6 5.77620 1.0 obsgroup

ar7 7.78940 1.0 obsgroup

ar8 9.99743 1.0 obsgroup

ar9 11.8307 1.0 obsgroup

ar10 12.3194 1.0 obsgroup

ar11 10.6003 1.0 obsgroup

ar12 7.00419 1.0 obsgroup

ar13 3.44391 1.0 obsgroup

ar14 1.58278 1.0 obsgroup

ar15 1.10381 1.0 obsgroup

ar16 1.03085 1.0 obsgroup

ar17 1.01318 1.0 obsgroup

ar18 1.00593 1.0 obsgroup

ar19 1.00272 1.0 obsgroup

* model command line

model

* model input/output

model.tpl model.inp

model.ins model.out

* prior information

Figure 4.1 A PEST control file generated by PESTGEN.

Figure 4.1 shows the default values used by PESTGEN in generating a PEST control file.

Building and Altering a PEST Control File 18

The following features of this file, in particular, should be noted.

• PESTGEN assumes that PEST will be run in “estimation” mode. Neither a “predictive

analysis” nor a “regularisation” section is included in the PEST control file.

• PESTGEN generates a separate parameter group for each parameter; the name of the

group is the same as that of the parameter. For each of these groups derivatives are

calculated using a relative increment of 0.01, with no absolute lower limit provided

for this increment. At the beginning of the inversion process, derivatives will be

calculated using forward parameter differences, switching to the three-point

“parabolic” method on the iteration following that for which the objective function

fails to undergo a relative reduction of at least 0.1 (this being the value that

PESTGEN gives to the PHIREDSWH control variable). The derivative increment to

be used in implementing the “parabolic” method is twice the increment used in

implementing the forward difference method of derivatives calculation.

• No prior information is supplied.

• No parameters are tied or fixed; no parameters are log-transformed and changes to all

parameters are relative-limited (with a RELPARMAX value of 3.0). The upper bound

for each parameter is provided as 1.0E10, while the lower bound is -1.0E10. It is

strongly suggested that you modify these bounds to suit each parameter. It is also

recommended that you consider log-transforming some (or all) parameters for greater

inversion efficiency. Note, however, that the lower bound of a log-transformed

parameter must be positive and that its changes must be factor-limited.

• All observations are provided with a weight of 1.0.

• PESTGEN assumes that the model is run using the command “model”. It also

assumes that the model requires one input file, namely model.inp, for which a

template file model.tpl is provided. It further assumes that all model-generated

observations can be read from one output file, namely model.out, using the

instructions provided in the instruction file model.ins. You will almost certainly need

to alter these names. If there are, in fact, multiple model input and/or output files,

don’t forget to alter the variables NTPLFLE and NINSFLE in the “control data”

section of the PEST control file.

• The PESTGEN default values for all other PEST control variables can be read from

figure 4.1.

Once you have made all necessary changes to the PESTGEN-generated PEST control file,

you should check that your input dataset is complete and consistent using program

PESTCHEK. If PESTCHEK informs you that all is correct, then you can run PEST.

4.3 PARREP

Program PARREP replaces initial parameter values provided in a PEST control file by

another set of values, the latter being supplied in a PEST parameter value file. See section 2.2

of this manual for specifications of a parameter value file.

Recall from Section 5.3.2 of part I of this manual that in the course of the inversion process

PEST writes a parameter value file every time it improves its parameter estimates. After a

PEST run has finished (either of its own accord or manually halted), optimised parameter

values can be found in the parameter value file. The parameter value file possesses the same

Building and Altering a PEST Control File 19

filename base as the PEST control file but has an extension of “.par”. Because it has such a

simple structure, a parameter value file can also be easily built by the user with the help of a

text editor.

PARREP is useful when commencing a new PEST run where an old run finished. An updated

PEST control file can be produced by replacing parameter values in the old file with the best

parameter values determined during the previous PEST run as recorded in the parameter

value file written during that run. Recommencing a PEST run in this way, rather than through

use of the “/r”, “/j”, “/s” or “/d” switches, allows you to alter certain PEST control variables,

fix or tie certain parameters, or adjust PEST’s management of the parameter estimation

process in other ways, prior to commencement of the new run.

PARREP is also useful when undertaking a single model run on the basis of a certain set of

parameters in order to calculate the objective function. Simply create a new PEST control file

using PARREP as described above, and set NOPTMAX to zero in that file.

PARREP is run using the command

parrep parfile pestfile1 pestfile2 [new_noptmax]

where

parfile is the name of a parameter value file,

pestfile1 is the name of an existing PEST control file,

pestfile2 is the name for the new PEST control file, and

new_noptmax optionally provides a new value for NOPTMAX.

When PARREP replaces parameter values in the existing PEST control file by those read

from the parameter value file, it does not check that each parameter value lies between its

upper and lower bounds, that log-transformed parameters are positive, etc. Hence, especially

if using a manually-created parameter value file, it is a good idea to run PESTCHEK before

running PEST to ensure that all is consistent and correct.

A special aspect of PARREP’s behaviour is worthy of note. If a parameter is tied or fixed in

the existing PEST control file which PARREP reads, PARREP will not object if that

parameter is omitted from the parameter value file that is provided to PARREP. The value of

a fixed parameter is simply transferred from the existing PEST control file to the new PEST

control file. The value of a tied parameter omitted from the parameter value file is calculated

from the new value assigned to its parent parameter on the assumption that the ratio between

the two remains the same in new PEST control file as it was in the old PEST control file.

4.4 OBSREP

OBSREP does for observations what PARREP does for parameters. OBSREP reads

optimised model outputs corresponding to observations and prior information from a

“residuals file” produced as an outcome of a previous PEST run. It then substitutes these

values for “observed values” in the PEST control file. (It should be obvious from this that if

both PARREP and OBSREP are run after completion of a PEST run, the objective function

calculated on the basis of the new PEST control file should be zero.)

OBSREP is run using the command

obsrep resfile pestfile1 pestfile2

where

resfile is the name of a “residuals file” written by PEST (extension “.res” or

Building and Altering a PEST Control File 20

“.rei”),

pestfile1 is the name of an existing PEST control file, and

pestfile2 is the name of the new PEST control file to be written by OBSREP.

In most cases the residuals file resfile will have been produced by PEST on the basis of a run

undertaken using pestfile1 as the PEST control file. However this does not have to be the

case. OBSREP will work correctly as long as every observation and prior information

equation cited in the pestfile1 PEST control file is also cited in the resfile residuals file. If

resfile cites other observations and/or prior information items, and/or these are listed in a

different order in resfile from that prevailing in pestfile1, OBSREP will not object. However

if any observations or prior information items cited in pestfile1 are missing from resfile,

OBSREP will cease execution with an appropriate error message.

4.5 PARAMFIX

4.5.1 General

PARAMFIX can be used to modify complex PEST control files (such as may be constructed

for the use of PEST in “regularisation” mode), saving you the time (and propensity for error)

that would result from making such file modifications by hand. Alterations facilitated by the

use of PARAMFIX are those associated with the introduction of “outside information” on

parameter values to the inversion process. Two methods of using such information can be

accommodated, the first being the fixing of certain parameters, and the second being

introduction of preferred values for certain parameters through prior information. Where

many parameters are being estimated, and where prior information equations pertaining to

many or all of these parameters are already present within a PEST control file, alteration of

an existing PEST control file to accommodate the use of this “outside information” can be a

very tedious process if performed manually. PARAMFIX removes much of this tedium.

Use of PARAMFIX is particularly convenient where PEST is being used to calibrate a spatial

model (for example a groundwater model) and parameterisation of the model domain is

undertaken through the use of pilot points (see manuals of the PEST Groundwater Data

Utilities and PLPROC for more details). Thanks to the use of PEST’s regularisation

functionality, many parameters can be estimated through this process (thus allowing the

model to accommodate the spatial heterogeneity that is a fundamental part of most natural

systems), numerical stability being maintained through the use of a set of “regularisation

constraints”. The latter can be supplied as either observations or as prior information, and can

take many forms. One form is as a series of “uniformity conditions” in which the parameter

value assigned to each pilot point is linked to those of many or all of its neighbouring points

through a set of prior information equations expressing the desire that pertinent parameter

value differences are zero (heterogeneity is thus introduced to the model domain only where

necessary to achieve model calibration). In some modelling contexts, prior information

equations expressing this condition throughout the model domain can number in the

thousands, with each such equation involving just two parameters. If the user then decides

that a particular parameter should be fixed, all prior information equations citing that

parameter must be either deleted or modified, for prior information cannot be supplied for

parameters which are not adjusted through the inversion process. If the required

modifications to prior information equations are done by hand, the chances of making a

serious error are enormous.

While PARAMFIX carries out limited checking of the PEST control file which it must

Building and Altering a PEST Control File 21

modify, its error checking is not complete; it simply assumes that the input PEST control file

is correct. Hence PESTCHEK should be used to validate the input PEST control file before

running PARAMFIX. If this is not done, and if there is a problem with the PEST control file

read by PARAMFIX, the outcome of the control file modification process undertaken by

PARAMFIX will be unpredictable. Similarly, after PARAMFIX has written its new PEST

control file, the latter should also be checked with PESTCHEK for, under certain

circumstances it is not impossible for PARAMFIX to introduce small inconsistencies into this

file.

4.5.2 The Parameter Fix File

PARAMFIX requires two input files. One of these is an existing PEST control file (which it

modifies and re-writes to a file of a different name); the other is a “parameter fix file” which

contains the information required by PARAMFIX upon which to base its modifications of the

existing PEST control file. The parameter fix file has a simple format, and can be prepared

using a text editor. A parameter fix file is illustrated in Figure 4.2.

ro5 fix_param 10.0 retain_prior

ro2 fix_param 100.0 remove_prior

ro7 fix_param 5.0 remove_prior

ro6 fix_param 6.0 retain_prior

thick1 prior_info 4.0 log 5.0 group1

thick2 prior_info 4.0 none 5.0 group2

Figure 4.2 A parameter fix file.

Each line of a parameter fix file contains either 4 or 6 entries. The first entry must be the

name of a parameter involved in the current parameter estimation process. This parameter

must feature in the “parameter data” section of the PEST control file on which that process is

based. If it does not, PARAMFIX will cease execution with an appropriate error message.

As mentioned above, there are two ways in which “outside information” pertaining to a

parameter can be introduced to the inversion process. The first is through prior information,

while the second is through fixing a parameter at a certain value. In the former case, the

second entry on the pertinent line of the parameter fix file should be “prior_info”; in the latter

case the entry should be “fix_param”.

The third entry on each line of the parameter fix file must contain the preferred value for the

parameter whose name leads the line. This is the value at which the parameter will be fixed

(for the “fix_param” option), or the “preferred value” assigned to the parameter through a

prior information equation (for the “prior_info” option). Note that PARAMFIX checks that

the value assigned to the parameter in this manner is between its upper and lower bounds as

recorded in the PEST control file. If this is not the case, PARAMFIX will cease execution

with an appropriate error message.

A fixed parameter cannot feature in any prior information. If an existing PEST control file

contains one or more prior information equations which include a parameter that is to be

fixed, those equations must be modified. Two options exist for modifying such an equation.

The first is simply to remove the equation from the PEST control file. The second is to

remove only the terms of the prior information equation that pertain to newly-fixed

parameters; the values of those terms are then subtracted from the right hand side of the prior

information equation after substituting parameter values read from the parameter fix file. The

first of these options is implemented if the fourth entry on the pertinent line of the parameter

fix file is “remove_prior”. The second option is implemented if the fourth entry on the

Building and Altering a PEST Control File 22

pertinent line of the parameter fix file is “retain_prior”.

If outside parameter information is introduced to the inversion process through the addition

of new prior information equations (i.e. if the second entry on the pertinent line of the

parameter fix file is “prior_info”), then a little extra information must be supplied. As has

already been mentioned, the preferred value for the parameter must be supplied as the third

item on the line. The fourth item on the line must be “log” or “none”. If it is supplied as

“log”, the prior information equation written by PARAMFIX for that parameter will actually

pertain to the log of the parameter rather than to the parameter itself. However PARAMFIX

will only allow this if the parameter is already logarithmically transformed in the parameter

estimation process as designated by an appropriate PARTRANS value for that parameter in

the “parameter data” section of the PEST control file. Similarly, if the fourth entry on the

pertinent line of the parameter fix file is supplied as “none”, indicating that the new prior

information equation is to pertain to the native parameter rather than to the log-transformed

parameter, this will only be allowed if the parameter is designated as untransformed in the

parameter estimation process (PARTRANS value of “none”). Note that the parameter value

supplied as the third entry on the pertinent line of the parameter fix file (the parameter’s

preferred value) is log-transformed prior to being used in a prior information equation if the

fourth entry is “log”.

The fifth and sixth entries on any line of a parameter fix file which pertains to a new prior

information equation must contain the weight to be assigned to the new prior information

equation and the observation group to which the new equation should be assigned. The

weight can be zero or positive. The observation group name may pertain to a group which

already exists in the PEST control file to be modified by PARAMFIX, or it may pertain to a

new observation group. In the latter case PARAMFIX will add the name of the group to the

“observation groups” section of the PEST control file and increment the value of the

NOBSGP variable accordingly.

4.5.3 Running PARAMFIX

PARAMFIX is run using the command

paramfix fixfile pestfile1 pestfile2

where

 fixfile is the name of a parameter fix file,

 pestfile1 is the name of an existing PEST control file, and

 pestfile2 is the name of the PEST control file to be written by PARAMFIX.

As mentioned above, it is important that the integrity of both the input and the output PEST

control files are checked using PESTCHEK.

4.6 ADDREG1

ADDREG1 adds a simple set of regularisation prior information equations to a PEST control

file. An equation is added for each adjustable (i.e. non-tied and non-fixed) parameter cited in

this file. In each of these equations the parameter (or its log, depending on its transformation

status) is assigned a value equal to its initial value (or the log of its initial value). Thus it is

assumed (as is good practice in undertaking regularised inversion) that parameter initial

values are preferred values.

All prior information equations are assigned a weight of 1.0. Each is provided with a name

Building and Altering a PEST Control File 23

which is the same as the name of the parameter which it cites.

Collectively, the prior information equations added to the PEST control file by ADDREG1

comprise a Tikhonov regularisation scheme. ADDREG1 assigns each equation to a

regularisation group whose name begins with “regul_”. ADDREG1 provides the second part

of this name with the first six letters of the name of the parameter group to which the

pertinent parameter belongs. With parameter regularisation prior information equations thus

assigned to different regularisation groups, the IREGADJ variable in the “regularisation”

section of the PEST control file is set to 1 to allow PEST to vary regularisation weights

between groups, thus (hopefully) complimenting the information content of the calibration

dataset as it pertains to parameters belonging to each parameter group. If such division of

regularisation prior information equations into different groups is ether too restrictive or is

insufficiently reflective of the different roles played by different parameter types, you should

alter the groups to which parameters are assigned in the original PEST control file and re-run

ADDREG1, or manually edit the ADDREG1-generated PEST control file. Note that the

names of the new regularisation groups are added to the “observation groups” section of the

new PEST control file; hence the ADDREG1-generated PEST control file should receive the

approval of PESTCHEK.

ADDREG1 is run using the command

addreg1 case1 case2

where

case1 is the filename base or full name of an existing PEST control file, and

case2 is the filename base or full name of the PEST control file which

ADDREG1 must write.

Regardless of the PESTMODE setting of the first PEST control file, ADDREG1 sets the

PESTMODE control variable to “regularisation” in the PEST control file which it writes. It

also writes a “regularisation” section to the new PEST control file. If a “regularisation”

section is present in the old PEST control file, values for PHIMLIM and PHIMACCEPT are

transferred from the old file to the new one. If not, ADDREG1 assigns PHIMLIM a value of

1.0E-10 and PHIMACCEPT a value of 1.05E-10 in the new PEST control file; these may

warrant alteration by the user. The FRACPHIM variable is assigned a value of 0.1 in the new

PEST control file. Thus, during any iteration of the inversion process, the target objective

function “seen” by PEST is 0.1 times its value at the beginning of that iteration. Also, as

stated above, ADDREG1 assigns IREGADJ a value of 1.

It is very good practice to restrict the names of parameter groups in an existing PEST control

file to 6 characters or less (even though 12 characters are allowed). When ADDREG1 forms a

regularisation group name by prefixing a parameter group name with the text string “regul_”,

characters in the parameter group name after the sixth are lost. If two or more parameter

group names are greater than six characters in length but have the first six characters in

common, then the observation group names assigned to prior information equations which

cite parameters from these different parameter groups will be the same. As well as this, there

will then be duplication of observation group names in the “observation groups” section of

the PEST control file as ADDREG1 adds these new observation group names to existing

observation group names. PESTCHEK will detect this error so that you will then have the

opportunity to rename observation groups and re-assign prior information equations to re-

named groups accordingly. However keeping parameter group names to 6 characters or less

in length will forestall the occurrence of this error altogether.

Building and Altering a PEST Control File 24

4.7 ADDREG2

ADDREG2 is very similar to ADDREG1. However, unlike ADDREG1, ADDREG2 requires

that the user provide a value for the target measurement objective function (i.e. PEST

variable PHIMLIM) for inclusion in the “regularisation” section of the new PEST control

file. PHIMACCEPT is automatically set to 2 percent higher than this. Optionally, ADDREG2

allows a user to supply values for the FRACPHIM and IREGADJ control variables.

The only other difference between ADDREG2 and ADDREG1 is that ADDREG2 insists that

the PEST control file which it reads has PESTMODE set to “estimation”. Of course,

PESTMODE is set to “regularisation” in the PEST control file which it writes.

ADDREG2 is run using the command

addreg2 case1 case2 phimlim [fracphim] [iregadj]

where

case1 is the filename base or full name of an existing PEST control file,

case2 is the filename base or full name of the PEST control file which

ADDREG2 must write,

phimlim is the value of the target measurement objective function, PHIMLIM,

fracphim (optional unless a value is supplied for IREGADJ) is the value for the

FRACPHIM regularisation control variable, and

iregadj is the value for the IREGADJ regularisation control variable.

If a value is not supplued for FRACPHIM, ADDREG2 sets it to 0.1. If a value is not

supplued for IREGADJ, ADDREG2 provides its own value of 1. If a value of 4 is provided

for IREGADJ through the command line, then ADDREG2 sets the NOPTREGADJ and

REGWEIGHTRAT regularisation control variables to 1 and 20 respectively. If a value of 5 is

provided for IREGADJ through the command line, then ADDREG2 sets the NOPTREGADJ,

REGWEIGHTRAT and REGSINGTHRESH regularisation control variables to 1, 20 and

1.0E-5 respectively.

4.8 ADDCOVMAT

Observation groups that are created for regularisation purposes by ADDREG1 and

ADDREG2 are not ascribed any covariance matrices. There are many inversion contexts,

especially those where parameters have spatial connotations, where a covariance matrix is

required. If parameters pertain to pilot points, covariance matrices can be built using

programs such as PPCOV, PPCOV3D, PPCOV_SVA and PPCOV3D_SVA from the PEST

Groundwater Data Utilities suite. The names of the covariance matrices that are produced by

programs such as these can be added manually to PEST control files written by ADDREG1

and ADDREG2. Alternatively, this process can be automated using ADDCOVMAT.

Automation can be of assistance where it must be repeated many times, possibly as part of a

batch process that attempts to exert calibration constraints on a multiplicity of parameter

fields.

ADDCOVMAT is run using the command

addcovmat case1 covmatfile case2

where

Building and Altering a PEST Control File 25

case1 is the filename base or full name of an existing PEST control file,

covmatfile is a file which links the name of a covariance matrix file to an

observation group, and

case2 is the new PEST control file written by ADDCOVMAT.

An example of a covmatfile file is provided in Figure 4.3.

observation_group_name covariance_matrix_file

 k1x_regul k1x_cov.mat

 k2x_regul k2x_cov.mat

Figure 4.3 An example of an ADDCOVMAT input file which links covariance matrix

filenames to observation group names.

Any line beginning with the “#” character is treated as a comment. The two entries on each

non-comment line must be space-delimited, with the name of an observation group on the left

and the name of a covariance matrix file on the right. The latter must be surrounded by quotes

if it contains a space.

Note that, as is discussed above, ADDREG1 and ADDREG2 provide names for observation

groups used for regularisation purposes themselves. These names are based on the names of

parameter groups; a “regul” suffix is included in the name.

4.9 SUBREG1

As the name suggests, SUBREG1 performs the opposite task to that of ADDREG1; it

subtracts regularisation from a PEST control file. It is run using the command

subreg1 case1 case2

where

case1 is the filename base or full name of an existing PEST control file, and

case2 is the filename base or full name of a new PEST control file.

SUBREG1 undertakes the following tasks when writing the new PEST control file.

1. It alters the PESTMODE variable to “estimation”.

2. It removes from the “observation groups” section of the PEST control file all

observation groups whose names begin with “regul”; the value of the NOBSGP

variable in the “control data” section of the new PEST control file is reduced

accordingly.

3. It removes from the “observation data” section of the PEST control file all

observations that belong to observation groups whose names begin with “regul”; the

value of the NOBS variable in the “control data” section of the new PEST control file

is reduced accordingly.

4. It removes from the “prior information” section of the PEST control file all prior

information equations that belong to observation groups whose names begin with

“regul”; the value of the NPRIOR variable in the “control data” section is reduced

accordingly.

SUBREG1 does not remove or alter any instruction files. Hence if observations are removed

from the “observation data” section of the PEST control file, an incompatibility will exist

between the new PEST control file and the names of instruction files cited in that file. The

task of rectifying this incompatibility belongs to the user. Do not run PEST on the new PEST

control file until PESTCHEK gives you the all-clear.

Building and Altering a PEST Control File 26

4.10 SIMCASE

SIMCASE stands for “simplify case”. It reads a PEST control file and a corresponding

Jacobian matrix file (i.e. JCO file). On the basis of information contained within these files it

writes a new PEST control file and corresponding Jacobian matrix file. These files constitute

a simplification of the original PEST input dataset, in that the following are omitted from it:

1. regularisation observations and prior information equations;

2. any parameters which are tied or fixed;

3. any parameter groups which contain no members;

4. any observation groups which contain no members;

5. any observations whose weights are zero.

In addition to this, PEST is instructed to run in “estimation” mode in the new PEST control

file. Furthermore a dummy model command line is provided, as well as dummy template,

instruction and model input/output filenames. (There is little use in retaining the names of the

original template and instruction files if parameters and/or observations have been removed

from the original PEST control file.)

While SIMCASE cannot be used as a basis for parameter estimation, it and its corresponding

SIMCASE-generated JCO file can be employed by utility programs such as GENLINPRED

and members of the PREDVAR and PREDUNC suites for parameter/predictive error and

uncertainty analysis. The fact that regularisation data has been removed from the PEST input

dataset facilitates use of these utility programs.

SIMCASE is run using the command

simcase case1 case2

where

case1 is the filename base or full name of an existing PEST control file, and

case2 is the filename base or full name of a new PEST control file.

The integrity of a SIMCASE-produced PEST control file can be checked with the

PESTCHEK utility; however PESTCHEK must be run with the “/s” switch. Correspondence

between the newly-created PEST control and Jacobian matrix files can be verified using the

JCOCHEK utility.

4.11 WTFACTOR

WTFACTOR reads one PEST control file and writes another. In doing this it multiplies all

weights pertaining to a user-nominated observation group by a user-supplied factor. As is

discussed in part I of this manual, both observations and prior information equations should

be assigned to one or a number of observation groups. WTFACTOR carries out weights

multiplication irrespective of whether items belonging to the user-specified observation group

are observations or prior information equations.

WTFACTOR is run using the command

wtfactor pestfile1 obsgroup factor pestfile2

where

pestfile1 is the name of an existing PEST control file,

Building and Altering a PEST Control File 27

obsgroup is the name of an observation group cited in that file,

factor is the weights multiplier for this group, and

pestfile2 is the name of the new PEST control file written by WTFACTOR.

For example, to write a new PEST control file named file2.pst in which weights assigned to

the observation group regul in the PEST control file file1.pst are multiplied by a factor of

1.0345, WTFACTOR should be run using the command

wtfactor file1.pst regul 1.0345 file2.pst

WTFACTOR carries out only minimal checking of the PEST control file which it reads. Thus

it will overlook many types of errors or inconsistencies that may be present in this file,

transferring these directly to the PEST control file which it writes. As always, the latter

should be checked using PESTCHEK before being used by PEST. It is also a good idea to

check the input PEST control file prior to running WTFACTOR, for WTFACTOR’s

behaviour can be unpredictable if this file is internally inconsistent or incorrect.

WTFACTOR is general in its application, being useable with PEST control files pertinent to

all modes of PEST’s operation. However there is one situation in which it will not

accomplish its goal of weight multiplication, and will instead cease execution after writing an

appropriate message to the screen. This occurs where a prior information equation belonging

to the user-specified observation group is spread over two or more lines of the PEST control

file and the prior information weight and observation group name are not on the same line.

An example of such a prior information equation is shown below.

pi1 1.3 * log(ro1) + 3.2 * log(ro2) = 3.234 1.000

& obsgroup1

However WTFACTOR will have no problems if the equation is written as follows.

pi1 1.3 * log(ro1) + 3.2 * log(ro2) = 3.234

& 1.000 obsgroup1

4.12 PWTADJ1

4.12.1 General

Prior to estimating parameters using PEST, you must decide what weights should be assigned

to different observations. In some inversion situations it is wise to assign weights such that

they are all proportional to the inverse of the standard deviation of measurement noise

associated with measurements featured in the calibration dataset. In other cases, however,

weighting strategies should be adopted which accommodate the “structural” nature of model-

to-measurement misfit born of model defects and imperfections of the model as a simulator

of a real world system. This matter is extensively discussed by Doherty (2015).

PEST allows observations and prior information equations to be divided into different

groups. The contributions made to the total objective function by these different groups is

written to both the screen and to the run record file at the beginning of the inversion process,

and at the beginning of every iteration of the inversion process as it progresses. One practical

means through which relative weighting of different observation groups can be established in

such a way as to accommodate the imperfect nature of models as simulators of real-world

systems is to undertake the following procedure.

1. Assign observations to different groups on the basis of their differential information

content and/or their different measurement types. For example in a groundwater

model, borehole heads in layer 1 can be assigned to a different observation group

Building and Altering a PEST Control File 28

from borehole heads in layer 2, while observed head differences between these layers

can be assigned to a third observation group.

2. Build a PEST input dataset in which correct within-group weighting has been set for

all observation groups, but for which the weighting strategy between groups is yet to

be determined.

3. Run PEST with the NOPTMAX control variable set to zero. PEST will run the model

just once and print to the screen, and to its run record file, the contribution made to

the objective function by each observation group.

4. In the PEST control file, multiply all weights pertaining to each observation group by

a group-specific factor such that the contribution made to the objective function by

each observation group is about the same as that made by every other group after

these factors are applied.

If this procedure is followed then, at the beginning of the parameter estimation process at

least, no observation group will dominate the objective function, nor will be dominated by

other observation groups. The information contained in each observation group will thus,

hopefully, be equally “visible” to PEST.

PWTADJ1 was written to automate this weights adjustment strategy.

4.12.2 Running PWTADJ1

PWTADJ1 is run using the command

pwtadj1 case1 case2 contribution

where

case1 is the filename base or name of an existing PEST control file,

case2 is the filename name or name of a new PEST control file, and

contribution is a real, positive, number designating the desired contribution of each

observation group to the overall objective function.

PWTADJ1 undertakes the following tasks.

1. It reads the existing PEST control file, ascertaining the names of all observation

groups cited in that file.

2. It reads the corresponding run record file, ascertaining the contribution made to the

objective function by each observation group after the first model run (this being

based on initial parameter values).

3. It writes a new PEST control file in which observation weights are adjusted such that,

based on initial parameter values, the contribution made to the objective function by

each observation group will be that desired by the user (i.e. the number supplied as

contribution on the PTWTADJ1 command line).

Note the following aspects of PWTADJ1 operation.

1. PWTADJ1 reads files case1.pst and case1.rec, assuming that the latter is the run

record file corresponding to the former. If these two files are incompatible

(PWTADJ1 checks only observation group names) PWTADJ1 will cease execution

with an appropriate error message.

2. It is the user’s responsibility to run PEST on the basis of the existing PEST control

file (preferably with NOPTMAX in that file set to zero) in order to generate a run

Building and Altering a PEST Control File 29

record file in which initial objective function contributions are recorded.

3. If the PEST control file supplied to PWTADJ1 requests that PEST run in

“regularisation” mode, PWTADJ1 will not adjust weights assigned to any

regularisation group; that is, it will not adjust weights for any group whose name

begins with “regul”.

4. If a covariance matrix is assigned to a non-regularisation observation group,

PWTADJ1 will not adjust weights for this group, as weights supplied in the PEST

control file are not employed for this group; instead PEST calculates a weighting

matrix for this group from the covariance matrix provided for the group. Because

PWTADJ1 leaves this matrix untouched, it is the user’s responsibility to multiply all

elements of this matrix by a pertinent factor if objective function equalisation is to

take place; this can be achieved using the MATSMUL utility documented elsewhere

in this manual. To help you in this endeavour, PWTADJ1 writes the required

adjustment factor to the screen for each affected observation group.

5. PWTADJ1 adjusts weights for both observations and (non-regularisation) prior

information.

6. If the PEST control file supplied to PWTADJ1 requests that PEST run in “predictive

analysis” mode, PWTADJ1 will not adjust the weight assigned to the single member

of the observation group named “predict”. (Be very careful when using PWTADJ1 on

a predictive analysis PEST input dataset. You will certainly need to adjust the value

of the PD0 predictive analysis control variable after using PWTADJ1. If

PREDNOISE is set to 1, the weight assigned to the prediction may also require

adjustment.)

7. Before running PWTADJ1, you should check the case1 PEST input dataset using

PESTCHEK.

8. The PEST control file written by PWTADJ1 retains the same NOPTMAX setting as

found in the original PEST control file. If NOPTMAX was set to zero in this original

file, it is important to remember to set it to a higher number before undertaking

parameter estimation on the basis of the new PEST control file.

4.13 PWTADJ2

4.13.1 General

PWTADJ2 accomplishes post-calibration observation weights adjustment. The PEST control

file written by PWTADJ2 can then be used in conjunction with linear analysis utilities such

as GENLINPRED (and programs run by it) described elsewhere in this manual.

PWTADJ2 is similar in many respects to PWTADJ1. Its task is to adjust weights in a PEST

control file. However the target objective function for which weights adjustment is sought is

different from that sought by PWTADJ1. Like PWTADJ2, PWTADJ1 reads the current

objective function, and the contribution made to that objective function by different

observation groups, from a run record file associated with a nominated PEST control file;

objective function details corresponding only to the initial model run are read from this file.

The aim of PWTADJ2 is to endow each observation with a weight that is the inverse of the

standard deviation of noise associated with the corresponding measurement. On the

assumption that the nominated PEST control file contains optimised parameter values (this

Building and Altering a PEST Control File 30

can be constructed using the PARREP utility if desired), the expected value of the objective

function corresponding to the first model run should then be roughly equal to the number of

non-zero-weighted observations comprising the calibration dataset. Similarly, the

contribution to the objective function made by each observation group should then be roughly

equal to the number of non-zero-weighted observations comprising the group. Similar

considerations apply if a covariance matrix is supplied for an observation group instead of

weights. In that case too, if the covariance matrix is correct in representing the statistics of

measurement noise, the contribution made to the objective function by the observation group

should be roughly equal to the number of observations in the group.

Actually, the situation is a little more complicated than this. If parameter values have in fact

been estimated by PEST when run in “estimation” mode, then the expected value of the

objective function is n–m, where n is the number of non-zero-weighted observations and m is

the number of estimated parameters. Thus an observation weights adjustment process which

multiplies all observation weights by a factor such that this occurs will ensure that these

weights approximate the inverse of respective measurement error standard deviations. If any

observation group employs a covariance matrix instead of weights, then all elements of the

covariance matrix should be multiplied by the inverse square of the factor by which weights

are multiplied in order to ensure that the total objective function, and observation-group-

specific contributions to this objective function, achieve their desired values.

In achieving a target objective function of n or n-m, PWTADJ2 allows the user two options.

All measurement weights can be multiplied by the same factor to achieve this total.

Alternatively, a different multiplier can be employed for each observation group such that the

objective function contribution for each such group is equal to either ng, the total number of

non-zero-weighted members of the group, or ng(n-m)/n; in the latter case the total objective

function is n-m. Group-specific post-calibration weights adjustment may be employed in

order to accommodate the fact that the parameter estimation process may encounter much

more difficulty in fitting some observation types to field measurements than others. If this is

taken as an indication of a greater-than-anticipated level of (measurement or structural) noise

associated with the offending observation type, determination of a group-specific weight

factor in this manner may allow calculated weights for that group to better approximate the

inverse of noise standard deviation associated with measurements in the group. It should be

noted however that while such a strategy may certainly prove useful, alteration of the relative

weighting of different observation groups in this manner erodes the theoretical basis for

selection of n-m (rather than simply n) as the expected value of the total objective function

(though this matters little if m is small).

A further problem with the n-m concept arises where regularised inversion is undertaken and

the number of estimated parameters is high (as it often is when an inverse problem is solved

through regularised inversion). In this case, even though values may be assigned to many

parameters, the dimensionality of the solution space of the inverse problem may actually be

quite small, so that the number of parameters that are effectively estimated may be little more

than for a traditional well-posed parameter estimation problem. Where singular value

decomposition is employed as a regularisation device, the dimensionality of the calibration

solution space is equal to the number of pre-truncation singular values. Where Tikhonov

regularisation, or SVD-assist with a Tikhonov component, is employed, the dimensionality of

the solution space can only be guessed.

Despite these limitations, PWTADJ2 can provide a very useful means of replacing weights in

a PEST control file with those that are approximately inversely proportional to the standard

Building and Altering a PEST Control File 31

deviation of measurement noise. The “reference variance” or “standard error of weighted

residuals” therefore becomes equal to 1.0. This can be a useful exercise to perform prior to

running linear analysis utilities such as GENLINPRED and members of the PREDUNC and

PREDVAR suites, or in building a PEST control file that is cited in an observation

uncertainty file (see section 2.5 of this manual).

4.13.2 Using PWTADJ2

PWTADJ2 is run using the command

pwtadj2 case1 case2 use_groups [parameter_correction]

where

case1 is the filename base or name of an existing PEST control

file,

case2 is the filename base or name of a new PEST control file,

use_groups must be supplied as “g” or “ng” signifying “groups” or “no-

groups” (this will be further discussed below), and

parameter_correction is the m of the n–m term; if this item is omitted from the

command line, m is assumed to be zero.

Upon commencement of execution, PWTADJ2 reads the nominated PEST control file. Then

it reads the run record file associated with this PEST control file. It is thus assumed that

PEST has been run using the nominated PEST control file. However PWTADJ2 only reads

objective function information pertaining to the first model run from the run record file.

Hence in most cases that PWTADJ2 is used, the NOPTMAX control variable in the PEST

control file will have been set to 0 or -2; in the former case only one model run is carried out

by PEST while in the latter case a Jacobian matrix is also calculated. Furthermore, as

suggested above, on many occasions the PARREP utility will have been employed to install

optimised parameter values as initial parameter values in the “parameter data” section of this

PEST control file.

As discussed above, PWTADJ2 has two options in performing observation weights

adjustment. If the “ng” option is chosen for the use_groups control variable, then the

adjustment factor by which PWTADJ2 multiplies all observation weights is the same for all

observation groups. However if the “g” option is chosen, then different adjustment factors are

computed for different groups. In both cases the total objective function after weights

adjustment will be equal to n–m, where m is selected through the final variable on the

command line; if this variable is omitted, m is assumed to be zero. If the “g” option is

selected then, as stated above, PWTADJ2 adjusts weights such that the contribution made to

the objective function by each group individually is equal to ng(n-m)/n where ng is the

number of non-zero-weighted observations in a group, and n is the total number of non-zero-

weighted observations in the entire PEST input dataset.

If, for any observation group, a covariance matrix is used instead of observation weights,

PWTADJ2 does not alter that covariance matrix. Rather it writes to the screen the factor by

which all elements of that matrix must be multiplied to achieve the objective function targets

discussed above. If the covariance matrix is supplied in PEST matrix file format (see section

2.4 of this manual), multiplication of this covariance matrix by a scalar can be implemented

using the MATSMUL utility.

The following aspects of PWTADJ2’s operations should be carefully noted.

1. If the PEST control file nominated on the PWTADJ2 command line instructs PEST to

Building and Altering a PEST Control File 32

run in “regularisation” mode, PWTADJ2 does not adjust weights for observations that

belong to any observation group whose name begins with “regul”. Thus only the

measurement component of the total objective function is altered and not the

regularisation component.

2. If the PEST control file nominated on the PWTADJ2 command line instructs PEST to

run in “predictive analysis” mode, PWTADJ2 does not adjust the weight assigned to

the single member of the observation group “predict”, regardless of the setting of the

PREDNOISE variable. Thus if the calibration process is informative of predictive

noise, alterations to the weight assigned to the “prediction observation” through which

this noise level is conveyed to PEST must be made by the user.

3. Regardless of the NOPTMAX setting in the PEST control file read by PWTADJ2,

this variable is set to 50 in the PEST control file written by PWTADJ2. (It has been

found from experience that a user can very easily forget to alter this from its useful

value of zero in the control file supplied to PWTADJ2, and not realize this until

he/she returns to a computer expecting to find a completed PEST run, only to find a

single completed model run.)

4.14 PSTCLEAN

From version 15.0 onwards, PEST, BEOPEST, PEST_HP and all commonly-used PEST

utilities accommodate the presence of PEST++ input data in a PEST control file. As is

explained in PEST++ documentation, control variables that are used by PEST++ are supplied

in keyword format on lines that are embedded in a traditional PEST control file. These lines

are easily identified, as they begin with the characters “++”; they can be placed anywhere

within the PEST control file.

A PEST control file can also include comments. These can be placed anywhere on any line of

this file following the # character. If desired, PEST control variables can precede the #

character which marks an ensuing comment.

Ambiguity can arise if a filename that is featured in a PEST control file includes the “#”

character. PEST-suite programs, including PSTCLEAN, avoid confusion by treating the “#”

character as the precursor to a comment only if it occurs at the start of a line, or is preceded

by a space and is not surrounded by matching quotes. Hence a # character that occurs within

the name of a template, instruction or covariance matrix file or in the name of a model

command, will not be interpreted as the start of a comment. (If the “#” character is, indeed,

part of the name of a file and is preceded by a space, then presumably the filename will be

surrounded by quotes.)

PSTCLEAN is run using the following command.

pstclean case1 case2

where

case1 is the filename base or name of an existing PEST control file, and

case2 is the filename base or name of a new PEST control file.

Note that if only the filename base of a PEST control file is supplied on the PSTCLEAN

command line, then an extension of “.pst” is assumed.

Note also that PSTCLEAN removes control variables that are specific to PEST_HP from a

PEST control file. In particular, if it encounters any of the following variables in the “control

Building and Altering a PEST Control File 33

data” section of a PEST control file, it removes them:

• ORR_NOT_FIRST

• UPTESTLIM

• RUN_SLOW_FAC

• RUN_ABANDON_FAC

• WIN_MRUN_HOURS

• ZEROSENVAL

• SOFTSTOPHOURS

• HARDSTOPHOURS

• RRFSAVE

JCO File Construction and Manipulation 34

5. JCO File Construction and Manipulation

5.1 Introduction

As is described in part I of this manual, PEST records a Jacobian matrix (i.e. a sensitivity

matrix) in a Jacobian matrix file whose filename base is the same as that of the PEST control

file and whose extension is “.jco”. This file (commonly referred to as a “JCO file” herein) has

many uses. It can be used simply for acquiring knowledge of what model outputs are

sensitive to what parameters. More commonly it provides a basis for calculation of post-

calibration statistics, for undertaking post-calibration linear error and uncertainty analysis, for

setup of SVD-assisted inversion, and for implementation of null space Monte Carlo

uncertainty analysis.

Purposes for which utilities described in the present chapter are used include the following.

• Viewing a Jacobian matrix (JACWRIT and JCO2MAT);

• Transferring a JCO file between WINDOWS and UNIX platforms (JCO2MAT and

MAT2JCO);

• Construction of a JCO file from its parts (JCOPCAT and JCOORDER);

• Matching a JCO file to a PEST control file when the latter is altered (JCO2JCO);

• Extracting parts of a Jacobian matrix for use by other programs (e.g. JCO2VEC);

• Creating a Jacobian matrix file for linear functions of model outputs (JCODIFF and

JCOCOMB);

• Creating a weighted Jacobian matrix file (WTSENOUT).

As usual, the order in which programs are described in this chapter reflects similarity of

function; programs that perform similar roles, or complementary roles, are documented in

proximity to each other.

5.2 JACWRIT

JACWRIT rewrites a binary JCO file in ASCII (i.e. text) format. It is run using the command

jacwrit jcofile textfile

where

jcofile is the name of a binary Jacobian matrix file written by PEST, and

textfile is the name of a text file to which JACWRIT should write the Jacobian

matrix in a form which is fit for human consumption.

Note the following.

• Parameter and observation names are listed in the text file written by JACWRIT;

hence each sensitivity (i.e. partial derivative) that is recorded in this file can be linked

to a particular parameter/observation pair.

• Only adjustable parameters are represented in the file written by JACWRIT; fixed and

tied parameters are not represented because they are not represented in the JCO file.

• The sensitivity of a parameter to which another parameter is tied reflects the fact that

this parameter “carries” at least one other parameter through the inversion process.

• Derivatives reflect the transformation status of a parameter. Thus if a parameter is

JCO File Construction and Manipulation 35

log-transformed, the derivative with respect to the log of that parameter is stored in

the JCO file and recorded in ASCII format by JACWRIT.

• Rows of the Jacobian matrix are wrapped into successive lines in the JACWRIT-

produced text version of this matrix.

5.3 JCO2MAT

JCO2MAT reads a PEST-produced Jacobian matrix file. It re-writes the matrix contained

therein in PEST matrix file format; this format is described in section 2.4 of this document.

The Jacobian matrix is then amenable to processing using matrix manipulation utilities

described elsewhere in this manual.

JCO2MAT is run using the command

jco2mat jcofile matfile

where

jcofile is the name of a Jacobian matrix file, and

matfile is the name of the matrix file to which the Jacobian matrix is to be written.

JCO2MAT can be useful in transferring a binary JCO file between a UNIX platform and a

WINDOWS platform. (A binary file produced by software that is run on one of these

platforms is often unreadable by software run on the other.) First convert the JCO file to

matrix format using JCO2MAT. Next transfer the resulting ASCII file to the other platform

(possibly running the DOS2UNIX or UNIX2DOS utility as appropriate after making the

transfer). Then use the MAT2JCO utility on the target platform to write a binary JCO file for

that platform.

5.4 MAT2JCO

MAT2JCO carries out the inverse of the operation carried out by JCO2MAT. It reads a

matrix file and re-writes the matrix contained therein as a binary JCO file.

MAT2JCO is run using the command

mat2jco matfile jcofile

where

matfile is the name of a matrix file, and

jcofile is the name of a new JCO file whose task it is for MAT2JCO to write.

5.5 JROW2MAT

JROW2MAT extracts a row of the Jacobian matrix from a JCO file and writes that row as a

1×m matrix in PEST matrix file format, where m is the number of (adjustable) parameters

featured in the JCO file.

JROW2MAT is run using the command

jrow2mat jcofile obsname matfile

where

jcofile is the name of a Jacobian matrix file,

obsname is the name of an observation or prior information item featured in that

file, and

JCO File Construction and Manipulation 36

matfile is the name of the matrix file to which the 1×m matrix is to be written.

In the matrix file written by JROW2MAT, the row name given to the single matrix row is the

name of the observation or prior information equation pertaining to the extracted row of the

Jacobian matrix. Meanwhile recorded matrix column names are the names of adjustable

parameters featured in the Jacobian matrix file. See section 2.4 of this manual for

specifications of a PEST matrix file.

5.6 JROW2VEC

JROW2VEC performs the same function as JROW2MAT followed by MATTRANS (see

elsewhere in this manual for documentation of the MATTRANS utility). That is, it extracts a

user-nominated row from a Jacobian matrix housed in a JCO file. However instead of writing

the extracted row in the form of a row matrix, it writes it as a column matrix. Recall that a

matrix with one column is in fact a vector.

Many of the linear error and uncertainty analysis utility programs documented elsewhere in

this manual require that predictive sensitivities be supplied as a vector; this is the y vector

featured in many of the equations describing linear analysis presented by Doherty (2015).

Predictive sensitivities can be calculated using PEST if, in the pertinent PEST control file,

predictions are presented to PEST as “observations”. If the PEST control file also contains

real observations comprising a calibration dataset, then these predictions should be given a

weight of zero; the “observed value” of predictions is therefore immaterial. Alternatively, if a

PEST run is dedicated solely to evaluation of predictive sensitivities, and no members of a

calibration dataset are represented in this PEST control file, weights and “observed values”

for all “observations” featured in the “observation data” section of the PEST control file are

of no relevance. In this case PEST can be run with NOPTMAX set to -2 simply for the

purpose of evaluating predictive sensitivities.

Matrix utility programs such as MATQUAD can also use predictive sensitivities extracted

from a JCO file by the JROW2VEC utility; if used appropriately, MATQUAD can be used to

evaluate predictive error variance.

JROW2VEC is run using the command

jrow2vec jcofile obsname matfile

where

jcofile is the name of a Jacobian matrix file,

obsname is the name of an observation or prior information item featured in that

file, and

matfile is the name of the matrix file to which the extracted row of the Jacobian

matrix is to be written as a vector.

5.7 JCOL2VEC

JCOL2VEC is similar to JROW2VEC. However instead of extracting a row from the

Jacobian matrix, it extracts a column. Numbers in this column list the sensitivities of all

observations to a single parameter.

JCOL2VEC is run using the command

jcol2vec jcofile parname matfile

where

JCO File Construction and Manipulation 37

jcofile is the name of a Jacobian matrix file,

parname is the name of a parameter featured in that file, and

matfile is the name of the matrix file to which the extracted column of the

Jacobian matrix is to be written as a vector.

5.8 JCO2JCO

Suppose that you have run PEST to calculate a Jacobian matrix. A JCO file then exists which

complements the PEST control file. The Jacobian matrix may have been calculated for a

number of reasons, these perhaps including preparation for SVD-assisted inversion, and/or

preparation for linear analysis. Suppose now that you make some alterations to the PEST

control file. These may include the following.

• fixing some parameters;

• tying some parameters to parent parameters;

• changing the SCALE and OFFSET of some parameters;

• removing some parameters from the PEST control file;

• adding or removing prior information;

• altering observation weights;

• adding or removing observation groups;

• adding or removing observations.

Suppose that you would now like to obtain a JCO file that complements the new PEST

control file. There is no need to run PEST again, for a new JCO file corresponding to this

new PEST control file can be calculated from the original JCO file corresponding to the

original PEST control file using the JCO2JCO utility.

JCO2JCO reads an existing PEST control file and a corresponding JCO file. It then reads a

second PEST control file, modified from the original PEST control file in some or all of the

ways outlined above. It then calculates a Jacobian matrix and writes a corresponding JCO file

for the second PEST control file.

JCO2JCO is run using the command

jco2jco case1 case2

where

case1 is the filename base of the PEST control file for which a JCO file exists,

and

case2 is the filename base of a second PEST control file for which a JCO file is

required.

The following should be noted.

1. A parameter cited in the first PEST control file does not need to be cited in the second

PEST control file; however the reverse is not true.

2. An observation cited in the first PEST control file does not need to be cited in the

second PEST control file; however the reverse is not true.

3. If a parameter is tied to another parameter in the first PEST control file, it must be tied

to the same parameter in the second PEST control file (JCO2JCO cannot “unravel”

the derivatives of tied parameters). However a parameter can be tied in the second

PEST control file, but not in the first.

JCO File Construction and Manipulation 38

4. If a parameter is fixed in the first PEST control file it must be fixed in the second

PEST control file. However a parameter can be fixed in the second PEST control file

but not in the first.

5. The JCO file written by JCO2JCO does not cite any prior information present in

either the first or second PEST control files. This should cause no problems for

programs such as SVDAPREP or linear analysis utilities which use this file.

6. The first JCO file must have been calculated using version 8 or later of PEST. If this

is not the case it can be translated to the newer JCO file format using the JCOTRANS

utility.

JCO2JCO allows a parameter to have a different SCALE in the second PEST control file

from that which it has in the first PEST control file provided the following conditions are

met.

1. The parameter is not log-transformed in either file;

2. The parameter is not a tied parameter in either file;

3. The parameter has no parameters tied to it in either file.

Normally JCO2JCO issues a warning message if the initial value of any parameter differs

between the first and second PEST control files. However it will not issue a warning message

if a parameter’s initial value is different between these two PEST control files and the

product of the parameter’s initial value and its SCALE is the same in both files.

JCO2JCO’s handling of parameter SCALE may be such as to disallow certain complex

alterations to parameter status between the old and new PEST control files. For example

JCO2JCO will object if a parameter is given a different SCALE, and is simultaneously

assigned a different transformation or tied status between PEST control files. If more

complex changes in parameter SCALE and transformation status than those allowed on a

single JCO2JCO run are required, this is not a problem, for JCO2CO can simply be run twice

(or more) on the basis of more incremental changes between successively-altered PEST

control files. Thus alteration of a parameter’s SCALE and tied/fixed/transformation status

becomes a two-step process rather than a single-step process.

5.9 JCOTRANS

JCOTRANS translates a JCO file produced by version 7 or earlier of PEST to a JCO file

compatible with version 8 or later of PEST. The latter file is recorded in more compressed

form.

JCOTRANS is run using the command

jcotrans jcofile1 jcofile2

where

jcofile1 is the name of a Jacobian matrix file written in the old format, and

jcofile2 is the name of the file to which the Jacobian matrix will be recorded in the

new format.

For both of these filenames, the “.jco” extension can be included or omitted; if it is omitted

JCOTRANS appends it automatically.

JCO File Construction and Manipulation 39

5.10 JCOPCAT

JCOPCAT concatenates two Jacobian matrices contained in two different JCO files.

Concatenation is carried out with respect to parameter values rather than observations; that is

the Jacobian matrices contained in the respective JCO files are concatenated “sideways” so

that extra parameter columns are added to the file. (Recall that each column of a Jacobian

matrix file pertains to a single parameter and each row pertains to a single observation.)

JCOPCAT can be used to create a single JCO file from two JCO files created during two

separate PEST runs. These runs must be based on different adjustable parameters but must

feature the same observations. Use of JCOPCAT thus removes the need for re-calculation of

sensitivities with respect to existing parameters if new parameters are added to a PEST

control file, or if the status of these parameters changes from fixed to adjustable. It can also

be used for calculation of partial Jacobian matrices on different machines prior to “stitching

these matrices together” to form an entire Jacobian matrix.

Use of JCOPCAT is predicated on the following assumptions regarding the two existing JCO

files that are to be concatenated.

1. Both Jacobian matrices must contain the same number of rows;

2. Each row in each respective matrix must pertain to the same observation;

3. The same parameter cannot be featured in both JCO matrices.

Where these conditions are violated, it may be possible to prepare JCO files for concatenation

using the JCOORDER utility. This may be required if, for example, prior information is

featured in one JCO file but not in another. (Note that if JCO2JCO is then used to adapt a

JCOPCAT-produced JCO file to another PEST control file, it ignores such prior information;

thus prior information can be removed from one or both of the JCO files read by JCOPCAT

before concatenation without any loss of information which may compromise further use of

the resulting JCO file.)

JCOPCAT is run using the command

jcopcat jcofile1 jcofile2 jcofile3

where

jcofile1 is an existing Jacobian matrix file,

jcofile2 is another existing Jacobian matrix file, and

jcofile3 is a new concatenated Jacobian matrix file.

JCOPCAT reads both the jcofile1 and jcofile2 JCO files, reporting any errors or

inconsistencies between the two to the screen. It then writes the new, concatenated JCO file.

5.11 JCOORDER

JCOORDER reads a JCO file. It then writes another JCO file after performing one or more of

the following tasks on the Jacobian matrix housed in the original JCO file.

1. Removal of one or more rows of the Jacobian matrix (a row pertains to an

observation);

2. Removal of one or more columns of the Jacobian matrix (a column pertains to a

parameter);

3. Re-ordering of rows of the Jacobian matrix;

JCO File Construction and Manipulation 40

4. Re-ordering of columns of the Jacobian matrix.

JCOORDER is run using the command

jcoorder jcofile1 orderfile jcofile2

where

jcofile1 is an existing JCO file,

orderfile is a parameter/observation ordering file (see below) or PEST control file,

and

jcofile2 is a new JCO file written by JCOORDER.

Figure 5.1 illustrates a parameter/observation ordering file.

* parameters

ro2

ro3

h1

h2

* observations

ar3

ar4

ar5

ar6

ar7

ar8

ar9

ar11

ar12

ar13

Figure 5.1 Example of a parameter/observation ordering file.

A parameter/observation ordering file must begin with the header line “* parameters”.

Following that must be the names of one or more parameters, all of which must be cited in

the first JCO file read by JCOORDER. However these parameters can be cited in any order;

the order in which they are cited will be the order in which they will be represented in the

final JCO file written by JCOORDER. Following parameter names, observation names must

be presented in similar fashion.

The following should be noted.

1. A blank line can be inserted at any location within a parameter/observation ordering

file.

2. Any line beginning with the “#” character is ignored. Thus a comment can follow

such a character.

3. Parameters and/or observations cited in the first JCO file can be omitted from the

parameter/observation ordering file. These parameters/observations will then be

omitted from the JCO file written by JCOORDER.

As an alternative to reading a parameter/observation ordering file, JCOORDER can read a

PEST control file. It will recognise the fact that a PEST control file is supplied rather than a

parameter/observation ordering file through the extension “.pst” provided for this file on the

JCOORDER command line. Ordering of parameters and observations will then be the same

as that in the nominated PEST control file.

If using a PEST control file instead of a parameter/observation ordering file, the following

JCO File Construction and Manipulation 41

should be noted.

1. Tied and fixed parameters in the PEST control file are ignored.

2. Prior information in the PEST control file is ignored; however if prior information is

detected in the PEST control file, JCOORDER asks the reader to confirm that it is

alright to ignore it.

3. Parameters/observations occurring in the JCO file can be absent from the PEST

control file. However parameters and/or observations which are not cited in the JCO

file must not be present in the PEST control file.

Use of JCOORDER can complement the use of JCOPCAT in preparation for SVD-assisted

inversion where PEST runs are undertaken for the purpose of obtaining sensitivities for

subsets of base parameters. The Jacobian matrices produced through this process will need to

be concatenated into one big base Jacobian matrix before running SVDAPREP to build the

super parameter PEST control file. If these files contain different items of prior information

JCOORDER can be used to remove prior information from both of these JCO files prior to

concatenation using JCOPCAT.

The easiest way to build a parameter/observation ordering file is to first run JCO2MAT on

the Jacobian matrix requiring row/column removal and/or row/column re-ordering. Parameter

and observation names are listed as column and row names respectively in this file. A little

cutting and pasting with a text editor will soon result in a parameter/observation ordering file.

Alternatively, a parameter/observation ordering file can be easily built from a PEST control

file – perhaps a base PEST control file which the concatenated JCO file is being built to

complement prior to running SVDAPREP.

5.12 JCOADDZ

JCOADDZ (the “Z” stands for “zero”) is in some respects similar to JCOORDER. It reads a

Jacobian matrix file and a file whose format is very similar to that of a parameter/observation

ordering file used by JCOORDER. Like JCOORDER, it writes a new Jacobian matrix file.

However instead of a parameter/observation ordering file, the file read by JCOADDZ is

referred to as a “parameter/observation addition file”; the option of reading a PEST control

file in place of this file is not available for JCOADDZ as it is for JCOORDER.

JCOADDZ is used for the purpose of adding additional rows (observations) and/or columns

(parameters) to an existing Jacobian matrix. All additional rows and columns are zero valued.

The names of parameters pertaining to extra columns are read from the parameter/observation

addition file, as are the names of observations pertaining to added rows.

JCOADDZ is run using the command

jcoaddz jcofile1 addfile jcofile2

where

jcofile1 is an existing JCO file,

addfile is a parameter/observation addition file, and

jcofile2 is a new JCO file written by JCOADDZ.

Specifications for a parameter/observation addition file are identical to that of a

parameter/observation ordering file; see figure 5.1.

Note the following aspects of JCOADDZ’s operations.

JCO File Construction and Manipulation 42

1. It is not essential that both parameters and observations be added to an existing JCO

file. Thus the parameter/observation addition file may cite no observations or no

parameters. However, regardless of whether or not any parameters or observations are

cited in each section of this file, the “* parameters” and “* observations” headers

must still be featured in the file.

2. As for a parameter/observation ordering file, blank and comment lines are allowed in

a parameter/observation addition file.

Extra parameters and observations are appended to the last column and row respectively of

the Jacobian matrix housed in the existing JCO file. If it is desired that they occupy different

rows and/or columns from the last, this can be accomplished through use of the JCOORDER

utility.

5.13 JCODIFF

JCODIFF subtracts the contents of one Jacobian matrix file from that of another. It can be

useful when conducting linear analysis. It facilitates construction of a JCO file which can

provide the basis for exploration of uncertainties or error variances pertaining to predictive

differences, rather than to predictions themselves. The former are often far smaller than the

latter.

JCODIFF is run using the command

jcodiff jcofile1 jcofile2 jcofile3

where

jcofile1 is an existing JCO file,

jcofile2 is another existing JCO file, and

jcofile3 is a new JCO file, written by JCODIFF, containing a Jacobian matrix

which is the difference between the Jacobian matrices housed in the above

two JCO files.

Note the following.

1. The first and second JCO files cited on the JCODIFF command line must contain the

same number of rows and columns; they must also cite the same

parameters/observations in the same order.

2. The matrix contained in the second JCO file is subtracted from that contained in the

first in forming the Jacobian matrix written to the third JCO file.

5.14 JCOSUM

JCOSUM performs the weighted sum of two Jacobian matrices. It can be useful when

updating a randomized Jacobian matrix calculated by RRF2JCO with a supplementary

randomized Jacobian matrix calculated from the outcomes of new model runs; in this case the

weights (i.e. the factors by which the contents of each Jacobian matrix are multiplied) should

add to 1.0.

JCOSUM is run using the command

 jcosum jcofile1 factor1 jcofile2 factor2 jcofile3

where

jcofile1 is an existing JCO file,

JCO File Construction and Manipulation 43

factor1 is the factor by which all elements of the Jacobian matrix contained in this

file are multiplied,

jcofile2 is another existing JCO file,

factor2 is the factor by which all elements of the Jacobian matrix contained in this

file are multiplied, and

jcofile3 is a new JCO file, written by JCOSUM.

The matrix contained in the new JCO file is equal to factor1 times the first Jacobian matrix

plus factor2 times the second Jacobian matrix.

5.15 JCOCOMB

5.15.1 General

JCOCOMB reads one JCO file and writes another. Observations pertaining to the second

JCO file are user-specified linear combinations of those recorded in the first JCO file.

JCOCOMB combines sensitivities (i.e. elements of the Jacobian matrix) in the same

proportions to produce a new Jacobian matrix pertaining to the combined observations.

Use of JCOCOMB requires that a PEST control file and complimentary JCO file be already

in existence. A second PEST control file must also have been prepared. This must cite the

same parameters in the same order as the first PEST control file. Also, all parameters must

have the same tied/fixed/transformation status in the second PEST control file as they do in

the first PEST control file. However observations cited within the second PEST control file

will be different. It is JCOCOMB’s task to compute the sensitivities of these observations to

all parameters.

The relationship between observations cited within the second PEST control file and those

cited within the first PEST control file must be supplied by the user through an observation

combination file. Figure 5.2 illustrates such a file.

* composite_observation “car1”

ar1 1.0

ar2 2.0

* composite_observation car2

"ar17" 0.5

ar18

ar16 0.5

* composite_observation car3

pi1 0.2

pi2 0.3

Figure 5.2 Example of an observation combination file.

An observation combination file is subdivided into sections. Each such section must begin

with a string of the type “* composite_observation observation_name” where

observation_name is the name of an observation cited in the second PEST control file. This

name can be surrounded by quotes if desired.

Each of the following lines within each section of the observation combination file should

contain two entries. The first is the name of an observation cited in the first PEST control file

(optionally surrounded by quotes). The second is the factor by which its sensitivities with

respect to each parameter should be multiplied in forming the sensitivity of the composite

observation to which that section of the observation combination file pertains. Each section of

the observation combination file can have as many entries as desired. Sensitivities for each of

JCO File Construction and Manipulation 44

the observations cited within that section (as read from the JCO file associated with the first

PEST control file) are simply multiplied by the pertinent factor and summed (for each

adjustable parameter) to compute the sensitivity of the composite observation to each such

parameter. Composite observation sensitivities are then recorded in a JCO file that

compliments the second PEST control file.

The following should be noted.

1. All observations cited in the second PEST control file should be cited in the

observation combination file.

2. There is no requirement that all observations cited in the first PEST control file be

cited in the observation combination file.

3. An observation from the first PEST control file can be cited more than once in the

observation combination file; that is, it can contribute to more than one composite

observation.

5.15.2 Using JCOCOMB

JCOCOMB is run using the command

jcocomb case1 case2 combfile

where

case1 is the filename base of the first PEST control file,

case2 is the filename base of the second PEST control file, and

combfile is the name of an observation combination file.

JCOCOMB reads the first PEST control file and corresponding JCO file. It then reads the

second PEST control file and then the observation combination file. Finally it writes a JCO

file corresponding to the second PEST control file.

Note the following.

1. JCOCOMB only reads the “control data”, “parameter data” and “observation data”

sections of the second PEST control file. There is thus no requirement for instruction

files to be cited within this file which inform PEST how model outputs corresponding

to these observations are to be read from model output files. So while this file may not

be useable for parameter estimation, it is nevertheless useable by utilities such as

those which comprise the PREDVAR and PREDUNC linear analysis suites which

also ignore the instruction and template files cited within a PEST control file.

2. JCOCOMB makes no alterations to the second PEST control file. Also, the values

assigned to these observations, and the weights that are assigned to them, are ignored

by JCOCOMB.

3. The first PEST control file may cite items of prior information. Composite

observations listed in the observation combination file may indeed cite the names of

these prior information equations as “observation names” within respective sections

of that file. However no prior information must be cited in the second PEST control

file.

JCOCOMB can be useful prior to PREDVAR-suite and PREDUNC-suite processing, where

it is desired that predictive errors and uncertainties be computed for averaged quantities and

compared with those pertaining to individual quantities. In many circumstances the error and

JCO File Construction and Manipulation 45

uncertainty variances associated with averaged quantities are significantly less than for

predictions pertaining to fine system detail. When used in this manner, the composite

observations contained within the second PEST control file will actually be model

predictions made under user-specified model input circumstances. Sensitivities written to the

second JCO file by JCOCOMB will then be extracted for the use of the PREDVAR-suite and

PREDUNC-suite utilities by the JROW2VEC utility prior to PREDVAR-suite and

PREDUNC-suite processing.

5.16 JCOSUB

JCOSUB can be useful if you suspect that derivatives with respect to some parameters in an

existing JCO file need improvement. Improvement of these derivatives may be accomplished

using the following procedure.

1. Create a new PEST control file in which all parameters but the worrisome ones are

fixed. Employ settings in this new PEST control file which hopefully promulgate

better derivatives of model outputs with respect to these parameters (e.g. use a three

or five point finite-difference stencil).

2. Run PEST using this new PEST control file with NOPTMAX set to -2 to create a

corresponding JCO file.

3. Run JCOSUB to substitute elements in the old JCO file with elements from the new

JCO file.

JCOSUB is run using the command

jcosub jcofile1 jcofile2 jcofile3

 where

jcofile1 is the name of an existing JCO file,

jcofile2 is the name of another existing JCO file, and

jcofile3 is a new JCO file written by JCOSUB.

Upon commencement of execution JCOSUB reads both the first and the second of the

existing JCO files cited on its command line. If any element of the second pertains to a

parameter and observation named in the first, then the respective element of the first is

overwritten by that of the second.

In order to save confusion, it is a good idea to remove all prior information from the second

PEST control file. There is thus no danger of prior information sensitivities in the first JCO

file from being overwritten by those in the second.

5.17 JCOZERO

JCOZERO allows a user to set individual elements, or groups of elements, of a Jaobian

matrix to zero. The Jacobian matrix is housed in a JCO file. The altered Jacobian matrix is

written to another JCO file.

JCOZERO is run using the following command.

jcozero jcofile1 zerofile jcofile2

 where

jcofile1 is the name of an existing JCO file,

zerofile is a file which denotes which Jacobian matrix elements are to be zeroed,

JCO File Construction and Manipulation 46

and

jcofile2 is the new JCO file to be written by JCOZERO.

Figure 5.3 shows a simple example of a file which JCOZERO reads in order to learn which

Jacobian matrix elements it must set to zero.

Example of a Jacobian zeroing file

* parameters

k_ppt1

k_ppt2

* observations

well01_1

well02_1

* parameters

k_ppt10*

storage?20

* observations

part*

part_time

 Figure 5.3 A file used for denoting which elements of a Jacobian matrix are to be

zeroed.

The “Jacobian zeroing file” is divided into blocks. Each block is comprised of a “parameters”

sub-block and an “observations” sub-block. The former sub-block must begin with the string

“* parameters” whereas the latter sub-block must begin with the string “* observations”.

These sub-blocks must be provided in that order.

Each line of both of these sub-blocks must contain a single entry. For the parameters sub-

block this must be the name of a parameter, or a string from which a group of parameter

names can be constructed. In the latter case, “*” denotes one or more infilling characters

while “?”denotes a single infilling character. The same applies to entries within the

“observations” sub-block (except that individual observations or groups of observations are

denoted instead of parameters). Note that parameter/observation names (or strings which

identify a group of such names) must not be surrounded by quotes in ether of these sub-

blocks.

Blank lines can appear anywhere within a Jacobian zeroing file. Any line beginning with the

“#” character is treated as a comment and is thus ignored.

5.18 JCOCHEK

This utility is documented in chapter 3 of this manual. It is used to test compatibility between

a PEST control file and a Jacobian matrix after either has been manipulated or altered.

5.19 WTSENOUT

5.19.1 General

“WTSENOUT” stands for “weighted sensitivity and model outputs”. WTSENOUT

undertakes the following tasks.

1. It reads a PEST control file and corresponding JCO and RES files (these being the

binary Jacobian matrix file and the ASCII residuals file respectively produced as an

JCO File Construction and Manipulation 47

outcome of running PEST).

2. It calculates Q1/2J where Q is the weight matrix and J is the Jacobian matrix for the

current problem. As is explained in part I of this manual, sensitivities comprising

elements of the Jacobian matrix pertain only to adjustable parameters; the sensitivities

associated with each particular parameter reflect the transformation status of the

parameter, and whether or not any other parameters are tied to it.

3. It computes Q1/2o where o is the model output vector corresponding to best-fit

parameters.

4. It records Q1/2J in a binary JCO file (from which an ASCII version can be obtained

using the JACWRIT or JCO2MAT utilities).

5. It writes the Q1/2o vector to an ASCII file in PEST matrix file format (see section 2.4

of this manual for specifications of this format).

The following features of WTSENOUT should be noted.

1. WTSENOUT will cease execution with an appropriate error message if the PEST

control file which it is asked to read does not inform PEST to run in “estimation”

mode. (If the previous PEST run employed another mode, it is a simple matter to

create a new PEST control file in which PESTMODE is set to “estimation”, and then

use the PARREP utility to populate it with previously estimated parameters as initial

parameters. The JCO2JCO utility can then be used to create a corresponding JCO file.

PEST can then be run with NOPTMAX set to -1, and with the “/i” switch employed

on the command line to compute a RES file pertaining to initial parameters; the

existing Jacobian matrix is then read by PEST, this saving it the trouble of having to

re-compute it.)

2. It is possible that the best set of parameters, and the model outputs corresponding to

these recorded in the residuals file, will have been calculated on the very last PEST

upgrade attempt, immediately prior to cessation of PEST execution. The Jacobian

matrix stored in the JCO file will then correspond to the iteration just prior to this, and

hence will not correspond exactly to the optimised parameter set. If this is the case,

and if you would like exact correspondence between the JCO file and the set of model

outputs calculated on the basis of best-fit parameters, a new PEST control file can be

created containing optimised parameters using the PARREP utility. PEST can then be

run with NOPTMAX set to -1 to build the pertinent JCO and RES files.

3. WTSENOUT will accommodate the provision of covariance matrices for one or more

observation groups in the PEST control file which it is asked to read.

5.19.2 Running WTSENOUT

WTSENOUT is run using the command

wtsenout pestfile matfile jcofile

where

pestfile is the name of a PEST control file (a corresponding JCO and RES file

must also exist),

matfile is the name of the weighted model matrix output file (i.e. the file which

will contain Q1/2o), and

jcofile is the name of the weighted Jacobian matrix output file (i.e. the binary

JCO File Construction and Manipulation 48

JCO file which will contain Q1/2J).

PEST reads the nominated PEST control file and the corresponding JCO and RES files. It

obtains the names of these latter two files by affixing pertinent extensions to the filename

base of the PEST control file. (You should ensure that the new JCO file written by

WTSENOUT has a different name from that which WTSENOUT reads.)

Integrity of Finite-Difference Derivatives 49

6. Integrity of Finite-Difference Derivatives

6.1 Introduction

With modern regularisation devices forming essential components of its parameter estimation

algorithms, PEST’s performance in highly-parameterized, ill-posed inversion contexts is

generally good. While the time required for an inversion process to reach completion may be

high if model run times are long, numerical stability of the inversion process is usually not a

problem.

The most likely reason for problematical PEST behaviour is lack of integrity of finite-

difference derivatives. This can be an outcome of model numerical granularity, so that small

changes in the values of model outputs are not solely a function of small changes in the

values of its parameters. Problematical finite-difference derivatives introduce numerical noise

to the Jacobian matrix, thereby compromising PEST’s parameter upgrade calculations.

During an inversion process, noise in the Jacobian matrix may express itself through an

objective function which falls during the early stages of the process, but which then abruptly

ceases to fall any further, or may even erratically rise and fall over subsequent iterations.

As is discussed in part I of this manual, PEST provides a number of mechanisms which can

ameliorate the effects of poor model performance on finite-difference derivatives. These

include split slope analysis and the use of a five point finite-difference stencil. However if the

numerical performance of a particular model is too bad, then even these measures will fail to

prevent a severe deterioration in PEST’s performance. In that case, it may not be possible to

use PEST with that model at all. The use of proxy or surrogate models for derivatives

calculation may then be contemplated. Alternatively, a global optimiser may then be used

instead of PEST.

This chapter describes JACTEST and a supporting utility program which allows you to

directly test the integrity of finite-difference derivatives. It also describes the MULJCOSEN

utility which can provide some indications of problematical finite-difference derivatives.

Assessing how bad finite-difference derivatives are likely to be allows you to develop an

inversion strategy that can accommodate deficits in their integrity.

6.2 JACTEST

6.2.1 General

JACTEST is used to test the integrity of derivatives calculated by PEST. It runs the model a

number of times with incrementally varied parameters. It monitors the same model outputs as

those for which sensitivities with respect to the varied parameter must be calculated. By

plotting the values of these outputs against the values of the varied parameter the presence of

numerical noise can be easily detected.

6.2.2 Using JACTEST

JACTEST is run using the command

jactest case parname n outfile [/p]

where

case is the filename base of a PEST control file,

Integrity of Finite-Difference Derivatives 50

parname is the name of a parameter featured in this file,

n is the number of increments to test,

outfile is the name of the JACTEST output file, and

/p is an optional parallelisation switch.

JACTEST reads a PEST control file. It then runs the model n+1 times, where n is the number

of increments supplied through the command line (it runs the model once without any

increment). For each but the first of these model runs the value of a user-specified parameter

is varied incrementally; this is parameter parname supplied through the JACTEST command

line. The increment is the same as that which PEST would use to compute derivatives with

respect to this parameter during the parameter estimation process, the control variables for

which are provided in the “parameter groups” section of the PEST control file. Model outputs

calculated on the basis of the incrementally-varied value of the specified parameter are stored

internally. Parameter values are symmetrically disposed about the pertinent initial parameter

value supplied in the PEST control file; that is, this parameter value is both incremented and

decremented for the purpose of carrying out the requested model runs.

When all model runs are complete, JACTEST writes a table of model-generated observation

values to its output file (i.e. to the file outfile specified through the JACTEST command line).

The first row of this table contains values of the nominated parameter employed for each

model run. Subsequent rows contain the values of all model-generated observations

calculated during each such model run (with the name of each observation as the first entry of

each row). If the values of selected observations are then plotted against parameter values

(this being easily achieved once the JACTEST-written table is imported into a spreadsheet),

problems with derivatives computation, if they exist, will be readily apparent.

Note the following.

1. Where a PEST control file specifies multiple command lines, JACTEST uses the first

command to run the model.

2. JACTEST will cease execution with an error message if the parameter nominated on

the command line is tied or fixed.

3. Where the user-specified parameter has other parameters tied to it, the tied parameters

are varied such that their ratio to the parent parameter remains unchanged; that is,

they are varied in the same way that PEST varies them.

4. Parameter SCALEs and OFFSETs as provided in the “parameter data” section of the

PEST control file are respected; their use is identical to that of PEST.

5. JACTEST will not transgress parameter bounds. If the addition of n/2 times the

derivative increment to a given parameter value causes that parameter to exceed its

upper bound, JACTEST will undertake more model runs with subtracted parameter

increments in order to complete its n+1 runs. The opposite action is taken if a lower

bound is transgressed. If both bounds are transgressed, JACTEST will cease

execution with an appropriate error message.

6. In some circumstances the value of the user-specified parameter as recorded in the

JACTEST output file may be slightly different from its expected incremented value.

This is an outcome of the fact that, like PEST, JACTEST adjusts the value of a

parameter slightly if the presence of a parameter space of limited width on one or

more template files cited in the PEST control file requires that the parameter’s value

be written with limited precision.

Integrity of Finite-Difference Derivatives 51

7. JACTEST does not list prior information values on its output file. (The derivatives of

prior information outputs with respect to parameters always have integrity because

they are simply the coefficients of respective parameters in the prior information

equations.)

6.2.3 Using JACTEST in Parallel Mode

Model runs undertaken by JACTEST can be distributed across a network of computers by

appending the “/p” switch to the end of its command line. The parallelisation protocol is the

same as that of Parallel PEST; at the time of writing there is no BEOJACTEST. JACTEST

thus reads a run management file, the filename base of which is the same as that of the PEST

control file but whose extension is “.rmf”. See section 11.2 of part I of this manual for

specifications of this file.

As stated, operation of JACTEST in parallel mode is the same as that of Parallel PEST.

Slaves (named PSLAVE) must be started in working directories on other machines (or on the

same machine if it has multiple processors). Communication between the master program (in

this case JACTEST) and its slaves is through message files – the same message files as used

by Parallel PEST. It is the slave, and not JACTEST, which runs the model in each case.

As for parallel PEST, slaves should be started before PEST. However, like parallel PEST,

JACTEST will tolerate the late arrival of slaves.

When run in parallel mode JACTEST writes two additional files. The first is a parallel run

management file (with the same filename base as the PEST control file, but with an extension

of “.rmr”); this documents the history of communication between JACTEST and its slaves.

The second is a much shorter file which simply lists the number of runs completed at any

time. This also has the same filename base as the PEST control file. However its extension is

“.rcr” (for “run count record”).

6.2.4 Stopping JACTEST

If the PSTOP or PSTOPST command is run in the JACTEST working directory (i.e. folder),

but from another window, JACTEST will cease execution. If run in serial mode, it will wait

until the end of the current model run to do this. If run in parallel mode it will cease execution

immediately, but cannot prevent orphaned model runs from reaching completion in their

slave windows. All slaves will automatically shut down once their respective model runs are

finished if the PSTOPST command is used to terminate JACTEST execution; however they

will not shut down if the PSTOP command is employed. Meanwhile JACTEST writes all

results that it has accumulated to the time of stoppage to its normal output file before it shuts

itself down.

As for PEST, JACTEST execution can be paused and unpaused by issuing the PPAUSE and

UNPAUSE commands from another window which is opened in its working folder.

6.3 POSTJACTEST

As was described in the preceding subsection, JACTEST produces a large output file which

can be used to assess the integrity of derivatives of all model outputs with respect to a

parameter nominated on the JACTEST command line. The JACTEST output file is easily

imported into a spreadsheet such as Microsoft EXCEL. Numbers along any row of this file

can then be plotted. Ideally such a plot should reveal a straight line, or a smooth curve.

However if the line is jagged, a potential problem in the finite-difference calculation of model

Integrity of Finite-Difference Derivatives 52

derivatives is indicated.

In many circumstances, the number of observations represented in a JACTEST output file is

daunting. Some methodology for flagging rows of this file that are worthy of plotting is

therefore required. POSTJACTEST performs this role.

POSTJACTEST is run using the command

postjactest jactestfile thresh outfile

where

jactestfile is the name of a JACTEST output file,

thresh is a threshold value whose role is explained below which must be set to a

number greater than zero, and

outfile is the name of a file which POSTJACTEST writes.

POSTJACTEST reads the JACTEST output file line by line. Recall that values provided on

each line of the JACTEST output file are the values of model-generated observations

computed using incrementally-varied parameters. For any such line, POSTJACTEST

computes differences between successive numbers on the line. It then computes the

difference between the maximum and minimum such model output difference as a fraction of

the model output difference between the first and last entries on this line divided by the

number of parameter increments giving rise to these outputs. This fractional difference is an

indicator of parameter-dependent slope discrepancies. It is recorded on POSTJACTEST’s

output file, together with the observation name to which this measure pertains. While a high

value for this number may reflect nothing more than model nonlinearity, it may also reflect

contamination of finite-difference derivatives by numerical noise.

If the outer difference between model outputs, as well as differences between all

neighbouring model outputs on any particular line of the JACTEST output file, are less than

the threshold thresh specified on the POSTJACTEST command line, then that line is skipped

by POSTJACTEST. The pertinent observation is thus not represented on the POSTJACTEST

output file on the basis of its insensitivity to parameters. (Numerical granularity of these

outputs would reflect truncation of all but the last couple of significant figures incurred by

differencing rather than true model numerical granularity.)

The POSTJACTEST output file is easily imported into a spreadsheet such as EXCEL. It

should then be sorted such that higher slope discrepancies are listed first. You should then

inspect lines of the JACTEST output file corresponding to observations listed early in this re-

ordered table, graphing the numbers listed on each such line in the manner described above.

If an observation does not have a very low sensitivity, and if the plot is jagged rather than

straight or smoothly curved, the integrity of finite-difference derivatives for this observation

is questionable. PEST’s performance may therefore be degraded.

6.4 MULJCOSEN

MULJCOSEN reads a sequence of JCO files named case.jco.N where N represents a

sequence of integers starting at 1. Such a sequence of JCO files is written by PEST if the

JCOSAVEITN variable in the “control data” section of the PEST control file is supplied as

“jcosaveitn”. Gross variations of sensitivities between iterations may provide an indication of

questionable model numerical performance.

MULJCOSEN is run using the command

muljcosen case obspar aname outfile

Integrity of Finite-Difference Derivatives 53

where

case is the filename base of a PEST control file,

obspar must be supplied as either “obs” or “par”,

aname is the name of an observation or parameter featured in the nominated JCO

files, and

outfile is a file to which MULJCOSEN records the outcomes of its calculations.

MULJCOSEN computes the composite sensitivity of either an observation or parameter on

the basis of each JCO file which it reads. The obspar command line variable determines

whether the item of interest is in fact an observation or parameter, while the aname command

line variable identifies the particular observation or parameter for which such computation is

required. Formulas through which composite observation and parameter sensitivities are

computed are provided in section 5.3 of Doherty (2015). Both of these formulas involve

observation weights. Hence as well as reading the sequence of Jacobian matrix files

corresponding to the PEST case supplied on its command line, MULJCOSEN also reads the

corresponding PEST control file, as well as any observation covariance matrix files that are

cited in this file.

Composite sensitivities are written in tabular form to its output file. It is important to note

that if PEST was run in “regularisation” mode, then regularisation observations/prior

information equations are ignored in computation of composite parameter sensitivities. If

PEST was run in “predictive analysis” mode, the prediction is likewise ignored.

Model Pre- and PostProcessing 54

7. Model Pre- and Postprocessing

7.1 Introduction

This chapter describes two utilities that perform similar, though different, roles. The first,

PAR2PAR, is a “PEST-aware” model preprocessor while the second, OBS2OBS, is a

“PEST-aware” model postprocessor. In normal usage, each would be run through a batch file

which PEST runs as “the model”. PAR2PAR undertakes parameter transformations while

OBS2OBS undertakes model output transformations. In both cases the transformations which

they undertake can be expressed using equations of arbitrary complexity.

7.2 PAR2PAR

7.2.1 General

On many occasions of model calibration there is a need to manipulate parameters before

providing them to a model. There can be a number of reasons for this; two of them are now

outlined.

Parameter Ordering

Suppose that a particular surface water or land use model has three parameters named infilt1,

infilt2 and infilt3. For purposes of illustration, let it be assumed that these parameters govern

infiltration of water into different parts of a catchment, in this case into subareas 1, 2 and 3

respectively. Soil property data may suggest that infiltration increases with subarea index,

that is that infilt1 < infilt2 < infilt3. Thus, during the parameter estimation process, it would

be desirable for the lower bound of infilt2 to be the current value for infilt1, and for the lower

bound of infilt3 to be the current value of infilt2.

Unfortunately it would be very difficult to incorporate parameter-dependent bounds into the

PEST inversion algorithm. However an alternative path can be taken which accomplishes the

same thing. This alternative path consists of estimating infilt1 together with two other

parameters named infiltrat2 and infiltrat3 (“infiltrat” stands for “infiltration ratio”). These

latter two parameters are defined by the relationships

infiltrat2 = infilt2/infilt1 (7.2.1a)

and

infiltrat3 = infilt3/infilt2 (7.2.1b)

Desired infiltration parameter ordering relationships will be maintained if each of infiltrat2

and infiltrat3 is provided with a lower bound of 1.0 in the parameter estimation process

implemented by PEST.

In using this device to ensure that correct infiltration parameter ordering relationships are

maintained, PEST must work with parameters infilt1, infiltrat2 and infiltrat3, while the model

must be provided with parameters infilt1, infilt2 and infilt3. The necessary parameter

transformation process can be accomplished by running the utility program PAR2PAR as a

model preprocessor contained in a “composite model” run by PEST as a batch file.

PAR2PAR receives the current PEST-calculated values of infilt1, infiltrat2 and infiltrat3; it

then transforms these into values for infilt1, infilt2 and infilt3. Then it writes one or more

model input files (based on appropriate template files) containing the current values of these

Model Pre- and PostProcessing 55

native model parameters. Based on equations 7.2.1a and 7.2.1b, PAR2PAR must be

programmed to calculate infilt2 and infilt3 using the relationships

infilt2 = infilt1 * infiltrat2 (7.2.2a)

infilt3 = infilt2 * infiltrat3 (7.2.2b)

Seasonal Parameter Variations

Some model parameters show seasonal variation. For environmental models which simulate

water or crop-growth processes in agricultural areas, “crop factor” may be one such

parameter. Crop factor is also a parameter that (together with other parameters) often requires

adjustment through the calibration process in order that a land use model can replicate

measured crop water usage, observed crop growth, or some other system response for which

historical records are available.

Many models require that the crop factor be provided on a monthly basis. However while

monthly crop factors may indeed require estimation through the inversion process, it would

generally be unwise to attempt to estimate each monthly crop factor independently of every

other monthly crop factor, for this would ignore an inherent relationship between these

parameters, this being the fact that variation of crop factor with season may show a regular

(perhaps sinusoidal) pattern. To ignore this pattern in parameterising the model would be to

ignore an important facet of system behaviour. Furthermore, in many model calibration

contexts, it would be unlikely that 12 different monthly crop factors could be independently

estimated with any degree of uniqueness because of the high degree of correlation that is

likely to exist between these individual parameters (especially where the data available for

model calibration is limited).

For a case such as this, a suitable parameterisation strategy may be to estimate the mean

monthly crop factor, together with the amplitude and phase of the seasonal variation of the

crop factor about this mean. Thus twelve parameters are replaced by three. In implementing

this strategy, PEST thus estimates three parameters while the model is provided with the

twelve parameters which it requires. The task of transforming the three parameters estimated

by PEST to the twelve parameters employed by the model can be accomplished using

PAR2PAR as a model preprocessor, run by PEST just before the model on every occasion

that the model is run. Once again, this can be accomplished by including both of the

PAR2PAR and model executables in a batch file run by PEST as a “composite model”. On

the basis of the three parameters adjusted by PEST (named, for example, mean, amplitude

and phase), PAR2PAR will calculate the monthly crop factor parameters required by the

model (named, for example, crop1, crop2…crop12) using a series of relationships such as

crop1 = mean + amplitude * sin ((1 + phase)*2.0*3.142/12.0) (7.2.3a)

crop2 = mean + amplitude * sin((2 + phase)*2.0*3.142/12.0) (7.2.3b)

etc.

In these equations phase is measured in months; as is explained below, the argument of the

sin function must be supplied in radians, where 2 radians is equal to a full cycle.

Seasonal parameter variation can be expressed in a number of different ways; use of the sin

function is just one of them. Another method would be to use “seasonal ratios”; if this is

done, then only one parameter may require estimation, this being the factor by which all such

ratios are multiplied to achieve a good fit with the calibration dataset.

Model Pre- and PostProcessing 56

7.2.2 Using PAR2PAR

Running PAR2PAR

PAR2PAR is run using the command

par2par infile

where

infile is a PAR2PAR input file which must be prepared by the user.

The PAR2PAR Input File

The structure of the PAR2PAR input file is shown in figure 7.1. An example of such a file is

provided in figure 7.2.

* parameter data

PARNME = expression

PARNME = expression

.

.

* template and model input files

TEMPFLE INFLE

TEMPFLE INFLE

.

.

* control data

PRECIS DPOINT

Figure 7.1 Structure of the PAR2PAR input file.

* parameter data

infilt1 = 0.3456

infiltrat2 = 1.0453

infiltrat3 = 1.5432

infilt2= infilt1 * infiltrat2

infilt3 = infilt2 * infiltrat3

* template and model input files

model1.tpl model1.in

model2.tpl model2.in

* control data

single point

Figure 7.2 An example of a PAR2PAR input file.

A PAR2PAR input file must contain at least a “parameter data” section and a “template and

model input files” section. The “control data” section is optional; if it is omitted, the default

values of “single” and “point” are supplied for the variables PRECIS and DPOINT.

The “parameter data” section of the PAR2PAR input file provides the means whereby values

are assigned to a set of parameters. These values can be provided either by the direct

assignment of numbers, or through mathematical expressions. These expressions (which may

be of considerable complexity) may cite parameters whose values were assigned in previous

expressions.

The “template and model input files” section of the PAR2PAR input file provides the names

of template files together with the names of the model input files to which they correspond.

Once it has determined values for all parameters appearing on the left sides of the expressions

listed in the “parameter data” section of its input file, PAR2PAR writes these parameter

Model Pre- and PostProcessing 57

values to the nominated model input files using template files based on these model input

files (just like PEST does).

The following should be noted.

• Any parameter appearing in any of the template files listed in the “template and model

input files” section of the PAR2PAR input file must be assigned a value in the

“parameter data” section of the PAR2PAR input file.

• If there is more than one template/model input file pair listed in the “template and

model input files” section of the PAR2PAR input file, any particular template file can

be cited more than once if desired. However each model input file can be cited only

once, for it would make no sense for a model input file generated on the basis of one

template file to be overwritten by another model input file generated on the basis of

the same or another template file.

If either of these rules is violated, PAR2PAR will inform you of this through an appropriate

error message.

All template files cited in the “template and model input files” section of the PAR2PAR input

file should be checked for correctness using TEMPCHEK. While PAR2PAR will detect and

report any errors that it finds in these files, it will only report the first error that it encounters;

then it will cease execution. TEMPCHEK, on the other hand, attempts to examine the entirety

of a template file, reporting all errors to the screen. TEMPCHEK is documented elsewhere in

this manual.

Parameter Relationships

The relationships through which parameter values are calculated from numbers, or from

values previously assigned to other parameters, may be mathematical expressions of complex

form. They can include any or all of the “*”, “/”, “+”, “-” and “^” operators as well as

brackets. (Note that the “^” operator raises the number in front of the “^” symbol to a power

equal to the number trailing the “^” symbol; this operation can also be designated using the

“**” symbol as in the FORTRAN programming language.) Mathematical operations of equal

rank are evaluated in the order “^” followed by “*” and “/”, followed by “+” and “-”, as is the

usual convention. This order can be overridden by the use of brackets.

The following mathematical functions are supported in expressions through which parameter

values are calculated – sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, exp, log, log10, abs

and sqrt. Note the following rules governing use of these functions.

• As is the FORTRAN convention, the arguments of the trigonometric functions sin,

cos and tan, and the values returned by their inverse functions asin, acos and atan, are

assumed to be in radians. There are 2 radians in a circle; thus 2 radians are equal to

360 degrees.

• The log function is to base e; for logarithms to base 10, use the log10 function.

• For some of the functions listed above, arguments must lie within a specific numerical

range (for example the argument of the log function must always be greater than

zero). If a function argument is provided which is outside of its legal range,

PAR2PAR will often trap the error and cease execution with an appropriate error

message. However in some rare instances the argument may “slip through” and a

compiler-generated error message will be supplied upon termination of PAR2PAR

execution.

Model Pre- and PostProcessing 58

The following rules apply when formulating mathematical expressions to calculate parameter

values.

• Expressions may contain both numbers and parameters. However where a parameter

is used, its value must have been calculated (or supplied) in a previous expression.

• As is the normal PEST convention, parameter names must be 12 characters or less in

length.

• Spaces can be placed next to operators, brackets and functions. However they cannot

appear within numbers, parameter names or function names.

Some examples of allowable mathematical expressions are provided in figure 7.3.

trans5 = k5 * (top5 – bottom5)

pi = 3.14159

par3 = 3.4 * (4.5 + trans5 ^ (3 + sin(0.6)))

par4 = par3 / (pi + exp(5.0 + par3/trans5))

par5 = -(par1 + par2) * cosh(pi * trans5)

Figure 7.3 Examples of mathematical expressions supported by PAR2PAR.

If an expression is long, it may be continued onto the next line by placing the “&” character

at the beginning of that line. Thus the expression

par5 = -(par1 + par2) * cosh(pi * trans5)

is equivalent to

par5 =

& -(par1+par2)

& * cosh(

& pi * trans5)

Generation of Model Input Files

Once it has calculated values for all parameters, PAR2PAR writes these values to one or

more model input files using templates of these files to govern parameter value placement.

Use of template files for writing model input files is fully discussed in section 2.2 of part I of

this manual. As is described in that section, slight variations of the way in which numbers

representing parameter values are written to model input files can be effected through use of

the PRECIS and DPOINT variables; values for these variables are supplied in the optional

“control data” section of a PAR2PAR input file. If PRECIS is set to “single”, numbers are

written to model input files using the “E” character for exponentiation. However if it is set to

“double”, the “D” character is used; furthermore, if there is sufficient space, up to 23

characters can be used to record the value of the parameter instead of the usual maximum of

13. Setting the DPOINT variable to “nopoint” instructs PEST to write a parameter’s value to

a model input file without the decimal point if this can be accomplished through numerical

formatting, thereby gaining one extra significant figure of precision. (More will be said about

precision shortly.) As is stated above, the “control data” section of the PAR2PAR input file is

optional; if it is omitted, default values of “single” and “point” are supplied for PRECIS and

DPOINT respectively.

7.2.3 Using PAR2PAR with PEST

The Composite Model

As was discussed above, when used with PEST, PAR2PAR will normally be run as part of a

Model Pre- and PostProcessing 59

“composite model” encapsulated in a batch file. Thus whenever PEST runs the model, it first

runs PAR2PAR (and any other model preprocessors cited in the batch file), followed by the

model (followed by any model postprocessors cited in the batch file).

As for any other model executable program which uses parameters which require estimation

by PEST, a template file must be built, based on a PAR2PAR input file. Just before it runs

the model, PEST will then write current parameter values to the PAR2PAR input file using

the corresponding template file. An example of such a template file, based on the PAR2PAR

input file shown in figure 7.2, is provided in figure 7.4.

ptf $

* parameter data

infilt1 = $infilt1 $

infiltrat2 = $infiltrat2$

infiltrat3 = $infiltrat3$

infilt2= infilt1 * infiltrat2

infilt3 = infilt2 * infiltrat3

* template and model input files

model.tpl model.in

* control data

single point

Figure 7.4 A template for the PAR2PAR input file of figure 7.2.

Based on the template file of figure 7.4, before PEST runs the model it will replace the

strings “$infilt1$”, “$infiltrat2$”, and “$infiltrat3$” with the current values of the respective

parameters. Note that these parameters do not need to be named the same as the PAR2PAR

parameters to which values are assigned in the pertinent expressions in the PAR2PAR input

file. They could have been given any name at all; the same parameter names are used by both

PEST and PAR2PAR in this example simply as a matter of convenience. Furthermore,

parameter spaces in the template of a PAR2PAR input file do not need to be restricted in their

location to the right side of expressions comprised of a “=” symbol followed by a single

number. See, for example, the PAR2PAR input file and corresponding template file depicted

in figures 7.5 and 7.6. These accomplish the same task as the files depicted in figures 7.2 and

7.4.

* parameter data

infilt1 = 0.3456

infilt2= infilt1 * 1.23983

infilt3 = infilt2 * 1.53953

* template and model input files

model.tpl model.in

Figure 7.5 A PAR2PAR input file.

ptf $

* parameter data

infilt1 = $infilt1 $

infilt2= infilt1 * $infiltrat2$

infilt3 = infilt2 * $infiltrat3$

* template and model input files

model.tpl model.in

Figure 7.6 A template for the PAR2PAR input file of figure 7.5.

It is apparent that when using PAR2PAR as part of a composite model run by PEST there are

two sets of template files involved in the inversion process, namely that used by PEST to

write a PAR2PAR input file, and those used by PAR2PAR to write model input files. These

Model Pre- and PostProcessing 60

should not be confused. PEST should never be instructed to use a template file to write a

model input file that is also cited in the “template and model input files” section of a

PAR2PAR input file. If this happens, the model input file generated by PEST will be

overwritten by that generated by PAR2PAR.

It often happens that only a few parameters required by a model need to be calculated by an

expression cited in a PAR2PAR input file; other model parameters can be estimated directly

by PEST. These latter parameters can simply be “passed through” PAR2PAR by assigning

them numerical values in the pertinent expressions in the PAR2PAR input file. Figure 7.7

shows a PAR2PAR input file in which only parameter par8 is calculated through

manipulation of other parameters; figure 7.8 shows the corresponding template file of the

PAR2PAR input file. Parameters par1 to par5 are passed directly to the model through the

template file model.tpl of the model input file model.in. The template file model.tpl thus cites

all of parameters par1 to par5 as well as parameter par8. (It may also cite par6 and par7.)

* parameter data

par1 = 1.583745e-4

par2 = 5.395832e-1

par3 = 4.583924e-2

par4 = 5.389028e-5

par5 = 4.389428e-2

par6 = 3.559313e-1

par7 = 5.395355e-2

par8 = par6 * exp(-par7)

* template and model input files

model.tpl model.in

Figure 7.7 A PAR2PAR input file.

ptf $

* parameter data

par1 = $par1 $

par2 = $par2 $

par3 = $par3 $

par4 = $par4 $

par5 = $par5 $

par6 = $par6 $

par7 = $par7 $

par8 = par6 * exp(-par7)

* template and model input files

model.tpl model.in

Figure 7.8 A template file for the PAR2PAR input file of figure 7.7.

Numerical Precision

As is explained in part I of this manual, when PEST writes a number to a model input file on

the basis of a template file, it alters its internal representation of that number to account for

the fact that the number may be written to the model input file with less than the maximum

number of significant figures with which that number can be represented internally within the

computer. Thus when PEST calculates derivatives of model outputs with respect to

parameters using finite differences, the differences between incrementally-varied parameter

values will be exactly correct because both PEST and the model use exactly the same

parameter values.

The ability for PEST to compensate for limited parameter space widths on model input files

is lost when parameter values are written to those files using program PAR2PAR (because

Model Pre- and PostProcessing 61

PEST has no way of adjusting its internal representation of parameters based on PAR2PAR

outputs). Thus unless the formatting requirements of the model input file are such that it

allows model input parameters to be supplied with full numerical precision (which is

normally about 7 significant figures), slight errors will be incurred in the derivatives

calculation process. (Note that where a number is small or large enough for exponential

notation to be required for its representation, up to 14 characters may be required for the

representation of that number using 7 significant figures.) Imprecision in derivatives

calculation can have a profound effect on the outcome of an inversion process. Thus you

should make absolutely sure that the template files used by PAR2PAR to write model input

files use parameter space widths which are as large as the model will tolerate (up to a

maximum of 14 characters if using single precision arithmetic, or 23 characters if using

double precision arithmetic). If model input file formatting requirements are too restrictive to

allow a parameter value to be written without some loss of significance, then you should at

least be aware of the fact that use of PAR2PAR under these circumstances has the potential to

reduce the efficacy of PEST’s performance.

Intermediate Files

Before it runs the model, PEST deletes all model output files that it knows about (i.e. the

model output files cited in the PEST control file). Hence if the model fails to run, PEST will

not read old model output files produced on previous model runs, mistaking them for new

ones. Thus if PEST generates an error message saying that it cannot find a particular model

output file, this is a sure sign that, for some reason, the model failed to run. In most cases the

matter is then easily rectified by taking some simple measure such as altering the contents of

the “model command line” section of the PEST control file.

Where a model is comprised of multiple executable programs listed in a batch file, similar

considerations apply to “intermediate model files”, i.e. to files generated by one or more of

the executable programs comprising the composite model and read by one or more

succeeding executable programs cited in the model batch file. If, for some reason, an

executable program which generates such an intermediate file fails to run, then later

executable programs of the composite model may read old intermediate files, mistaking them

for new ones. If this happens, model outputs will not reflect current parameter values; in fact,

because they are independent of current parameter values, PEST will probably declare that at

least some model outputs are insensitive with respect to some parameter values. This problem

can be avoided if commands are included in the model batch file to delete all intermediate

files before any of the executable programs comprising the model are run. If PAR2PAR is

one such executable program, then all model input files cited in the “template and model

input files” section of the PAR2PAR input file should be deleted prior to running PAR2PAR.

Figure 7.9 shows an example of a model batch file in which this precaution is taken.

rem Model input files written by PAR2PAR are deleted.

del model1.in

del model2.in

rem PAR2PAR is run.

par2par par2par.in

rem The model is run.

model

Figure 7.9 A model batch file which includes PAR2PAR as one of the model executable

programs.

In the batch file depicted in figure 7.9, file par2par.in is the PAR2PAR input file. If it is

Model Pre- and PostProcessing 62

desired that screen output from all programs comprising the composite model (including the

model batch file itself) be suppressed so that the model’s screen output does not interfere

with that of PEST, the batch file shown in figure 7.9 could be altered to that shown in figure

7.10. (Note that on a UNIX system “> nul” should be replaced by “> /dev/null”.)

@echo off

rem Model input files written by PAR2PAR are deleted.

del model1.in > nul

del model2.in > nul

rem PAR2PAR is run.

par2par par2par.in > nul

rem The model is run.

model > nul

 Figure 7.10 The batch file of figure 7.9 with all screen output suppressed.

7.3 OBS2OBS

7.3.1 General

The OBS2OBS utility does for model outputs what the PAR2PAR utility does for model

inputs. OBS2OBS reads user-specified numbers from files written by a model; it does this

using instruction files (just as PEST does). New variables (named by the user) can be

calculated from these model outputs on the basis of user-supplied equations. The values of

these new variables (and, if desired, the values of the original model outputs) can be saved to

a tabular output file. These can then be read by PEST and included within an observation

dataset used for model calibration. PEST’s reading of an OBS2OBS output file is made easier

by the fact that OBS2OBS optionally generates an instruction set through which reading of

this file can take place.

7.3.2 OBS2OBS Input File

Before running OBS2OBS an input file must be prepared. An example of an OBS2OBS input

file is shown in figure 7.11.

* model output

model1.ins model1.out

model2.ins model2.out

* equations

hd1=head2-head1

cr1=log10(conc2/conc1)

* output

head1

head2

hd1

conc1

conc2

cr1

Figure 7.11 Example of an OBS2OBS input file.

An OBS2OBS input file must possess three sections, these being the “model output”,

“equations” and “output” sections. Each must begin with an appropriate header as shown in

figure 7.11, this consisting of a “*” character, followed by a space, followed by the section

name.

Model Pre- and PostProcessing 63

Blank lines can be inserted anywhere within an OBS2OBS input file; lines beginning with the

“#” character are ignored, these being considered to be “commented out”.

Sections within an OBS2OBS input file are now discussed in greater detail.

“Model Output” Section

This section is similar to the “model input/output” section of a PEST control file. Each line

within the “model output” section of an OBS2OBS input file must contain two entries. The

second is the name of a model output file, while the first is the name of an instruction file

which has been designed to read that model output file. As many such pairs of files can be

supplied as desired (up to a large internally-set limit). Where a filename contains a space, it

should be enclosed in quotes.

The same rules apply when supplying instruction files to OBS2OBS as apply when supplying

them to PEST. These include the following.

• An instruction filename cannot be repeated;

• Observation names cited in instruction files must be unique;

• Observation names must not contain spaces; their length is limited to 20 characters.

“Equations” Section

As the name implies, the “equations” section of an OBS2OBS input file must possess a set of

equations. In each case the equation must be of the form

new_variable=f(old_variables)

In the above symbolic notation the symbol f() denotes a function. This function can feature

any observation read from a model output file (such observations being named in the

instruction files that read them), or a new variable whose value was assigned in a previous

equation. However neither an old variable nor a new variable can be re-assigned using an

equation. Like observations read from model output files, the name of each new variable

must be 20 characters or less in length, and cannot contain a space.

Examples of equations that can be used in definition of new variables are provided in

documentation of PAR2PAR. Further examples are provided below.

ave_head = (head1+head2+head3)/3

penalty = max(head4-245.23,0,head5-324.5)

Operators and functions which can be used in equations featured in the “equations” section of

an OBS2OBS input file are listed in table 7.1.

Operators ^, /, *, -,+, (,)

Functions abs, acos, asin, atan, cos, cosh, exp, log, log10, sin, sinh, sqrt, tan,

tanh, neg, pos, min, max, mod

Table 7.1 Operators and functions that can be included in OBS2OBS equations.

The following should be noted.

1. In contrast to the PAR2PAR protocol, OBS2OBS will not allow equations to be

continued onto the next line using a continuation character.

2. At the time of writing, an equation must not occupy more than 2000 characters of

Model Pre- and PostProcessing 64

text.

3. Operators and variables can optionally be separated by spaces.

“Output” Section

The “output” section of an OBS2OBS input file must contain a list of variable names. These

names can pertain to any variable read from a model output file (and hence named within an

instruction file), or any variable calculated through equation evaluation. The names and

values of these variables are written to the OBS2OBS output file in the same order as that in

which they are listed in the OBS2OBS input file. An example of an OBS2OBS output file is

provided in figure 7.12.

 head1 3.456755261693154

 head2 4.324500931552616

 hd1 0.000000000000000

 conc1 30.45670000000000

 conc2 53.23432315324721

 cd1 22.77762050136947

Figure 7.12 Example of an OBS2OBS output file.

The following features of an OBS2OBS output file are salient.

• The OBS2OBS output file contains two columns. No column headers are provided.

• The first item of data on each line of an OBS2OBS output file is the name of a

variable while the second item is the value of that variable.

• The value of each variable is recorded using 16 significant figures, this being the

maximum allowed by double precision machine number representation. Use of full

precision in representation of numbers mitigates the potential for corruption of finite-

difference derivatives.

7.3.3 Running OBS2OBS

OBS2OBS is run using the following command.

OBS2OBS infile outfile [insfile]

where

infile is the name of an OBS2OBS input file (as described in the previous

subsection),

outfile is the name of an output file to be written by OBS2OBS, and

insfile is the name of an instruction file to be (optionally) written by OBS2OBS.

The (optional) instruction file written by OBS2OBS reads the output file written by

OBS2OBS, thus facilitating the addition of observed counterparts to OBS2OBS-generated

quantities to a PEST calibration dataset. In this instruction file observations are given the

same names as variables read by OBS2OBS from model output files or named in equations

provided in the OBS2OBS input file. Adoption of this naming convention is not

fundamentally necessary for use of OBS2OBS as part of a model run by PEST, as there is no

need for PEST to use the same variable names as does OBS2OBS. The user is therefore free

to alter an OBS2OBS-generated instruction file if he/she deems this to be necessary.

Model Pre- and PostProcessing 65

7.3.4 Some Uses of OBS2OBS

Observation Postprocessing

In many calibration contexts, model outputs and corresponding observations should be

processed prior to being matched in formulation of separate components of an overall

objective function. Steps should then be taken by the user to ensure that the contribution

made by each component to the overall objective function neither dominates that of other

objective function components, nor is dominated by them. Ideally processing should be

undertaken in such a way as to “distil” from the observation dataset information pertaining to

certain parameter combinations that would otherwise go unnoticed in the overall parameter

estimation process. As described by Doherty (2015), this strategy can protect parameter

estimates from calibration-induced bias if properly undertaken. Examples include the

differencing of head measurements in aquifers separated by an aquitard in order to better

inform the vertical hydraulic conductivity of the material comprising the aquitard, and

temporal differencing of measurements comprising a time series in order to better inform

storage parameters which govern temporal model output variations.

Making Use of “Soft Data”

In many instances it is known that model outputs should lie within a certain range. It may not

matter to the user where in the range these outputs fall, as long as the parameter estimation

process is formulated in such a way as to discourage model outputs from straying outside of

this range. Enforcement of constraints of this type requires use of a nonlinear penalty

function - a function that enforces zero or minimal constraints if a model output is within

certain limits, but that enforces rapidly growing constraints to the extent that these limits are

violated.

OBS2OBS provides the user with a mechanism for achieving this aim. Suppose that it is

desired that a model output op1 be discouraged from exceeding opmax or undercutting

opmin. Suppose also that the user does not feel that it would serve the parameter estimation

process well to “observe” that op1 is equal to the average of opmin and opmax. Two variables

named penalty_high and penalty_low can then be defined within OBS2OBS as follows.

 penalty_high = max(op1-opmax,0.0)

penalty_low = max(opmin-op1,0.0)

Each of these new variables will be zero unless the upper model output range is exceeded (in

which case penalty_high will be non-zero), or unless the lower model output range is

transgressed (in which case penalty_low will be non-zero). These two variables can then be

matched to “observed” values of zero in the PEST control file. The weight given to these

observations should then be such as to provide a strong disincentive for these bounds to be

transgressed.

Further sophistication can be added by raising penalty_high and penalty_low to an

appropriate power (greater than unity) to strengthen the onset of penalty enforcement.

Alternatively, if a discontinuous penalty function is not warranted, a continuous penalty

function defined as follows for the upper bound may be better.

 mean = (opmax+opmin)*0.5

 meandiff = opmax-mean

 penalty = ((op1-mean)/meandiff)^2

Model Pre- and PostProcessing 66

Penalty will be zero when op1 is equal to the mean of opmax and opmin. It will be equal to

one when op1 is equal to opmax or opmin. It will rise rapidly if further bounds transgression

takes place. (In some circumstances logarithmic transformation of model outputs and bounds

may be warranted in implementing this procedure).

Parameter Bounds Enforcement

PEST allows “hard” bounds to be enforced on parameters; these bounds will not be

transgressed during the parameter estimation process (unless they are applied to a child

parameter that is tied to a parent parameter, with only the latter being estimated). Such rigid

“on” or “off” bounds enforcement may not be appropriate in some modelling contexts.

Furthermore a practical problem is encountered when undertaking SVD-assisted parameter

estimation in that if a base parameter encounters its bound, it is stuck there for the remainder

of the parameter estimation process.

An appropriate response to these situations may be to employ soft bounds in addition to hard

bounds. Prior information (in which a parameter is assigned a preferred value with a penalty

incurred through deviation from this preferred value) could be used as a mechanism for

imposition of soft bounds. An alternative approach may be to use parameter thresholds in the

same manner as that shown above for observations instead of introducing a penalty as soon as

the parameter deviates from some central value. The upper and lower parameter thresholds

(both of which should be within the bounds associated with that parameter) can be used to

define parameter values at which a linear (or nonlinear) penalty begins to be enforced in the

manner shown above. Of course if PEST is still determined to send the parameter to its upper

or lower bound notwithstanding the increasing disincentive to do so as that bound is

approached, then bounds enforcement takes place in the usual way.

To implement soft bounds, PEST should be asked to write an additional “model input file” on

the basis of a new, user-supplied template file. This model input file should simply list

current values for parameters for which soft bounds enforcement is to be applied. This file

can then be read as a “model output file” by OBS2OBS using an appropriate instruction file.

7.3.5 Some Notes on Using OBS2OBS

OBS2OBS is normally used to supplement an existing PEST input dataset. Hence the model

output file read by OBS2OBS may also be read by PEST. The OBS2OBS output file is then

added to the list of model output files recorded in the “model input/output” section of the

PEST control file (together with the instruction file which is used to read this OBS2OBS

output file – possibly generated by OBS2OBS itself in the manner described above).

Alternatively, the user can eliminate the need for PEST to read “raw” and OBS2OBS-

processed observations from two different files. This is made possible by the fact that

OBS2OBS can record to its own output file the values of model outputs that it reads from

model output files. Thus these, together with OBS2OBS-processed outcomes of these model

outputs, can be read from the one file, this being the OBS2OBS output file. Model outputs

thus “pass through” OBS2OBS, undergoing no change in the process.

If OBS2OBS is used as a model postprocessor then the command to run OBS2OBS must be

included in the model batch file (after the command to run the model). As was discussed in

documentation of PAR2PAR, it is a good idea to delete the input file of any executable

program that runs in a model batch file (using an appropriate deletion command early in the

batch file) if that input file is written by another executable program cited in the batch file.

Hence if, on the occasion of any model run, this input file does not get written because of

Model Pre- and PostProcessing 67

execution failure in the program that is supposed to write it, the program which is supposed

to read it will crash. PEST will then detect a model failure condition instead of reading the

outcomes of model component calculations that have taken place on the basis of files that are

left over from a previous model run. This advice is just as salient when using OBS2OBS as it

is when using PAR2PAR (or any other model batch file comprised of multiple executable

programs), except under some circumstances. These include the following.

1. If the model output file that is read by OBS2OBS is also read by PEST, then there is

no need to delete this file using a batch file command as PEST will delete this file

itself prior to running the model.

2. The OBS2OBS input file must not be deleted if it contains parameter values directly

written by PEST using a template file (this being done to enforce soft parameter

bounds in the manner described above). Deletion of this file early in the model batch

process will ensure its absence when OBS2OBS needs to read it. However if you feel

uncomfortable in straying from the established principle of deleting all input files

used by model postprocessors (this being a worthy principle), then you should include

in the model batch file a command to copy the PEST-generated parameter list file to

another file, and instruct OBS2OBS to read the latter file. The command to delete this

file can then be included towards the top of the model batch file.

PEST Statistical Postprocessing 68

8. PEST Statistical Postprocessing

8.1 Introduction

This chapter describes a number of utilities that can be used after a PEST run in order to gain

a better understanding of the information content of the calibration dataset, and of the

estimability (or otherwise) of individual parameters. Some of these utilities (EIGPROC,

PCOV2MAT, INFSTAT and INFSTAT1) are best suited for use in the well-posed inversion

context, where all parameters are estimable on the basis of information contained in the

calibration dataset. Others utility programs documented in this chapter (SUPCALC,

IDENTPAR and SSSTAT) embrace the ill-posedness of an inverse problem; they calculate

the dimensionality of the solution space, and the degree to which each parameter lies within

or without of this space.

Further insights can be gained into the well-posedness or otherwise of an inverse problem,

and into the information content of the calibration dataset as it pertains to each parameter,

through use of the GENLINPRED utility. However GENLINPRED is not documented in this

section as its capabilities extend to analysis of the uncertainties of predictions, and not just of

parameters. Predictive uncertainty and error variance analysis is the subject of another

chapter of this manual.

8.2 EIGPROC

8.2.1 General

EIGPROC reads a PEST run record file and a PEST sensitivity file. It extracts and

summarises information from these files. Recall that a PEST run record file is always named

case.rec where case is the filename base of the PEST control file; a sensitivity file is named

case.sen.

Use of EIGPROC (which stands for “eigenstuff processor”) is predicated on the following

assumptions.

• PEST has been run in “estimation” mode.

• The ICOV, ICOR and IEIG variables in the “control data” section of the PEST

control file are all set to 1.

• PEST has run to completion, or has been stopped using the “stop with statistics

option”. (This will happen if the PSTOPST program has been run in another

window).

• The parameter estimation problem is well posed so that the JtQJ matrix (often

referred to as the “normal matrix”) inverted by PEST to obtain the parameter

covariance matrix is not singular; thus a post-calibration covariance matrix (and

associated correlation coefficient and eigendata matrices) are recorded at the end of

the run record file.

8.2.2 Using EIGPROC

EIGPROC is run using the command

eigproc case N exlim outfile

where

PEST Statistical Postprocessing 69

case is the filename base of the PEST control file,

N is the number of eigenvalues to be processed,

exlim is the eigencomponent exclusion limit, and

outfile is the EIGPROC output file.

EIGPROC’s input requirements will now be explained in more detail.

Where PEST is run in “estimation” mode, and where an inverse problem is well-posed, the

post-calibration covariance matrix is computed using equations (5.2.13) and (5.2.18) of

Doherty (2015). The largest eigenvalues of the post-calibration parameter covariance matrix

are associated with eigenvectors that describe parameter combinations that contain most of

the uncertainty of an inferred parameter set. By supplying an appropriate value for N (which

should be equal to, or less than, the number of adjustable parameters), you inform EIGPROC

how many eigenvalues you would like listed in the EIGPROC output file. Eigenvalues are

counted starting from the highest.

For a given eigenvalue, only those parameters whose components of the corresponding

eigenvector which are significantly nonzero are of special interest, for these are the

parameters which, by virtue of insensitivity and/or correlation, are estimated with larger

uncertainty than other parameters. If the eigencomponent exclusion limit supplied on the

EIGPROC command line is, for example, 0.1 then only parameters whose absolute

eigenvector components are greater than 0.1 are listed with the information supplied for a

particular eigenvalue in the EIGPROC output file. (Eigenvectors of the post-calibration

covariance matrix are normalized so that their magnitudes are all 1.0). The name of the

EIGPROC output file is supplied as the last of EIGPROC’s command line arguments.

Once it has parsed its command line, EIGPROC reads the PEST run record file, followed by

the PEST sensitivity file. For each eigenvalue (starting from the highest) it provides

information such as that shown in figure 8.1.

Eigenvalue number: 14 Value = 0.24990 -------->

 Parameter Eigenvector Sensitivity

 component

 v3pp42 0.496 9.071E-03

 v2pp42 0.487 1.060E-02

 Correlation coefficient matrix for these parameters:-

 v3pp42 v2pp42

 v3pp42 1.0 0.84

 v2pp42 0.84 1.0

Figure 8.1 Part of an EIGPROC output file.

For each eigenvalue, EIGPROC lists parameters in decreasing order of eigenvector

component magnitude; the actual eigenvector component is also listed, together with the

composite parameter sensitivity as read from the sensitivity file. (Note that these sensitivity

values are extracted from the end of the sensitivity file where statistics related to optimised

parameters are listed.) Parameters are only listed in this table if their eigencomponent

magnitude is greater than the “eigencomponent exclusion limit” supplied on the EIGPROC

command line.

Underneath the eigendata a correlation coefficient matrix is recorded. This is a sub-matrix of

the parameter correlation coefficient matrix listed in the PEST run record file, featuring only

those parameters which appear in the above eigendata listing.

PEST Statistical Postprocessing 70

8.3 PCOV2MAT

PCOV2MAT extracts a PEST-calculated post-calibration covariance matrix from files

recorded by PEST. It re-writes this matrix in PEST matrix file format. Once in that format, it

can be processed using matrix utilities documented elsewhere in this manual.

Suppose that the filename base of the PEST control file is case. PEST records a post-

calibration covariance matrix file at the end of its run record file (named case.rec) and also in

a file named case.mtt; the latter file is refreshed during every iteration of the inversion

process. However PEST only records a post-calibration covariance matrix in either of these

files if the following conditions are met.

• PEST is run in “estimation” mode;

• The ICOV variable in the “control data” section of the PEST control file is set to 1;

• Neither singular value decomposition nor LSQR is employed in solution of the

inverse problem;

• The JtQJ matrix (where J is the Jacobian matrix and Q is the weight matrix) is

invertible.

See section 5.2.2 of Doherty (2015) for a discussion of the post-calibration covariance matrix

produced through solution of a well-posed inverse problem.

PCOV2MAT is run using the command

pcov2mat pestfile matfile

where

pestfile is the name of a PEST run record file or matrix file containing a

covariance matrix, and

matfile is the name of the matrix file to which the matrix will be re-written; see

section 2.4 for format specifications for this type of file.

The following should be noted.

1. Only adjustable parameters are cited in a post-calibration parameter covariance

matrix; fixed and tied parameters are not cited.

2. It is preferable to use the parameter covariance matrix from a run record file over that

recorded in a matrix file as the former is calculated using sensitivities pertaining to

optimised parameters, whereas the covariance matrix recorded in the latter file is

calculated on the basis of sensitivities pertaining to the latest PEST iteration.

Once the post-calibration parameter covariance matrix has been translated by PCOV2MAT to

matrix file format, the error variance of a particular prediction can be calculated on the basis

of equation 5.2.17 of Doherty (2015) using the MATQUAD utility documented elsewhere in

this manual. Prediction sensitivities required for this calculation can be extracted from a

Jacobian matrix file using the JROW2VEC or JROW2MAT utilities; in the latter case the

MATTRANS utility must be used before MATQUAD is employed to calculate predictive

error variance.

8.4 INFSTAT

8.4.1 General

The INFSTAT utility computes a number of observation influence statistics, namely

PEST Statistical Postprocessing 71

observation leverage, Cook’s D, an influence statistic proposed by Hadi (1992), and

DFBETAS. For a complete description of these, see Yager (1998), Hadi(1992), and

references cited therein. See also section 5.3.3 of Doherty (2015) where the influence

statistics computed by INFSTAT are defined, and where formulas for their computation are

provided.

INFSTAT should be used for computation of influence statistics where an inverse problem is

well-posed. While it will tolerate usage of PEST in “regularisation” mode this is not

recommended, as inverse problem ill-posedness compromises the theory on which

computation of these influence statistics is based. Where an inverse problem is ill-posed,

consider using INFSTAT1 in place of INFSTAT. Better still, consider using utility programs

such as PREDUNC5 and PREDVAR5 (documented elsewhere in this manual) which

accommodate the existence of a null space in assessing data worth. See also the SSSTAT

utility.

8.4.2 Using INFSTAT

INFSTAT is run using the command

infstat case outfile [nsig]

where

case is the filename base of a PEST control file pertaining to a completed

PEST run, and

outfile is the name of a file to which INFSTAT will write tabulated leverage,

Cook’s D, Hadi, and DFBETAS statistics.

INFSTAT reads the PEST control file case.pst, the Jacobian matrix file case.jco, and the

residuals file case.res for a completed PEST run. Where the completed PEST run was in

“regularisation” mode, INFSTAT also reads the PEST-produced resolution data file case.rdf

in order to obtain optimised regularisation weights.

Optionally, for purposes of testing the effect on calculated statistics of limited precision

sensitivities, the number of significant figures employed for representation of elements of the

Jacobian matrix in influence statistics calculations can be limited to nsig by the user. If

omitted (which will normally be the case), then elements of the Jacobian matrix are

represented with the precision with which they are read from the JCO file when INFSTAT

calculates its influence statistics.

The following should be noted.

1. INFSTAT will cease execution with an appropriate error message if the previous

PEST run was undertaken in “predictive analysis” or “pareto” modes.

2. Observations and prior information equations with weights of zero are ignored.

3. As noted in part I of this manual, it is possible that estimates of parameters may have

improved slightly on the final iteration of the inversion process undertaken by PEST

after calculation of the set of parameter sensitivities which occupy the Jacobian matrix

file (i.e. the JCO file). If the resulting mismatch between parameter values and

parameter sensitivities is seen as a problem, the PARREP utility can be employed to

build a new PEST control file with optimised parameter values supplied as initial

parameter values in this file. If NOPTMAX is set to -1 in this file, PEST will calculate

a new Jacobian matrix using these parameters, record this matrix in a new JCO file,

record some statistical information on its run record file, and then cease execution. (If

PEST Statistical Postprocessing 72

you wish, you can even ask PEST to calculate the Jacobian matrix using a higher

order finite-difference stencil on this dedicated PEST run.) Note however that this

procedure is inappropriate if PEST was run in “regularisation” mode as optimised

regularisation weight factors are not transferred to the new PEST control file by

PARREP.

4. In recording observation names to its output file, an underscore is added to those

observation names that belong to an observation group for which a covariance matrix

is supplied instead of observation weights. In this case, the “observations” for which

influence statistics are calculated are not really the nominated observations at all, but

linear combinations j of the original observations h defined as

j = C(ε)-1/2h (8.4.1)

where C(ε) is the user-supplied observation covariance matrix for the pertinent

observation group.

5. Where PEST is run in “regularisation” mode, calculation of influence statistics

includes the effects of regularisation prior information and regularisation

observations. However, due to the fact that weights for these observations and prior

information equations are calculated by PEST on the basis of a user-supplied target

measurement objective function instead of an optimised objective function, and do not

reflect the uncertainty of these observations and prior information, Cook’s D and

DFBETAS statistics do not have the same meaning in this context. In fact, it is

difficult to know just what meaning they do have when PEST is run in

“regularisation” mode. Nevertheless, they can still be calculated; their meaning is left

to the user to interpret.

6. Where singular value decomposition was employed for solution of the inverse

problem, INFSTAT does not compute influence statistics. This is because it is not

aware of the truncation point used for separation of solution and null spaces. If the

PEST control file has a “singular value decomposition” section, and if SVDMODE is

non-zero in that section, INFSTAT ceases execution with an appropriate error

message.

7. Where SVD-assist was implemented for solution of the inverse problem, INFSTAT

does indeed compute influence statistics (provided singular value decomposition was

not used to calculate values for super parameters). However you should bear in mind

that these statistics pertain to the inverse problem as posed in terms of super

parameters rather than base parameters; this is apparent from an inspection of the

DFBETAS table produced by INFSTAT. To ascertain the base parameter composition

of each super parameter, use the PCLC2MAT utility.

8. As well as influence and DFBETAS statistics, INFSTAT presents a summary of

important observations (and parameters which they influence), “importance” being

established using the magnitude of these statistics with respect to thresholds as

outlined in the references cited above. It should be noted that the establishment of a

threshold is somewhat arbitrary (Hadis 1992); in the case of the Hadis statistic, the

relative influence of observations can have a large effect on calculation of this

threshold because the latter relies on the mean and standard deviation of influence

values. If one or more observations are orders of magnitude more influential than the

others, use of a thus-calculated threshold may remove observations that are

nevertheless influential (Hadis, 1992). In addition to observations greater than the

PEST Statistical Postprocessing 73

Hadis threshold, INFSTAT provides the user with a report of influence that lists the

90-100th percentile and 80-90th percentile for comparison.

9. If, for some reason, a DFBETAS statistic for a particular parameter/observation

cannot be calculated (as can sometimes occur because of a zero-valued denominator

in the equation used for its calculation), a value of -1.0E35 is recorded at the pertinent

location on the INFSTAT output file. In many cases the zero-valued denominator is

indicative of high influence, so these observations are listed as having DFBETAS

influence. However, the value of DFBETA reported for these observations is not

accurate.

8.5 INFSTAT1

8.5.1 General

INFSTAT1 performs a similar function to that of INFSTAT. However it is better equipped to

accommodate inverse problem ill-posedness than INFSTAT. In spite of this, its use does not

overcome a fundamental problem with the type of influence statistics that INFSTAT and

INFSTAT1 support. This is the fact that these statistics do not quantify the ability of data to

reduce the dimensionality of the calibration null space. In many calibration contexts this is

the best measure of the worth of data. As stated in documentation for INFSTAT in the

previous subsection, utility programs such as PREDVAR5 and PREDUNC5 can overcome

this problem. See also the SSSTAT utility which can likewise accommodate problem ill-

posedness while calculating indicators of data worth.

Where an inverse problem is ill-posed, INFSTAT cannot invert the sensitivity-based matrices

required for calculation of its information statistics. This situation can be remedied by

introducing Tikhonov regularisation to the inverse problem, for example through the use of

prior information expressing expert knowledge. As is discussed in part I of this manual,

PEST calculates its own weights for observations and prior information equations comprising

regularisation constraints. The INFSTAT utility described in the previous section tries to use

these weights. INFSTAT1 does not.

Instead of relying on Tikhonov regularisation that may have been used in a PEST inversion

problem to achieve the matrix invertibility that calculation of its statistics requires,

INFSTAT1 employs subspace methods as encapsulated in singular value decomposition to

achieve this same end. In fact, if any prior information is contained within a PEST control

file, INFSTAT1 ignores it. The user informs INFSTAT1 of the number of singular values at

which singular value truncation should take place, and hence of the dimensionality of the

calibration solution space. INFSTAT1 then reformulates sensitivity matrices so that

parameter projections onto this space are estimated. If the dimensionality of the solution

space is too large (INFSTAT1 decrees it to be too large if the ratio of the smallest to largest

post-truncation eigenvalue is less than 5E-7), INFSTAT1 informs the user of this, and then

ceases execution. Thus all matrices required for calculation of influence statistics are

guaranteed to be invertible.

The SUPCALC utility described below can be used to obtain estimates of optimal solution

space dimensionality. Use the lower of the two values suggested by SUPCALC.

As described by Doherty (2015), and as stated above, when singular value decomposition is

employed as a regularisation device, the inverse problem is re-formulated to estimate the

projection of a real-world parameter set onto the (often small-dimensional) solution space of

PEST Statistical Postprocessing 74

the calibration problem. In PEST parlance, the square of the direction cosine between an

individual parameter and its projection into the calibration solution space is referred to as the

“identifiability” of that parameter; this can be calculated using the IDENTPAR, SSSTAT and

GENLINPRED utilities. In a typical calibration context the identifiability of many parameters

may not be very high. Where this is the case, the estimated values of these parameters may

have large errors due to their high projection onto the calibration null space. INFSTAT1 does

not concern itself with this. Each parameter cited in its output file must be interpreted as the

projection of the pertinent parameter into the calibration solution space. This, indeed, is the

weakness of the statistics supported by INFSTAT and INFSTAT1 in assessing data worth.

8.5.2 Using INFSTAT1

INFSTAT1 is run using the command

infstat1 case outfile nsing

where

case is the filename base of a PEST control file,

outfile is the INFSTAT1 output file, and

nsing is the singular value truncation threshold.

If NSING is supplied as greater than the number of adjustable parameters, or the number of

non-regularisation observations cited in a PEST control file, it is automatically reduced to the

lower of these two numbers. The eigenvalue ratio at the user-supplied truncation threshold is

written to both the screen and to the INFSTAT1 output file.

As for INFSTAT, PEST must have been run prior to using INFSTAT1 as a Jacobian matrix

corresponding to the nominated PEST control file must exist (in a file named case.jco). If

PEST is run specifically to obtain this matrix, then NOPTMAX must be set to -1 and not -2

in the PEST control file so that PEST records a residuals file on termination of execution.

INFSTAT1 uses these residuals in calculation of its influence statistics.

8.6 SUPCALC

8.6.1 General

“SUPCALC” stands for “super parameter calculation”. It was originally written to assist in

choosing the minimum number of super parameters to employ in SVD-assisted inversion.

(Recall, however, from part I of this manual that the optimum – as distinct from minimum -

number of super parameters to employ is “as many as possible”.) However its use extends

beyond this. It is able to provide an indication of the optimal dimensionality of the solution

space for a particular inverse problem. This can be loosely equated to the number of pieces of

accessible information in a calibration dataset. Each of these pieces of information provides

the basis for estimation of the scalar projection of a real world parameter set onto an

orthogonal axis in parameter space formed though singular value decomposition of the

weighted Jacobian matrix Q1/2J associated with the present inverse problem.

The theory on which SUPCALC is based is described in section 6.2.5 of Doherty (2015). See

in particular section 6.2.5.3. As described in that section, SUPCALC tries to determine the

singular value at which estimation of the corresponding parameter solution space projection

may introduce more potential for error than estimation of that projection on the basis of

expert knowledge alone. As section 6.2.5 of Doherty (2015) shows, as singular values

decrease in value, measurement noise is amplified in estimating corresponding parameter

PEST Statistical Postprocessing 75

solution space projections onto the columns of the V1 matrix discussed in that section, this

contributing to a growing potential for estimation error. (This is the phenomenon of “over-

fitting”.) At some point it is amplified so much that there is smaller potential for error in

estimating the parameter projection through expert knowledge alone than on the basis of the

calibration dataset. This is the point that SUPCALC tries to determine.

Actually, SUPCALC provides suggestions for both the upper and lower bounds of the

singular value truncation point. The lower bound is calculated in the manner described above.

The upper bound is marked by the singular value at which the ratio of highest to lowest

squared singular value of the weighted Jacobian matrix is equal to 10-7. This is the point at

which numerical noise associated with the Jacobian matrix is likely to be amplified to the

point at which estimation of parameter projections is invalidated. (Selection of this truncation

point assumes that finite parameter differencing incurs a relative error of between 10-3 and

10-4 for estimates of partial derivatives embodied in the Jacobian matrix.)

As is discussed by Doherty (2015), any estimate of post-calibration predictive or parameter

error variance relies on two covariance matrices. These are C(k), the covariance matrix of

prior expert knowledge of parameters, and C(ε), the covariance matrix of measurement noise.

SUPCALC can read the former from a parameter uncertainty file. Alternatively, if you have

not prepared such a file, it will calculate an approximation to this matrix by assuming the

following.

• All parameters are statistically independent from a prior point of view.

• The standard deviation of each parameter is 0.3 times the difference between its upper

and lower bound as recorded in the PEST control file; log-transformation status of

pertinent parameters is taken into account in making this calculation.

(Note that if you use this option then you may need to give more thought than you otherwise

would to the bounds that you supply for parameters in a PEST control file.)

SUPCALC attempts to make calculation of an approximate C(ε) matrix similarly easy. It asks

for an estimate of the objective function (measurement objective function if Tikhonov

regularisation is employed) that will be achieved through the inversion process. It divides this

estimate by the number of non-zero-weighted, non-regularisation observations featured in the

current inverse problem to obtain an estimate of the reference variance σ2
r for the current

problem. Following equation 5.2.6 of Doherty (2015), C(ε) is then calculated as

 C(ε) = σ2
rQ

-1 (8.6.1)

Where Q is the weight matrix featured in the inverse problem.

8.6.2 Using SUPCALC

SUPCALC is run by typing its name at the screen prompt. Unlike many of the PEST utilities

documented in this manual, it does not receive information through the command line. This is

because the number of items of information that it requires would make this strategy

somewhat cumbersome to implement. Instead, it communicates with the user through a series

of prompts, to which appropriate responses must be supplied.

SUPCALC’s first prompt is

Enter name of PEST control file:

Supply the name of an existing PEST control file for which a complementary Jacobian matrix

file (i.e. JCO file) already exists. This control file may or may not include Tikhonov

regularisation. If it does, all regularisation observations and prior information equations are

PEST Statistical Postprocessing 76

ignored by SUPCALC.

Next SUPCALC asks

Enter expected value of measurement objective function:

If you have not as yet calibrated the model this will be a difficult question to answer. If you

supply an answer which is too low, SUPCALC will probably inform you that the dimensions

of the calibration solution space are greater than is actually sustainable by the data. If your

answer is too high then SUPCALC may underestimate the dimensions of the calibration

solution space. However, given the approximate nature of SUPCALC’s calculations, and the

fact that in most modelling contexts the level of fit is determined more by so-called

“structural noise” than by measurement noise, these considerations are probably of secondary

importance. Furthermore, in many real-world modelling contexts the boundary between the

solution and null spaces is “soft” because the minimum of the parameter projection error

variance curve that SUPCALC seeks to find is difficult to establish; this is because the

number of singular values over which near-minimal values are calculated is often quite broad.

SUPCALC next asks

To conduct SVD on Q^(1/2)X - enter 1

To conduct SVD on XtQX - enter 2

Enter your choice:

In these questions X is the Jacobian matrix J. The outcome of SUPCALC’s deliberations

should not depend on your choice; however SUPCALC execution time may depend on which

of these options you select. If in doubt, choose the first option as it is often much quicker.

SUPCALC’s next prompt is

Use uncertainty file or bounds to specify parameter variability? [u/b]:

If you choose the “b” option, SUPCALC computes the prior standard deviation of every

parameter as the difference between its bounds (as read from the PEST control file)

multiplied by 0.3. This factor is somewhat arbitrary. For a uniform probability distribution

the standard deviation is actually the range divided by √12 (which is equivalent to

multiplication by 0.288). For a normal distribution, if the bounds interval signifies the 95

percent confidence interval, the standard deviation is the range divided by 4 (which is

equivalent to multiplication by 0.25). In implementing this option, SUPCALC assumes that

all parameters are statistically independent, and thus that the C(k) matrix is diagonal.

Alternatively, if the “u” option is chosen, the name of a parameter uncertainty file must be

supplied in response to the following prompt

Enter name of parameter uncertainty file:

Specifications for a parameter uncertainty file are provided in section 2.5 of this manual.

Through this means a C(k) matrix of arbitrary complexity can be provided.

SUPCALC’s final prompt is

Enter name for eigenvector gain/loss output file:

The format of this file will be discussed shortly.

Next, for each orthogonal unit vector represented in the V matrix obtained through singular

value decomposition of Q1/2J or JtQJ, starting with the highest singular value, SUPCALC

computes the loss of error variance accrued through inclusion of this eigencomponent in the

calibration solution space, and the gain in uncertainty incurred through the effect of

PEST Statistical Postprocessing 77

measurement noise in estimating it. It then sums the two of these. If the summation is

negative (indicating a net loss of estimability of the parameter projection onto this direction

in parameter space), SUPCALC recommends that this eigencomponent should not be

included in the calibration solution space. The recommended minimum number of super

parameters to include in the parameter estimation process is then declared to be one less than

the number of that singular value.

Ideally, once a rise in estimated parameter error variance is encountered in this fashion as the

singular value number is increased, the rise in total estimated parameter error variance will be

even greater for eigencomponents corresponding to subsequent singular values. However

where the C(k) matrix is non-diagonal, and where its diagonal elements are very different

from each other, it is not impossible for falls in estimated parameter error variance to follow

rises. Hence SUPCALC supplies its minimum recommended number of super parameters as

the singular value number corresponding to the last eigencomponent for which inclusion in

the solution space results in a net diminution of post-calibration parameter error variance.

As well as providing a value for the minimum number of dimensions of the solution space,

SUPCALC also provides a recommendation for the maximum possible dimensions of the

solution space. As stated above, the latter corresponds to the number of the last singular value

of JtQJ that is above 10-7 of the first singular value of this matrix. Both the minimum and

maximum recommended number of super parameters are written to the screen by SUPCALC.

SUPCALC records the outcomes of calculations pertaining to all eigencomponents to its

“eigenvalue gain/loss output file”. An example of this output file follows.

Singular_value fall_in_null_space_term rise_in_soln_space_term total_fall

 99.70827 1.183301 9.5014028E-03 1.173799

 35.44050 1.154450 2.6731237E-02 1.127718

 12.07416 1.084832 7.8462467E-02 1.006369

 8.386447 1.079208 0.1129642 0.9662440

 3.985802 1.035739 0.2376858 0.7980535

 1.738295 0.9812030 0.5449986 0.4362043

 0.7795562 0.9190415 1.215266 -0.2962249

 0.2791684 0.8709510 3.393538 -2.522587

 9.8457999E-02 0.8429289 9.622056 -8.779127

 3.0268715E-02 0.8483459 31.29860 -30.45025

Figure 8.2 A SUPCALC output file.

The first column of the SUPCALC output file lists singular values of JtQJ; these are the

squares of singular values of Q1/2J. They are listed in order of decreasing singular value. The

fall in error variance of estimation of each parameter projection from its pre-calibration level

(the latter is equal to its pre-calibration error variance determined by C(k) alone) is provided

in the second column. The rise in error variance accrued from the fact that data on which

basis this parameter projection is estimated is contaminated by measurement noise is

provided in the third column. The final column contains the fall in error variance minus the

rise in error variance; if this is negative, there is a net rise in error variance, from which it

must be concluded that the value of the parameter’s projection onto the direction defined by

the corresponding column of V is not worth including in the parameter estimation process.

This defines the boundary of the calibration solution space.

8.7 IDENTPAR

8.7.1 General

Doherty (2015) and Doherty and Hunt (2009) define the identifiability of a parameter as the

square of the cosine of the angle between a parameter and its projection onto the calibration

PEST Statistical Postprocessing 78

solution space. It is also the magnitude of the diagonal element of the resolution matrix

corresponding to that parameter. See section 7.2.1 of Doherty (2015) for details.

If the identifiability of a parameter is 1.0, then that parameter is completely estimable on the

basis of the current calibration dataset. This does not mean that its estimation is without error;

however it means that measurement noise, and not an information deficit in the calibration

dataset, is responsible for this error. Alternatively, if a parameter has an identifiability of 0.0,

then the calibration dataset is completely uninformative of that parameter; thus the parameter

is completely insensitive as far as the calibration dataset is concerned. On the other hand, if

the identifiability of a parameter is between 0.0 and 1.0 then information within the

calibration dataset that pertains to that parameter is shared between it and other parameters;

the parameter can therefore not be resolved uniquely.

The value calculated for the identifiability of a parameter may depend on the number of

dimensions attributed to the calibration solution space. The boundary between calibration

solution and null spaces is often a soft boundary. Calculation of the location of this boundary

may be assisted through the use of programs such as SUPCALC, SSSTAT and PREDVAR1

described elsewhere in this manual. The dependence of the identifiabilities computed for

some parameters on the location of this often ill-defined boundary may erode the value of

identifiability as a useful post-calibration statistic in some modelling contexts. In these

contexts the relative parameter uncertainty variance reduction computed by GENLINPRED

(which also varies between 0.0 and 1.0) may prove a superior statistic.

In spite of its drawbacks, the concept of parameter identifiability has an intuitive appeal.

Furthermore, as the following discussion shows, some ancillary data on flow of information

from the calibration dataset to the parameter solution space is also available as a by-product

of its use.

8.7.2 Using IDENTPAR

IDENTPAR is run using the command

identpar case N vecfilebase matfile identfile [/s or /r]

where

case is the filename base of a PEST control file,

N is the number of dimensions comprising the calibration solution space,

vecfilebase is the filename base to which eigencomponent sensitivity vectors are to

be written (supply this as “null” if these are not to be written),

matfile is the name of a matrix file to which the V1 matrix is to be written

(supply this as “null” if this is not to be written),

identfile is the name of a file to which parameter identifiability data is to be

written (supply this as “null” if this file is not to be written),

/s (optional) instructs IDENTPAR to undertake singular value decomposition of

JtQJ, (the default), while

/r (optional) instructs IDENTPAR to undertake singular value decomposition of

Q1/2J.

IDENTPAR begins execution by reading the PEST control file corresponding to the user-

supplied filename base. It reads parameter data and observation weights from this file (and

any observation covariance matrices cited in the “observation groups” section of the PEST

control file if these are employed for any observation groups instead of weights). It then reads

the Jacobian matrix corresponding to this PEST control file. As usual, this file is assumed to

PEST Statistical Postprocessing 79

have the same filename base as the PEST control file but to possess an extension of “.jco”; it

is thus assumed that this file exists and has been computed either on the basis of initial

parameter values recorded in the PEST control file (set NOPTMAX to -1 or -2 to do this) or

during a prior parameter estimation process.

IDENTPAR next forms the JtQJ matrix (or Q1/2J matrix depending on the user’s choice of

the “/s” or “/r” switch – where “s” stands for “square matrix” and “r” stands for “rectangular

matrix”) and carries out singular value decomposition of the chosen matrix. On the basis of

N as supplied by the user on the IDENTPAR command line, it then records the following

information. Note however, that any of the following three tasks can be disabled by providing

a name of “null” for the pertinent filename base or filename in the IDENTPAR command

line.

First IDENTPAR writes a series of “vector files” containing the columns of V1 (see Doherty,

2015). Suppose that the user-supplied basename for these files is vfile. Then the files will be

named vfile1.vec, vfile2.vec…..vfileN.vec. Any of these files can be used as a predictive

sensitivity file by any of the PREDVAR-suite or PREDUNC-suite utilities described

elsewhere in this manual.

If matfile in the IDENTPAR command line is set to a value other than “null”, IDENTPAR

writes the columns of V1 to a single file in PEST matrix file format.

If identfile in the IDENTPAR command line is set to a value other than “null”, IDENTPAR

computes the identifiability of each parameter and records it to the nominated file. It also

records the square of the magnitude of the projection of each unit parameter vector onto each

eigencomponent comprising columns of the V1 matrix. These are the eigencomponent

squared cosines defined by equation 7.2.5 of Doherty (2015). The pertinent element in the

“identifiabililty” column in this same file is the square of the magnitude of the projection of

each unit parameter vector onto the totality of this space as spanned by all solution space

eigencomponent vectors. It is thus the sum of the preceding columns.

Interesting and informative plots can be produced by importing identfile into a spreadsheet or

graphing program. For example figure 8.3 shows a bar chart of parameter identifiabilities,

with the contribution from each solution space eigencomponent demarcated by colour within

each parameter-specific bar. It is apparent that some parameters (such as par3, par8, par9

and par11 are very identifiable, whereas others (such as par13 to par17) are not.

PEST Statistical Postprocessing 80

Figure 8.3 Bar chart of parameter identifiabilities coloured by contributions made to

total identifiability by different solution space eigencomponents.

Plots such as that provided in figure 8.3 can be made even more informative if warmer

colours (reds and yellows) are ascribed to projections onto eigencomponent vectors (i.e. unit

vectors vi comprising columns of the V1 matrix) associated with high singular values and

cooler colours (blues and greens) are ascribed to projections onto eigencomponent vectors

associated with low singular values. As discussed by Doherty (2015), measurement-noise-

induced errors associated with estimated values of parameter eigencomponent projections

increase as singular values associated with eigencomponents decrease. Warmer colours may

therefore be indicative of smaller post-calibration error variance.

The following should be noted.

1. Weights used in computation of Q1/2J (or JtQJ) are those provided in the cited PEST

control file.

2. Use of the Q1/2J and JtQJ matrices should lead to identical identifiabilities. However

if many parameters and/or observations are featured in the inversion process then the

“/r” option should be used in running IDENTPAR as its execution will probably then

be faster.

3. If PEST is run in “regularisation” mode, observations and prior information equations

belonging to regularisation groups are ignored by IDENTPAR.

8.8 PARAMID

8.8.1 General

PARAMID is an old program whose use is no longer recommended. However it is still

retained in the PEST suite as it may be useful to some.

PARAMID stands for “parameter identifiability analysis”. It performs simple analysis of the

contents of an “SVD file” written by PEST, listing the contributions made by adjustable

parameters involved in the current inversion process to the eigenvectors spanning the

calibration solution space. (The eigenvectors are the columns of the V matrix emerging from

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
a
r1

p
a
r2

p
a
r3

p
a
r4

p
a
r5

p
a
r6

p
a
r7

p
a
r8

p
a
r9

p
a
r1

0

p
a
r1

1

p
a
r1

2

p
a
r1

3

p
a
r1

4

p
a
r1

5

p
a
r1

6

p
a
r1

7

p
a
r1

8

p
a
r1

9

p
a
r2

0

p
a
r2

1

PEST Statistical Postprocessing 81

singular value decomposition of the weighted Jacobian Q1/2J matrix.)

Use of PARAMID is based on the following premises.

1. A PEST run has just been carried out in which singular value decomposition was

employed for solution of the inverse problem.

2. The EIGWRITE variable was set to 1 in the “singular value decomposition” section

of the PEST control file, thus ensuring that the full eigenvector matrix was recorded

in the SVD file generated by PEST under these circumstances.

3. The initial Marquardt lambda was set to zero (and NUMLAM set to 1) in the “control

data” section of the PEST control file.

4. At least one iteration was carried out before termination of PEST execution. Thus

NOPTMAX was set to 1 or greater in the “control data” section of the PEST control

file.

Note that if model run times are long and a Jacobian matrix file already exists based on a

PEST run in which a strategy other than singular value decomposition was used to solve the

inverse problem, then there is no need to undertake a full PEST run in order to obtain the

SVD file. Simply alter the PEST control file so that the above conditions are met (after using

the PARREP utility to place optimised parameter values into this file). Then start PEST using

the “/i” switch. PEST will then prompt the user for the name of an existing Jacobian matrix

file rather than calculating the Jacobian matrix itself.

8.8.2 Using PARAMID

PARAMID is run using the command

paramid case outfile

where

case is the filename base of an existing PEST control file which meets the

above requirements, and

outfile is the name of the file to which PARAMID must write the outcomes of its

analysis.

PARAMID reads the PEST control file and the SVD file written by PEST on its previous run.

From the SVD file it determines the number of singular values before truncation; it assumes

that this is the dimensionality of the calibration solution space. For each adjustable parameter

listed in the PEST control file, PARAMID then determines the largest (absolute) contribution

that this parameter makes to any of the solution space eigenvectors, as well as the smallest

absolute contribution. It records these (as well as the corresponding eigenvector number) to

its output file.

Don’t forget the following.

1. All eigenvectors computed by singular value decomposition are normalized; hence

the largest contribution that any parameter can make to an eigenvector is 1.0.

2. Eigenvectors are arranged in order of decreasing singular value. Therefore lower-

numbered eigenvectors correspond to parameter combinations of greater estimability.

The following are some conclusions that it may be possible to draw from an inspection of the

PARAMID output file.

1. If the largest contribution that a parameter makes to a solution space eigenvector is

PEST Statistical Postprocessing 82

very low, then the parameter is unidentifiable through the inversion process (and is

probably insensitive).

2. If a parameter makes a moderate contribution to only one solution space eigenvector,

then it may still not be completely unidentifiable, for it may be highly correlated with

another parameter.

3. If a parameter makes a significant contribution to a low-numbered eigenvector, then it

can probably be well estimated on the basis of the current calibration dataset.

8.9 SSSTAT

8.9.1 General

SSSTAT stands for “subspace statistics”. It can be used to study the outcomes of a parameter

estimation process, highly parameterized or otherwise. Statistics pertaining to the information

content of individual members of an observation dataset are calculated, as well as statistics

pertaining to the estimability and post-calibration error variance of parameters. The user is

also given access to the normalized sensitivity matrix through which model outputs

corresponding to observations are calculated from parameters, and to the matrix though

which estimated parameters are calculated from observations.

For most of the utilities documented in this manual, reference is made to Doherty (2015) for

the theory on which the respective algorithm is based. An exception is made for the SSSTAT

utility so that all of this theory can be readily accessible in one place. That theory is now

presented.

8.9.2 Theory and Concepts

Let the vector h represent measurements comprising the calibration dataset and let the vector

ε denote errors associated with those measurements. In the calibration context this will

include both measurement error and model structural error. Let k denote the parameter set

employed by the model. Let the matrix X represent the action of the (linearized) model. Then

 h = Xk + ε (8.9.1)

We now normalize both model outputs and model parameters. The former are normalized

with respect to the measurement noise that is associated with them, while the latter are

normalized with respect to their innate variabilities (an expression of expert knowledge).

Define the weight matrix Q such that

 Q = C-1(ε) (8.9.2)

where C(ε) is the covariance matrix of measurement noise.

Let the vector j represent a transformed parameter set, calculated from k using the equation

 j = F-1/2Etk (8.9.3)

so that

 k = EF1/2j (8.9.4)

E and F are defined through singular value decomposition of the prior parameter covariance

matrix C(k) (which also can be considered as the covariance matrix of innate parameter

variability) through

 C(k) = EFEt (8.9.5)

PEST Statistical Postprocessing 83

Obviously

 C(j) = I (8.8.6)

Hence the transformed parameters j are normalized with respect to their innate variabilities.

That is, they have been subjected to so-called Kahunen-Loève (KL) transformation. Where

normalization of model outputs and model parameters is undertaken in the manner described

above, equation 8.9.1 can be written as

 f = Zj + τ (8.9.7)

where

 Z = Q1/2XEF1/2 (8.9.8)

 f = Q1/2h (8.9.9)

and

 τ = Q1/2ε (8.9.10)

Obviously

 C(τ) = I (8.9.11)

SSSTAT bases its calculation of inversion statistics on equation (8.9.7).

SSSTAT works at two levels, the hiatus between these levels being marked by whether or not

singular value decomposition of the Z matrix is undertaken. Singular value decomposition of

Z leads to calculation of matrices U, S and Vt defined through

 Z = USVt (8.9.12)

Prior to undertaking singular value decomposition of the Z matrix, SSSTAT calculates the

diagonal elements of the matrix ZZt and the diagonal elements of the matrix ZtZ. From

equation (8.9.12) it follows that

 ZZt = US2Ut (8.9.13)

and that

 ZtZ = VS2Vt (8.9.14)

Note also that if measurement noise is ignored, then, from (8.9.7)

 C(f) = ZC(j)Zt = ZZt (8.9.15)

Hence ZZt is the covariance matrix that denotes the variability of normalized model outputs f

as this arises from the natural variability of normalized model parameters j. This can be

compared with the variability of f induced by measurement/structural noise, of which the

covariance matrix is I. The diagonal elements of ZZt thus mark the variability of individual

model outputs (that correspond to observations) arising out of natural parameter variability.

As such, it is a measure of their information content with respect to parameters, for high

parameter-induced variability indicates high information content with respect to the

parameters that induce that variability.

ZtZ can be viewed in a number of ways. The diagonal elements of this matrix are the

composite sensitivities of parameters, scaled by their innate variability. This is thus closely

related to the CSS statistic of Hill and Tiedeman (2007), but is a little more theoretically

based. If the inverse problem is well posed, (ZtZ)-1 is the post-calibration parameter

covariance matrix. However if it is not well posed this matrix cannot be formed. Because the

PEST Statistical Postprocessing 84

diagonal elements of (ZtZ)-1 denote individual post-calibration parameter uncertainty, the

diagonal elements of ZtZ can be seen as loosely denoting post-calibration “parameter

certainty”. Low values of post-calibration “parameter certainty” denote low ability to be

inferred through the calibration process. The post-calibration uncertainty of such parameters

must therefore be constrained by expert knowledge rather than information that is resident in

the calibration dataset.

The diagonal elements of ZtZ can be viewed from another perspective. First consider the

matrix V1V
t
1, where the “1” subscript indicates a partitioning of V based on removal of

columns of V that correspond to non-zero (or non-near-zero) singular values. The vectors

comprising the columns of V1 thus span the calibration solution space. Those comprising the

orthogonal complement of V1, i.e. V2, span the calibration null space. Thus

 V = [V1 V2] (8.9.16)

The matrix V1V
t
1 denotes an orthogonal projection operator of (unknown) real model

parameters onto the inversion solution space. As such it comprises the so-called “resolution

matrix” that emerges from inversion based on truncated singular value decomposition. The

diagonal elements of V1V
t
1 are thus the diagonal elements of the resolution matrix. They are

also the “parameter identifiabilities” of Doherty and Hunt (2009) and Doherty (2015) (which

are also computed by the IDENTPAR utility). These range between 0 and 1. Parameters with

an identifiability of zero are completely inestimable through the inversion process because

they lie in the inversion null space. Parameters with an identifiability of 1 are completely

estimable as they lie entirely in the inversion solution space. The identifiability of a

parameter is in fact the square of the cosine of the angle between it and its projection onto the

solution space.

Based on these considerations, as well as the characterisation of ZtZ provided through

equation (8.9.14), each diagonal element of the ZtZ matrix can be viewed as the weighted

squared cosine between the real-world (but unknown) scaled parameter vector j and its

projection onto each of the vectors vi comprising the columns of V. The weight in each case

is the square of si, this being the singular value associated with vi. The higher is this singular

value, the less is the estimation of that parameter contaminated by measurement noise. Zero

values of si indicate no solution space projection; the parameter therefore projects entirely

into the calibration null space. Nothing is then known of this parameter following the

inversion process – not even its projection into the calibration solution space.

Where inversion is undertaken through singular value decomposition, the calibrated scaled

parameter set j is calculated through the equation

 j = V1S
-1

1U
tf = Gf (8.9.17)

where G is defined by the above equation. Doherty (2015) shows that the post-calibration

error variance of any parameter is the sum of two terms. The first is the null space

contribution to error and the second is the solution space contribution to error. It is easily

shown from (8.9.17) and (8.9.7) that

 j = V1V
t
1j + Vt

1S
-1

1U
tτ (8.9.18)

so that

 j – j = -V2V
t
2j + Vt

1S
-1

1U
tτ (8.9.19)

Recalling that C(j) and C(τ) are both identity matrices, it follows that

 C(j – j) = V2V
t
2 + V1S

-2
1V

t
1 (8.9.20)

PEST Statistical Postprocessing 85

After computing ZZt and ZtZ, SSSTAT undertakes singular value decomposition of Z. Using

a method identical to that employed by the SUPCALC utility, it then evaluates the optimal

SVD truncation point; that is, it computes the optimal dimensionality of the solution space. It

does this by looking at the pre- and post-calibration error variances of each of the coefficients

of the vectors vi comprising the columns of V estimated through the inversion process. The

pre-calibration error variance of each of these coefficients arises from expert knowledge

alone. This is easily shown to be 1.0 for each coefficient. The post calibration error variance

of each coefficient is equal to the inverse of the square of the respective singular value. The

solution space is deemed to end and the null space is deemed to begin where post-calibration

error variance exceeds pre-calibration error variance. This occurs where singular values fall

below 1.0.

After determining the optimal truncation point, SSSTAT lists on its output file all of the

singular values arising from singular value decomposition of the Z matrix. It then lists the

diagonal elements of Vt
1V1 and Vt

2V2. As stated above, the former are the identifiabilities of

the scaled parameters comprising the vector j. The latter complement these; these are the

squares of the cosines of the angles between scaled parameters and their projections onto the

calibration null space; Vt
1V1 and Vt

2V2 sum to I. The diagonal elements of Vt
2V2 can also be

considered as the post-calibration null space components of error variance associated with

each parameter. See Doherty (2015).

SSSTAT next computes and lists the diagonal elements of V1S
2
1V

t
1 and V1S-2

1V
t
1. As

discussed above, if the solution space comprises the whole of parameter space, the former

quantities are equal to the diagonal elements of ZtZ. If not, they are equal to or less than

these. If the solution space comprises the entirety of parameter space, V1S-2
1V

t
1 is equal to

(ZtZ)-1. If not, it is equal to the solution space component of the covariance matrix of post-

calibration scaled parameter error. Each diagonal element of this matrix is thus the post-

calibration solution space contribution to the error variance of the scaled parameter

comprising the respective element of the vector j. For each scaled parameter the sum of this

diagonal element and the respective diagonal element of V2V
t
2 is the total post-calibration

error variance. SSSTAT lists these for all scaled parameters.

Finally, SSSTAT computes the diagonal elements of the matrix U1S
2

1U
t
1. Where all non-zero

singular values are retained in the inversion process (which occurs if the inverse problem is

well posed), the U1S
2

1U
t
1 matrix is equal to the ZZt matrix. If not, the diagonal elements of

U1S
2
1U

t
1 will be slightly less than those of ZZt

. These provide a measure of variability of

weight-scaled model outputs arising from variability of solution space components of scaled

parameters. As such the diagonal elements of U1S
2
1U

t
1 are the error variances of respective

model outputs arising from solution space scaled parameter variabilities.

8.9.3 Using SSSTAT

SSSTAT is run by typing its name at the screen prompt. Typical prompts and responses are

as follows.

Enter name of PEST control file: pf12.pst

Enter expected value of measurement objective function: 10030

Use uncertainty file or bounds to specify parameter variability? [u/b]: b

Enter name for SSSTAT output file: temp.dat

Enter name for G matrix output file: tempg.mat

Enter name for Z matrix output file: tempz.mat

PEST Statistical Postprocessing 86

- reading PEST control file pf12.pst....

- file pf12.pst read ok.

- reading Jacobian matrix file pf12.jco....

- file pf12.jco read ok.

- transforming Jacobian matrix....

- carrying out singular value decomposition of Q^(1/2)XFE(1/2)....

- optimal truncation point = 4 singular values.

- forming G matrix....

- file tempg.mat written ok.

- file tempz.mat written ok.

- file temp.dat written ok.

SSSTAT calculates C(ε) from observation weights and from any observations covariance

matrices supplied in the PEST control file. Relativity of these is preserved, while a factor is

applied to all of them such that a new objective function is calculated from that supplied by

the user; this new objective function is equal to the sum of non-zero-weighted observations

comprising the calibration dataset. This is approximately its expected value if the weight

matrix Q is equal to C-1(ε).

It is important to note that any regularisation observations or prior information equations

appearing in the PEST control file are ignored by SSSTAT. Hence the analysis carried out by

SSSTAT is based purely on subspace concepts.

SSSTAT can obtain C(k) from a parameter uncertainty file (see section 2.5 of this manual).

Alternatively, if instructed to do so, it can assume that C(k) is diagonal, and that its diagonal

elements can be calculated from parameter bounds. Recall that the variance of a variable is

the square root of its standard deviation. Like SUPCALC, SSSTAT assumes that the standard

deviation of a parameter is equal to 0.3 of the distance between its lower and upper bounds. If

a parameter is log-transformed then it is assumed to have a log-distribution, with the standard

deviation of this distribution calculated in the same way from the logs of parameter bounds.

SSSTAT records its calculated statistics (mainly the diagonal elements of matrices discussed

above) to a file of the user’s choosing. It also records the Z matrix of equation 8.9.7 and the

G matrix of equation 8.9.17 in separate files. Each row of the former matrix provides the

means through which a scaled model output (to which field data is matched) is calculated

from scaled model parameters. Each row of the latter matrix provides the means through

which an estimated scaled parameter is calculated from scaled observations. Individual rows

of these matrices can be read using the MATROW utility. MATROW outputs can be listed in

column format for greater readability using the MATTRANS utility. To make a bar chart

based on this file, use a text editor that supports column cut and paste functionality to paste

parameter or observation names alongside the numerical values of vector elements before

importation into an appropriate spreadsheet or graphing package. Both names and vector

element values are recorded in MATROW and MATTRANS output files.

When writing matrix diagonal elements to its output files, SSSTAT lists the names of the

parameters and observations with which they are associated. It is important to note that

parameter names are valid only if C(k) is diagonal. If C(k) is non-diagonal then at least some

elements of j will actually be linear combinations of elements of k. In spite of this, the same

parameter names are used by SSSTAT for convenience.

8.9.4 Some Further Comments

SSSTAT provides a comprehensive set of statistics as they pertain to parameters and model

PEST Statistical Postprocessing 87

outputs employed in the ill-posed parameter estimation context. Further useful subspace

information can be obtained using the SUPOBSPAR1 utility.

Finally, it is worth noting that formulation of an objective function and assignment of

observation weights is as much of an art as it is a science. In formulating an objective

function for use in the inversion process, some members of the calibration dataset may be

processed in a number of different ways in formulation of the total objective function. As

Doherty (2015) explains, this can provide some defense against the deleterious effects of

model structural errors on the inversion process. SSSTAT allows a user to experiment with

different objective function formulations and different weighting strategies. For any

particular formulation/weighting strategy that he/she experiments with, SSSTAT allows a

modeler to inspect the effects of this strategy on the dimensionality of the parameter solution

space, on the estimabilities of individual parameters, and on the information content of

various observations or groups of observations.

Super Parameters and Observations 88

9. Super Parameters and Super Observations

9.1 Introduction

This section describes a number of utilities which facilitate estimation and viewing of super

parameters and super observations.

If the weighted Jacobian matrix Q1/2J is subjected to singular value decomposition we obtain

 Q1/2J = USVt (9.1.1)

Super observations are combinations of observations comprising the orthogonal columns of

U. Super parameters are combinations of parameters comprising the orthogonal columns of

V. As is described by Doherty (2015), U and V are orthonormal matrices. Each vector

comprising a column of one of these matrices has a magnitude of unity and is orthogonal to

other vectors comprising other columns of the same matrix. The i’th column of V (i.e. vi) is

uniquely and entirely estimable from the i’th column ui of U; the factor which links the two is

the i’th singular value si comprising the i’th diagonal element of the matrix S. See section

6.2.6.3 of Doherty (2015) for further discussion.

The values of super parameters are estimated when PEST undertakes SVD-assisted inversion.

The SVDAPREP utility constructs a PEST input dataset for use under these circumstances.

At the time of writing, two uses of super observations can be suggested. However more uses

may emerge in the future.

The first use of super observations is in reducing the number of elements comprising the

calibration dataset. For example in surface water model calibration, daily flow observations

may be available at a number of gauging stations spread throughout a broad study area. Data

from all of these gauging stations may be employed to underpin simultaneous estimation of

parameters in watersheds upstream from all of them. Tikhonov regularisation may be used to

constrain parameter values, and relationships between parameter values, to realistic values as

assessed through expert knowledge of the study area. It is only through simultaneous, highly-

parameterised inversion of this kind that such relationships can be maintained over an entire

study area at the same time as parameters are made to respect constraints on their values

imposed by the necessity for the model to reproduce historical measurements of system state.

A calibration process, formulated in this way, may feature hundreds of parameters, and

possibly tens of thousands of observations. Experience in doing this has demonstrated that,

even in data-rich environments, a relatively small number of parameter combinations

(perhaps a few tens) can be estimated uniquely. Suppose that the calibration solution space

has 50 dimensions. Equation 6.2.48 of Doherty (2015) informs us that, notwithstanding the

size of the calibration dataset, only 50 linear combinations of observations house all

information that can be extracted from the calibration dataset.

PEST memory requirements may become impossibly large where observations number in the

tens or hundreds of thousands. A suitable strategy for approaching a parameter estimation

problem such as this may be to reformulate it in terms of super observations rather than in

terms of native observations. The number of super observations must be no greater than the

number of native model parameters (and considerably smaller than the number of elements

comprising the calibration dataset). The enormous reduction in the size of the calibration

dataset that is achieved through the use of super observations can then make PEST’s task

much easier when undertaking either standard or SVD-assisted parameter estimation. The

Super Parameters and Observations 89

SUPOBSPREP utility constructs a PEST input dataset in which super observations replace

normal observations.

A second use for super observations is in gaining insights into what elements of the native

observation dataset are most informative of either individual model parameters, or of

combinations of individual model parameters. Suppose, for example, that model calibration is

taking place on the basis of a flow time series that is a few hundreds of elements long (say

daily flows over a year or two). The calibration dataset may be comprised of the logs of these

flows, or (what is almost equivalent), flows may be assigned weights that are inversely

proportional to flow values. If U is calculated on the basis of the weighted Jacobian matrix

arising from this calibration problem, the first few columns of U can be plotted as if they

were flows. Those aspects of the flow time series that are most directly informative of

different aspects of the system then become readily visible by inspecting the “orthogonally

partitioned flow time series” corresponding to the first few columns of U. The “different

aspects of the system” referred to above constitute different linear combinations of

parameters which constitute the first few columns of V; coefficients of these columns can be

estimated as so-called super parameters. Super observation/parameter pairs can be

constructed using the SUPOBSPAR and SUPOBSPAR1 utilities.

PCLC2MAT computes only super parameters – the same super parameters that PEST

estimates when undertaking SVD-assisted inversion. Changes in composition of super

parameters as base parameters hit their bounds can be tracked using PCLC2MAT.

9.2 SVDAPREP

The SVDAPREP utility writes the PEST input dataset for SVD-assisted inversion. Recall

from part I of this manual that the so-called “SVD-assist” methodology implemented by

PEST supports estimation of so-called “super parameters”. These are the scalar projections of

real-world parameters onto a set of orthogonal vectors which collectively span the calibration

solution space; see section 6.2.7 of Doherty (2015). As is described in part I of this manual,

because PEST calculates sensitivities with respect to super parameters before calculating

parameter upgrades, the computational savings achieved through SVD-assisted parameter

estimation can be very high.

When using SVDAPREP to create a PEST input dataset for SVD-assisted inversion, and

when implementing SVD-assisted inversion itself, super parameters are “invisible” to the

user. Normally, all that matters is the progress of the inversion process itself, and the speed

with which it can be implemented. However, if you are interested, the parameter composition

of super parameters can be inspected using utility programs documented below.

SVDAPREP is not described in this part of the PEST manual. Instead it is extensively

documented in part 1 of this manual where SVD-assisted inversion is described in detail.

9.3 PCLC2MAT

As described in part I of this manual, when PEST undertakes SVD-assisted parameter

estimation, it estimates the values for a set of so-called “super parameters”. These are usually

named par1 to parN where N is the total number of super parameters being estimated. These

are back-transformed to base parameters before input files are written for the model on each

occasion that the latter is run. The transformation process is undertaken by a utility named

PARCALC which is run through the model batch file.

On each occasion that it runs the model, PEST writes a PARCALC input file named

Super Parameters and Observations 90

parcalc.in. This file contains current values for super parameters, as well as the current

“definition” of super parameters in terms of base parameters. This definition consists of the

first N vi vectors comprising the columns of the V matrix obtained through singular value

decomposition of Q1/2J. Each component of a particular vi is actually the contribution that the

respective base parameter makes to the respective super parameter. The ordering of base

parameters in any vi vector is the same as the ordering of parameters provided to the base

PEST control file upon which the SVD-assisted parameter estimation process is based. The

names of these base parameter are also listed in file parcalc.in.

PCLC2MAT is run using the command

pclc2mat parcalcfile ipar matoutfile

where

parcalcfile is a PARCALC input file (normally parcalc.in),

ipar is a super parameter number, and

matoutfile will contain the components of the ipar’th vi vector recorded as a

single column matrix.

As is apparent from the above command line syntax, the user-nominated column of the V

matrix, i.e. the vi vector, is written in PEST matrix file format; see section 2.4 of this manual

for specifications of this format. The second part of the matrix file written by PCLC2MAT

lists the names of base parameters (as matrix row names) while the first section provides the

contribution made by each of these base parameters to the nominated vi vector; the squares of

these contributions sum to one as each vi is a unit vector.

Alternatively, if ipar is supplied as a negative number in the PCLC2MAT command line, all

of the first ipar super parameters are recorded in the matrix file written by PCLC2MAT.

As pointed out in part I of this manual, the base parameter composition of super parameters

may alter during the SVD-assisted inversion process. Such alterations occur if one or more

base parameters hit their bounds. Such parameters are frozen at their bounds for the

remainder of the inversion process and are therefore not included in the definition of any

super parameters. Singular value decomposition of Q1/2J is then repeated on the basis of the

reduced number of adjustable base parameters; super parameters are redefined accordingly.

Hence the super parameter definition recorded by PCLC2MAT will be pertinent only to that

stage of the SVD-assisted parameter estimation process at which the identified parcalc.in was

recorded. If PCLC2MAT is run at the end of the parameter estimation process, then super

parameter definition will correspond to the final super parameters employed by PEST. (If no

base parameters have hit their bounds during this process then, of course, super parameter

definition specified in parcalc.in will pertain to all base parameters.)

9.4 SUPOBSPREP

9.4.1 General

SUPOBSPREP builds a new PEST control file from an existing PEST control file in which

super observations replace normal observations.

Super Parameters and Observations 91

9.4.2 Running SUPOBSPREP

SUPOBSPREP is run by typing its name at the command line. It commences execution with

the prompt

Enter name of existing PEST control file:

As requested, provide the name of a PEST control file. SUPOBSPREP checks that a

corresponding JCO file exists. As is discussed in part I of this manual, this can be easily

produced by running PEST with NOPTMAX set to -1 or -2 in the “control data” section of

the PEST control file. Note that it is good practice to check the integrity of a PEST input

dataset using PESTCHEK before providing it to SUPOBSPREP.

Next SUPOBSPREP asks

Enter number of super observations to build from this file:

Provide a number greater than zero. However if this number exceeds the number of non-

regularisation observations present within the PEST input dataset, SUPOBSPREP will cease

execution with an error message. It will also cease execution with an error message if this

number exceeds the number of adjustable parameters pertaining to the current parameter

estimation problem.

Now SUPOBSPREP gets a little technical. First it asks

Enter clipping-enforced pre-compression weights range (<Enter> if 1E6):

The assignment of weights to super observations in the new PEST input dataset whose task it

is for SUPOBSPREP to build is a multi-step process. In the first of these steps the weight

assigned to a super observation is equated to the singular value of Q1/2J with which it is

associated. However singular value magnitudes can diminish rapidly with increasing super

observation number. Suppose the default value of 1E6 is accepted in response to the above

prompt. SUPOBSPREP will then ensure that the weight assigned to any super observation is

no less than 1E-6 of that assigned to the first super observation (which is always associated

with the highest singular value) irrespective of the singular value associated with any super

observation.

The next questions posed by SUPOBSPREP pertain to subsequent steps in super observation

weights calculation.

Enable compression/expansion of super observation weights? (y/n):

Suppose that, after weights equal to respective singular values have been assigned to super

observations (together with an appropriate lower bound on these weights), the ratio of highest

to lowest weight is 1E6. In many cases this range of weights is too large, as it may devalue

the worth of all but the first few super observations. The ratio of highest-to-lowest super

observation weight will be altered to a user-supplied value if the response to the above

prompt is “y”. This new ratio may, in fact, be larger or smaller than that which has already

been calculated on the basis of singular values alone.

If the response to the above prompt is “y”, SUPOBSPREP first asks for a new ratio of

maximum to minimum weight,

Enter max/min super observation weight ratio:

and for the way in which weights compression (or expansion) should take place.

Undertake (n)atural or (l)ogarithmic compression to achieve this ratio:

Enter “n” or “l” as appropriate in response to the above prompt. In some circumstances, the

Super Parameters and Observations 92

latter approach may provide a more even spread of weights over large weight ranges than the

former approach to weights compression/expansion.

SUPOBSPREP’s final prompt in relation to weights computation is as follows. Note that the

question below is posed whether or not weights compression/expansion takes place.

Enter minimum super-observation weight:

Suppose that a value of 1.0 is provided here. Then the minimum weight assigned to a super

observation is 1.0, and all other weights are shifted upwards or downwards in proportion to

this while maintaining ratios calculated through procedures discussed above.

SUPOBSPREP then asks for the name of the PEST control file that it must write. The prompt

is:

Enter name for new super PEST control file:

Provide the name of a PEST control file as appropriate. (Note that if this filename does not

possess an extension of “.pst” it will be rejected by SUPOBSPREP.)

Next SUPOBSPREP asks

Enter name for super observation matrix file (<Enter> if none):

If a filename is provided in response to the above prompt, SUPOBSPREP will record the U1

matrix in PEST matrix file format (see section 2.4 of this manual). U1 has as many columns

as there are super observations, and as many rows as there are non-regularisation

observations in the original PEST input dataset. Individual columns can be extracted from

this file using matrix utilities such as MATCOLEX.

Finally SUPOBSPREP asks

Enter name for super parameter matrix file (<Enter> if none):

If a filename is provided in response to the above prompt, SUPOBSPREP will record the V1

matrix in PEST matrix file format. V1 has as many columns as there are super observations,

and as many rows as there are adjustable parameters in the original PEST dataset. The

columns of V1 provide the parameter combinations which the columns of U1 respectively

inform.

9.4.3 What SUPOBSPREP Does

SUPOBSPREP undertakes the following tasks. As it undertakes these tasks it informs the

user, through its screen output, what it is doing.

1. It reads the PEST control file and associated JCO file.

2. It forms the matrix Q1/2J where Q is the weight matrix associated with the current

inverse problem and J is the Jacobian matrix. (Note that native observations in the

original PEST control file can be assigned individual weights, measurement

covariance matrices, or a combination of these.)

3. It undertakes singular value decomposition of that component of Q1/2J that is

associated with non-regularisation observations.

4. It writes a new PEST control file in which super observations replace native

observations. Any observations and prior information equations assigned to

regularisation groups in the original PEST control file are transferred directly to the

new PEST control file.

Super Parameters and Observations 93

5. It writes a Jacobian matrix file pertaining to the new PEST control file. This Jacobian

matrix file features derivatives of super observations with respect to model parameters

(as well as derivatives of regularisation observations with respect to model

parameters).

6. It writes a new model batch file (see below).

7. It writes an input file for the OBSCALC utility that is run as part of the modified

model (see below).

8. Optionally it writes matrix files containing the U1 matrix and the V1 matrix (see

above).

9.4.4 The New Model

As stated above, the new PEST dataset written by SUPOBSPREP features super observations

instead of native observations (except where the latter belong to regularisation groups).

Instruction files which instruct PEST how to read the model-generated equivalents of native

observations from model output files are therefore absent from the new PEST control file.

These numbers are actually read from model output files by a program named OBSCALC

which is added to the model batch or script file by SUPOBSPREP.

OBSCALC (which is to super observations what the SVD-assist PARCALC utility is to super

parameters), undertakes the following tasks.

1. It reads from model output files the model-generated equivalents to observations

comprising the calibration dataset. It does this using the same instruction files as were

provided in the original PEST input dataset.

2. It subtracts measured values from their model-generated counterparts.

3. It projects these differences into the columns of U1 as discussed above.

4. It records these projected differences on its output file. (These are super observation

residuals.)

Because OBSCALC-calculates projected residuals, rather than projected observation values,

the PEST control file written by SUPOBSPREP lists “observed” values of 0.0 for all super

observations. Included in its “model input/output” section is an instruction file to read the

OBSCALC output file. The latter is named obscalc.out; the associated instruction file is

named obscalc.ins.

OBSCALC’s input file (which contains the U1 matrix, as well as measurement values read

from the original PEST control file) is named obscalc.in. This is written by SUPOBSPREP.

When run in order to build the new PEST dataset, SUPOBSPREP will cease execution with

an error message if the model command (in the “model command line” section of the PEST

control file) does not possess an extension of “.bat”. SUPOBSPREP then assumes that this

file is a batch file (in the PC environment) or a script file (in the UNIX environment). It

modifies this file in the following ways.

1. It adds the command to run OBSCALC to the end of this file.

2. At the start of this file, it adds commands to delete model output files in which the

model-generated equivalents to non-regularisation observations are recorded. Thus if

for some reason the model fails to run, OBSCALC will not read old versions of these

files, mistaking them for files just written by the model.

Super Parameters and Observations 94

The new model batch or script file written by SUPOBSPREP is named supobsbatch.bat. This

also constitutes the new model command recorded in the “model command line” section of

the PEST control file written by SUPOBSPREP.

9.4.5 Some Features of the New PEST Dataset

Once a new PEST input dataset has been built by SUPOBSPREP, a calibration process based

on super observations can be initiated by typing the command

pest case

at the command prompt, where case is the filename base of the new PEST control file.

Alternatively, the need to run the model many times for the purpose of finite-difference

derivatives calculation during the first iteration of the inversion process can be eliminated by

running PEST using the command

pest case /i

The “/i” switch is discussed in part I of this manual. When started with this switch, PEST

prompts for the name of a JCO file from which it reads derivatives for use on the first

iteration of the parameter estimation process. In response to this prompt, supply the name of

the JCO file written by SUPOBSPREP; this has the same filename base as that of the PEST

control file, but possesses an extension of “.jco”. Note that, no matter whether it is started

with or without the “/i” switch, the SUPOBSPREP-computed JCO file is overwritten by

PEST during its first iteration. So if you wish to keep this file, copy it to another file before

starting PEST.

If PEST is being run in “regularisation” mode, a new value will be required for the

PHIMLIM variable, this being the target measurement objective function. When writing the

new PEST control file, SUPOBSPREP transfers all control variables from the old PEST

control file (including those in the “regularisation” section of this file, if such a section is

included) to the new one. Obviously, with super observations employed instead of native

observations, and with a singular-value-based weighting strategy for these super observations

being employed, the value of the target measurement objective function will need revision.

Alternatively, set it to a suitably low value, possibly with a complementary FRACPHIM

value of 0.1, and see what measurement objective function PEST can achieve when it runs on

the basis of the super observation dataset. Having acquired this knowledge, a more

appropriate target measurement objective function value can then be set for the next PEST

run.

9.4.6 Using SVD-Assist with Super Observations

There is no reason why SVD-assisted parameter estimation cannot be conducted on a PEST

input dataset which features super observations instead of native observations. This can be

done simply through running SVDAPREP on the basis of the PEST input dataset written by

SUPOBSPREP.

There is also nothing to stop you from doing things the other way around. That is,

SVDAPREP can be run on a native PEST input dataset to prepare a PEST input dataset for

SVD-assisted parameter estimation. SUPOBSPREP can then be used to replace native

observations appearing in this latter file by super observations. PEST can then be run on the

basis of the PEST control file produced by SUPOBSPREP. If you do this, however, be sure

to note the following.

1. When running SUPOBSPREP, remember to ask for no more super observations than

Super Parameters and Observations 95

there are super parameters defined in the SVD-assist PEST control file.

2. Before running SUPOBSPREP, set NOPTMAX to -1 or -2 in the SVDAPREP-

generated super parameter PEST control file, and then run PEST. PEST will then

generate a super parameter Jacobian matrix and cease execution. If functionality for

computation of super parameter derivatives on the basis of native parameter

derivatives has been activated in the SVD-assisted PEST control file, PEST will

undertake only one model run before writing the super parameter JCO file.

3. The super observation PEST control file produced by SUPOBSPREP will contain an

identical “SVD-assist” section to that contained in the super parameter PEST control

file written by SVDAPREP. This section will cite the original, pre-SVDAPREP,

PEST control file (and associated JCO file) as the repository of native parameters

(and their derivatives). Hence when PEST is run on the basis of this SUPOBSPREP-

generated PEST control file, the sequence of BPA (“best base parameter value”) files

written by PEST that contain best native parameter values at all stages of the

parameter estimation process, will possess a filename base which is the same as that

of the original, pre-SVDAPREP, native parameter, PEST control file.

9.5 SUPOBSPAR

SUPOBSPAR makes calculation of super parameters and super observations relatively

simple. In restricting its activities to computation only of these complimentary combinations

of observations on the one hand, and the parameters which they inform on the other hand,

SUPOBSPAR is easier to use than SUPOBSPREP and less restrictive in the demands it

makes on the existing PEST input dataset. In particular, the number of parameters cited in a

PEST control file which it reads can exceed the number of observations cited in that file; or

the opposite may occur.

SUPOBSPAR is run using the command

supobspar case N obsmatfile parmatfile

where

case is the filename base of an existing PEST control file,

N is the number of super observations and corresponding super

parameters to compute,

obsmatfile is the name of a matrix file to which SUPOBSPAR will write super

observations, and

parmatfile is the name of a matrix file to which SUPOBSPAR will write super

parameters.

A Jacobian matrix file (i.e. a JCO file) must accompany the PEST control file. If this is not

the case, SUPOBSPAR will cease execution with an appropriate error message. The PEST

control file may or may not instruct PEST to run in “regularisation” mode. If it does,

SUPOBSPAR ignores regularisation prior information. (Regularisation devices such as these

should not be included in the computation of super parameters and super observations as the

latter should reflect the information content of the calibration dataset alone.)

Observation and parameter vectors defining super observations and super parameters are

recorded in PEST matrix file format; see section 2.4 of this manual for specifications of this

format. Individual columns can be extracted from such files using the MATCOLEX utility.

However if less than eight super observations/parameters are requested, then wrapping of

Super Parameters and Observations 96

rows within these files will not occur and column extraction may not be necessary; in most

cases a user will only be interested in the first few super observations and super parameters

anyway.

The format employed by PEST matrix files is such that the elements of the matrix are

recorded first (with row-wrapping as necessary), followed by lists of row names and column

names. Row names correspond to observation names (where super observations are recorded)

or to parameter names (where super parameters are recorded). These names can be cut and

pasted alongside column elements for easy linkage of element values to element names. Also,

where parameters have a spatial or temporal connotation then, with a little cutting and pasting

from other files, elements of super observations and/or super parameters can be plotted

against space/time so that their patterns can define the spatial/temporal distribution of

observation information content on the one hand, and the spatial/temporal distribution of

parameter recipients of that information on the other hand. Alternatively, bar charts of the

observation/parameter content of super observations and super parameters can be plotted as

histograms in software such as Microsoft EXCEL.

9.6 SUPOBSPAR1

9.6.1 General

SUPOBSPAR1 is a variant of SUPOBSPAR in that it calculates vectors comprising super

parameters and super observations through undertaking singular value decomposition of the

weighted Jacobian matrix. However it automatically applies a Kahunen-Loève (KL)

transformation to parameters prior to undertaking singular value decomposition on this

matrix. The weighted Jacobian matrix on which singular value decomposition is performed is

altered as a consequence, as it effectively operates on KL-transformed parameters rather than

native model parameters. Once super observations and super parameters have been

calculated, SUPOBSPAR1 back-transforms the latter to native model parameters.

Theoretically, KL-transformation of parameters prior to their estimation ensures optimality of

inversion undertaken though singular value decomposition as it leads to minimum error

variance estimates of their values, and to minimum error variance predictions made by a

calibrated model. Inversion based on KL-transformed parameters takes account of the

information content of expert knowledge as encapsulated in a prior parameter covariance

matrix. Super observations and super parameters calculated in this KL-transformed context

therefore constitute the “natural” super observations and super parameters that best express

information transfer from a calibration dataset to parameters on the one hand, and the

blending of that information with expert knowledge on the other hand.

9.6.2 Theory

Let C(k) represent the covariance matrix associated with the prior probability distribution of

a parameter set k. Through singular value decomposition, the E and F matrices (the latter

being diagonal) can be defined through the equation

 C(k) = EFEt (9.6.1)

The KL-transformed parameter set j is defined through

 j = F-1/2Etk (9.6.2)

so that

Super Parameters and Observations 97

 k = EF1/2j (9.6.3)

Applying the classical formula for propagation of covariance readily shows that

 C(j) = I (9.6.4)

Let the action of a linear model be represented by the matrix Z; where the model is nonlinear

this is replaced by the Jacobian matrix J arising from local linearization of the model. Let

observations comprising the calibration dataset be represented by h, and let ε represent

measurement noise. Then

 h = Zk + ε (9.6.5)

From the above it follows that

 h = ZEF1/2j + ε (9.6.6)

Let a weight matrix Q be selected such that

 Q = C-1(ε) (9.6.7)

Selection of such a weight matrix promulgates optimal inversion in that it minimizes the

contribution that measurement noise makes to the error variance of estimated parameters and

of predictions which are sensitive to them. Pre-multiplying the model equation by Q1/2 we

obtain

 Q1/2h = Q1/2ZEF1/2j + η (9.6.8)

where

 η = Q1/2ε (9.6.9)

Obviously

 C(η) = I (9.6.10)

In most circumstances of practical interest Q is a diagonal matrix, with elements equal to the

squares of weights supplied in the PEST control file. Now let us perform singular value

decomposition on the modified model matrix such that

 Q1/2ZEF1/2 = USVt (9.6.11)

If measurement noise is ignored, it follows from equation 9.6.2 that

 Q1/2h = USVtF-1/2Etk =USWtk (9.6.12)

where W is defined by the above equation. “Super observations” computed by

SUPOBSPAR1 are the columns of U, while super parameters computed by SUPOBSPAR1

are the rows of Wt. Each of the former directly and completely inform each of the latter.

9.6.3 Running SUPOBSPAR1

SUPOBSPAR1 is run using the command

supobspar1 case uncertfile N obsmatfile parmatfile

where

casename is the filename base of an existing PEST control file,

uncertfile is the name of a parameter uncertainty file, this defining the C(k)

matrix,

N is the number of super observations and corresponding super

Super Parameters and Observations 98

parameters to compute,

obsmatfile is the name of a matrix file to which SUPOBSPAR1 will write super

observations, and

parmatfile is the name of a matrix file to which SUPOBSPAR1 will write super

parameters.

Linear Error and Uncertainty – Part I 99

10. Linear Error and Uncertainty – Part I

10.1 Introduction

This chapter documents a suite of programs that form a basis for parameter and predictive

error and uncertainty analysis, as well as ancillary analyses such as assessment of data worth

and quantification of bias introduced to a defective model through the calibration process. At

the heart of these programs are the PREDVAR utility suite and the PREDUNC utility suite

“PREDVAR” stands for predictive error variance while “PREDUNC” stands for “predictive

uncertainty. The GENLINPRED utility, which runs programs of the PREDVAR and

PREDUNC suites automatically, is also documented in this chapter.

The chapter following this one also discusses utility programs that can be used for parameter

error variance analysis. In general, the programs discussed in the present chapter should be

used instead of those discussed in the next chapter as they are newer, more general, more

flexible, and provide a greater a greater range of options.

10.2 SCALEPAR

10.2.1 General

SCALEPAR was written primarily to assist in the use of programs such as PREDVAR1 to

PREDVAR5. However there is no reason why it cannot also be employed in normal

parameter estimation.

SCALEPAR re-formulates an inverse problem in terms of scaled parameters rather than

native parameters, with parameters scaled according to their standard deviations. This can

result in smaller predictive error variance when undertaking regularised inversion. Note that

where a parameter is log-transformed in the inversion process, SCALEPAR takes this into

account.

Once it has re-formulated the inverse problem, SCALEPAR writes a complete PEST input

dataset for the new problem. In the new PEST control file scaled parameters have an initial

value of zero and are permitted to vary between -3.0 and 3.0. Because parameters are scaled

by their standard deviations, they are thus allowed to vary by three standard deviations either

side of their most likely value of zero, this corresponding to a native parameter value also

equal to its most likely value. It is assumed that the most likely value of each native

parameter corresponds to its initial value as supplied in the original PEST control file. Thus,

when writing this PEST control file, you should ensure that initial parameter values are

indeed “most likely” parameter values; that is, you should ensure that they are the “expected

values” of these parameters in the statistical sense.

If a parameter is log-transformed in the original PEST control file, scaled parameters defined

in the SCALEPAR-generated PEST control file are actually the scaled logs of such

parameters. Once again, a scaled parameter value of zero corresponds to a native

untransformed parameter value equal to the parameter’s initial value as supplied in the

original PEST control file.

Whether parameters are log-transformed or not in the original parameter estimation problem,

back transformation from scaled parameter values (as seen by PEST) to native parameter

values (as seen by the model) is undertaken by the PAR2PAR utility; this is run as part of the

model ahead of any other components of the model in the new PEST input dataset generated

Linear Error and Uncertainty – Part I 100

by SCALEPAR. The new PEST control file written by SCALEPAR cites only one template

file, this corresponding to a PAR2PAR input file. After it has “de-scaled” parameter values,

PAR2PAR writes native parameter values to all model input files which require them

according to specifications set out in the original PEST control file.

Optionally, SCALEPAR writes a Jacobian matrix file (i.e. JCO file) corresponding to the new

PEST control file. Sensitivities which occupy the elements of the new Jacobian matrix are

computed from sensitivities occupying corresponding elements of a Jacobian matrix

corresponding to the original PEST control file (if such a Jacobian matrix file exists).

Another option offered by SCALEPAR is the writing of a new parameter uncertainty file (see

section 2.5 of this manual for specifications of this type of file), this pertaining to scaled

parameters. By definition, the standard deviation of each scaled parameter is one.

10.2.2 Running SCALEPAR

SCALEPAR is run by typing its name at the command prompt. No command line arguments

are required because SCALEPAR asks the user specifically for each item of information that

it requires.

SCALEPAR begins execution with the prompt

Enter name of existing PEST control file:

Supply the name of an existing PEST control file in response to this prompt. SCALEPAR

requires that this file meet the following specifications.

1. No prior information must be cited in this file.

2. The SCALE associated with each parameter (in the “parameter data” section of the

existing PEST control file) must be 1.0, while each parameter OFFSET must be 0.0.

3. The model command line must cite a batch or script file. This command must have an

extension of “.bat”.

4. Only a single command must be employed to run the model for finite-difference

calculation of derivatives with respect to all adjustable parameters; thus PEST’s

multiple command line functionality must not be invoked, and the control variable

NUMCOM must be set to 1, or omitted.

5. Derivatives must be calculated by finite differences and not supplied by the model

through an external file. Thus the JACFILE control variable must be set to zero or

omitted.

If any of these conditions are violated, SCALEPAR will cease execution with an appropriate

error message.

SCALEPAR’s next prompt is

Enter name of parameter uncertainty file:

The format of this file is described in section 2.5 of the present document. Prior parameter

uncertainties (i.e. the contents of the C(k) matrix discussed extensively in Doherty 2015)

must be supplied in this file. A prior uncertainty must be supplied for each adjustable (i.e.

non-fixed and non-tied) parameter cited in the original PEST control file. As usual, if a

parameter is log-transformed, pertinent elements of C(k) must pertain to the log of that

parameter.

SCALEPAR next asks

Linear Error and Uncertainty – Part I 101

Enter name for new PEST control file:

in response to which the name of the PEST control file which SCALEPAR must write should

be provided.

Once it has been provided with this name, SCALEPAR issues a series of prompts, to which

you can respond simply by pressing the <Enter> key in each case to accept the SCALEPAR

default. The prompts are as follows.

Enter name for PAR2PAR input file (<Enter> if p2p###.dat):

Enter name for template of this file (<Enter> if p2p###.tpl):

Enter name for parameter value file (<Enter> if p###.par):

Enter name for template of this file (<Enter> if p###.tpl):

Enter name for scaling matrix file (<Enter> if scale.mat):

Enter name for inverse scaling matrix file (<Enter> if iscale.mat):

Run model in silent or verbose mode [s/v] (<Enter for "s"):

As discussed above, parameter “de-scaling” is actually undertaken by the PAR2PAR utility.

Prior to each model run, the modified PEST control file informs PEST that it must write a

PAR2PAR input file in which scaled parameter values are listed. PAR2PAR then computes

native parameter values from these scaled values (and performs inverse log transformation if

necessary) before writing them to appropriate model input files. SCALEPAR ensures that the

PAR2PAR input file that PEST writes contains the names of all model template and

corresponding input files involved in the inversion process as listed in the original PEST

control file. In fact SCALEPAR writes a template file of the PAR2PAR input file for the use

of PEST, and informs PEST of the name of the PAR2PAR input file to which this template

file corresponds. The names of the PAR2PAR template file and corresponding PAR2PAR

input file can be supplied in response to the first two of the above set of prompts.

As is documented in part I of this manual, as PEST carries out the parameter estimation

process, it records currently estimated parameter values in a “parameter value file”. If PEST

is run on the basis of the SCALEPAR-generated PEST control file, optimised scaled

parameter values are indeed recorded in this file. This is of limited use to the modeller,

however, who is normally more interested in optimised native parameter values than scaled

parameter values. Unfortunately, native parameter values are known only to PAR2PAR, and

not to PEST. To overcome this difficulty, PAR2PAR is instructed to write, on each occasion

that it runs, a file that has the same format as a PEST parameter value file (and can thus be

used by utility programs such as PARREP), containing native parameter values employed on

that model run. The name of this file can be supplied by the user in response to the third of

the above prompts. SCALEPAR provides PAR2PAR with a template file through which it

can write this file; the name of this template file can be supplied in response to the fourth of

the above prompts.

It is important to note that, unlike the parameter value file recorded by PEST, the parameter

value file recorded by PAR2PAR does not contain parameter values which are optimised up

to the stage of the parameter estimation process at which it is written. Because PAR2PAR

writes model input files on the basis of template files on each occasion that the model is run,

the PAR2PAR-generated parameter value file contains native parameter values employed

only on the last model run. However, depending on its control settings, if PEST has

completed the parameter estimation process (or is halted using the “stop with statistics”

option), it may undertake a final model run employing optimised parameter values. If this is

the case then, at the end of the parameter estimation process, the PAR2PAR-generated

parameter value file will, in fact, contain optimised native parameter values.

As stated above, SCALEPAR generates matrix files (see section 2.4 for specifications of this

Linear Error and Uncertainty – Part I 102

type of file) containing the scaling and inverse scaling matrices. The names of these matrix

files can be supplied in response to the fifth and sixth of the above prompts.

The model as run by the modified PEST control file must itself be modified so that

PAR2PAR can be run ahead of the actual model in order to generate native parameters from

the scaled parameters employed by PEST, and write these to model input files. SCALEPAR

adds the command to run PAR2PAR to the batch or script file which was originally

employed for running the model. The name of this modified batch file is always

scalebatch.bat. If the “silent” option is selected in response to the last of the above prompts,

PAR2PAR will direct its screen output to the “null” file instead of to the screen, thus

preventing PEST’s screen output from being scrolled away out of sight.

SCALEPAR’s next prompt is

Write a JCO file for this case [y/n] (<Enter> for "n"):

If the response to this prompt is “y”, and if a Jacobian matrix file complementary to the

original PEST control file exists, SCALEPAR will write a Jacobian matrix file which

complements the new PEST control file. This can then be used in conjunction with members

of the PREDVAR suite to examine predictive error variances. Alternatively, it can be used in

the first iteration of a PEST run undertaken on the basis of the new PEST control file if that

run is initiated with the “/i” switch. (In the latter case it will eventually be overwritten by

PEST.)

Next SCALEPAR asks

Write scaled uncertainty file? [y/n]: (<Enter> for "n"):

If the response to this question is “y”, SCALEPAR prompts for a suitable name for this file.

Enter name for scaled uncertainty file: (<Enter> if p###.unc):

If the original uncertainty file cites no covariance matrices, this is all that SCALEPAR needs

to know. Uncertainties are recorded as a list of parameter standard deviations, all of which

are 1.0. However if at least one covariance matrix was cited in the original parameter

uncertainty file, SCALEPAR asks

Enter name for cov mat file cited therein (<Enter> if p###.cov):

In this case, all parameter uncertainty is recorded as a single covariance matrix, the diagonal

elements of which are 1, the off-diagonal elements being zero, or scaled in accordance with

the original covariance submatrices provided in the parameter uncertainty file.

10.2.3 The New PEST Control File

Certain features of the control file generated by SCALEPAR are worthy of mention.

Scaled parameters cited in the SCALEPAR-generated PEST control file are given the same

names as their unscaled counterparts in the original PEST control file. Only adjustable

parameters are cited in this file. Tied and fixed parameters are still involved in the modified

inversion process; however the values of fixed parameters, and the multipliers through which

tied parameters are linked to their parent parameters, are recorded in the SCALEPAR-

generated PAR2PAR template file. Hence PAR2PAR, and not PEST, accommodates the

assignment of values for these parameters to the model.

It was mentioned above that scaled parameters are provided with an initial value of zero, and

with upper and lower bounds of -3.0 and 3.0. A value of zero for a scaled parameter

corresponds to a native parameter value equal to its initial value as supplied in the original

Linear Error and Uncertainty – Part I 103

PEST control file; the parameter offsetting required to achieve this is taken care of by

PAR2PAR through the pertinent equations written by SCALEPAR to the PAR2PAR

template file. An inspection of the SCALEPAR-generated PEST control file will reveal,

however, that scaled parameters themselves are actually offset by 10.0 from zero, and

provided with lower bounds of 7.0 and upper bounds of 13.0. This circumvents problems that

are sometimes encountered with the imposition of relative change limits on parameter

upgrades through use of the RELPARMAX control variable for parameters that are close to

zero. In short, relative-limited parameters can be upgraded towards zero very rapidly;

however they can only move back from zero relatively slowly because any change in the

value of a near-zero parameter is large relative to its current value. This can slow the

parameter estimation process considerably in some circumstances.

All scaled parameters in the SCALEPAR-generated PEST control file are declared as

relative-limited; RELPARMAX is provided with a value of 0.1 (this being relative to their

offset values of 10.0). This, and parameter OFFSET values, can be altered if desired by direct

editing of the SCALEPAR-generated PEST control file.

All parameters are assigned to a single parameter group in the SCALEPAR-generated PEST

control file. This group is assigned an absolute increment for the purpose of derivatives

calculation, this increment being 0.01. This, and any other aspect of the PEST control file

generated by SCALEPAR, can also be altered by direct editing of this file if desired.

10.2.4 Calculating the Resolution Matrix of Native Parameters

The contents of the present subsection may be of interest to some, but will not be of interest

to most. It is included anyway.

Suppose that unscaled parameters cited in the original PEST control file are designated by the

vector k and that their scaled counterparts are designated by the vector j. Thus

 j = Sk (10.2.1)

where S is a diagonal “scaling matrix” whose elements are the inverse of the standard

deviations of the parameters to which they pertain. Note that offsets (i.e. parameter initial

values) are ignored in this equation for the sake of simplicity; however they are included in

the actual SCALEPAR transformation process.

Suppose that explicit or notional (for example using PREDVAR-suite programs) regularised

inversion has been carried out, and that a resolution matrix R has been calculated linking

estimated scaled parameters j to their real-world (but unknown) counterparts j. Thus

 j = Rj (10.2.2)

Using 10.2.1, together with the relationship

 k = S-1j (10.2.3)

derived from 10.2.1, it is possible to compute the relationship between estimated native

model parameters and their real-world counterparts as

 k = S-1j = S-1Rj = S-1RSk (10.2.4)

Thus the resolution matrix R´ linking k to k is

 R´ = S-1RS (10.2.5)

As already stated, SCALEPAR records the S and S-1 matrices in matrix file format. The

utility program MATPROD can then be employed to implement the matrix multiplications

Linear Error and Uncertainty – Part I 104

depicted in equation 10.2.5 if desired.

10.3 PREDVAR1

10.3.1 General

PREDVAR1 calculates the post-calibration error variance of a prediction without requiring

that a model be actually calibrated to do so. It employs a slightly modified form of equation

6.1.25 of Doherty (2015) under the assumption that a notional calibration exercise has been

completed using singular value decomposition. The equation used by PREDVAR1 is

presented below.

 2
s-s = yt(I – R)C(k)(I – R)ty + σ2

ry
tGGty (10.3.1)

Items appearing in equation 10.3.1 are as follows.

2
s-s is the error variance of a prediction;

s is the true value of that prediction;

s is the value of that prediction made by the calibrated model;

y is the sensitivity of the prediction to parameters k employed by the model;

C(k) is the prior parameter covariance matrix;

σ2
r is the measurement reference variance (see below);

G is the matrix from which the calibrated parameter set is calculated from

the measurement dataset (see below);

R is the resolution matrix calculated as GZ where Z represents the

linearized action of the model under calibration conditions (represented by

the Jacobian matrix); and

I is the identity matrix.

The measurement reference variance is a proportionality constant linking the weights matrix

Q used in the inversion process with the covariance matrix of measurement noise C(ε). The

following equation is thus assumed to describe the relationship between weights and

measurement noise.

C() = σr
2Q-1 (10.3.2)

σr
2 is roughly equal to the (measurement) objective function divided by the number of non-

zero-weighted, non-regularisation measurements featured in the inverse problem.

Where calibration is achieved using singular value decomposition, R and G are calculated as

follows.

 G = V1S
-1

1U
t
1Q

1/2h (10.3.3)

 R = V1V
t
1 (10.3.4)

where matrices U, S and V appearing in the above equations are obtained from singular value

decomposition of the weighted “model matrix” Q1/2Z as

 Q1/2Z = USVt (10.3.5)

(Actually PREDVAR1 undertakes singular value decomposition of ZtQZ rather than Q1/2Z;

however the outcomes of its calculations are the same.) The “1” subscript on the U, S and V

Linear Error and Uncertainty – Part I 105

matrices featured in equation 10.3.3 and 10.3.4 signify truncation of the singular value

decomposition process at a user-specified number of singular values.

The action of the linearized model under calibration conditions is represented by the

following equation.

 h = Zk + ε (10.3.6)

See Doherty (2015) for full details. As explained in that text, one of the charms of linear

analysis is that it can represent the calibration and prediction processes, and

errors/uncertainties associated with the outcomes of these processes, without actually having

to undertake these processes. All that it requires are sensitivities of model outputs used in the

calibration and prediction processes to parameters employed by the model, as well as the

C(k) and C(ε) matrices cited above. Ideally, sensitivities should be calculated using calibrated

parameters. However this is not essential. In fact if a model is truly linear, then sensitivities

would not change with parameter value; hence parameter values used in calculation of

sensitivities would not matter at all.

If a model has not been calibrated, then the error variance of a prediction made by this model

is the same as the prior uncertainty of this prediction. It is given by

2
s = 2

s-s = ytC(k)y (10.3.7)

Uses of equation 10.3.1 include the following.

1. A rapid assessment can be made of the reduction in predictive error variance that can

be achieved through the calibration process, given the number and type of

measurements comprising the calibration dataset, the noise C() associated with these

measurements, the innate variability C(k) of model parameters as this reflects the

heterogeneity of the system, and the number of singular values used in estimation of

parameters. By comparing post-calibration predictive error variance with pre-

calibration predictive error variance, the worth of the calibration process in reducing

the potential for error of one or a number of model predictions can thereby be

computed.

2. Because the calibration exercise undertaken by PREDVAR1 is notional rather than

actual, the reduction in uncertainty achieved through including one or a number of

hypothetical extra observations in the calibration dataset can be rapidly assessed. This

can form a sound basis for optimisation of data acquisition, based on the premise that

the worth of acquiring a certain type of data over that of acquiring another type of

data is greater if acquisition of the former results in a greater reduction in predictive

error variance than acquisition of the latter. This type of analysis is facilitated using

the PREDVAR5 utility. (See also the PREDUNC5 utility which uses a linearized

form of Bayes equation to conduct a similar analysis.)

3. By varying the terms of C(k) in accordance with an improvement in direct knowledge

of system properties that may be gained through direct measurement of these

properties, an assessment of the worth of such measurements in reducing the

uncertainties of one or more predictions can be made. Various data acquisition

strategies of this type can then be ranked. At the same time these strategies can be

compared with the benefits of acquiring further information on system states (see

above) for use in a future calibration exercise.

4. By setting certain elements, or groups of elements, of C(k) to zero and by employing

equation 10.3.1 and/or 10.3.7 in conjunction with this revised C(k), the contribution

Linear Error and Uncertainty – Part I 106

to pre- and/or post-calibration error variance of a specific model prediction made by

different parameter types can be estimated. Where certain types of parameters are

such that their properties are not directly measurable, this may allow the user to

determine the “irreducible level of uncertainty” associated with key model

predictions. This type of analysis is expedited using the PREDVAR4 utility. (See also

the PREDUNC4 utility which uses a linearized form of Bayes equation to conduct a

similar analysis.)

5. By re-calculating error variance using equation 10.3.1 for different numbers of

singular values at which the singular value decomposition process is truncated, the

minimum in the curve of model predictive error variance versus number of singular

values can be ascertained. This sets the optimal dimensionality of the calibration

solution space. See section 6.2.5 of Doherty (2015) for further details of this kind of

analysis.

As is discussed below, all of the programs of the PREDVAR suite obtain C(k) by reading a

parameter uncertainty file; see section 2.5 of this manual for specifications of this type of file.

The C(ε) matrix is calculated from weights and/or observation covariance matrices supplied

in the PEST control file using equation 10.3.2. However you must supply the reference

variance σr
2 yourself. A quick way to calculate this is to divide the (measurement) objective

function by the number of non-zero-weighted, non-regularisation observations comprising a

calibration dataset. Alternatively, use the PWTADJ2 utility to create a PEST control file in

which weights have been adjusted on an observation group by observation group basis, in

such a way as to achieve a σr
2 value of unity.

10.3.2 Using PREDVAR1

PREDVAR1 requires too many inputs for these to be supplied through its command line. So

it prompts you for the information which it needs. It commences execution with the prompt

Enter name of PEST control file:

Supply the name of a PEST control file. It is assumed that a complementary Jacobian matrix

file (i.e. a JCO file) is available for this PEST control file. This can be produced by setting

NOPTMAX to -2 in the “control data” section of a PEST control file and then running PEST.

PREDVAR1 reads the JCO file to obtain the Z matrix featured in the above equations.

Next PREDVAR1 prompts

Enter observation reference variance:

PREDVAR1 computes C() from observation weights and observation covariance matrices

featured in the PEST control file using equation 10.3.2. In doing so it assumes that the

inverse of each weight contained in the PEST control file is proportional to the standard

deviation of measurement noise associated with the observation to which it is assigned. The

proportionality constant is assumed to be the same for all weights, and equal to the square

root of the reference variance depicted in equation 10.3.2. Thus the squares of weights are

assumed to comprise the diagonal elements of the Q matrix of this equation. In addition to

weights, the PEST control file can feature one of more observation covariance matrices. The

same reference variance must apply to these as well; that is, the elements of these user-

supplied observation covariance matrices are multiplied by σr
2 of equation 10.3.2 in

calculating the appropriate submatrix of C(). As stated above, a suitable value for the

reference variance is easily calculated by dividing the actual or anticipated value of the

(measurement) objective function by the number of non-zero-weighted, non-regularisation

Linear Error and Uncertainty – Part I 107

observations featured in the PEST control file.

PREDVAR1 next prompts for the name of a parameter uncertainty file. The prompt is

Enter name of parameter uncertainty file:

The contents of this file define C(k). The following should be noted.

• If a parameter is log-transformed in the PEST control file, the elements of C(k)

associated with that parameter must pertain to the log of that parameter.

• As is the protocol for a parameter uncertainty file, this file can contain information

pertaining to more parameters than those which are denoted as adjustable in the PEST

control file. Unused parameters are simply ignored.

• If one parameter is tied to another parameter in the PEST control file, then the parent

parameter is in fact a “composite parameter”. Its statistical properties as supplied in

C(k) should reflect this.

Next PREDVAR1 prompts

Enter name of predictive sensitivity matrix file:

This file must contain a single column matrix (in matrix file format as documented in section

2.4 of this manual) which contains the sensitivity of a prediction of interest to every

adjustable parameter cited in the PEST control file. That is, it must contain the vector y of

equations 10.3.1 and 10.3.7. The following should be noted.

• If a parameter is log-transformed in the PEST control file, then parameter sensitivities

contained in y must pertain to the log of the parameter.

• If a parameter is tied to another parameter in the PEST control file, then the sensitivity

with respect to the parent parameter as contained in y must reflect the fact that it is

parent to another parameter.

• Parameters do not need to be arranged in the same order in the predictive sensitivity

matrix file as they are in the PEST control file. PREDVAR1 links parameters by

name, and re-arranges them if necessary. Similarly, if the predictive sensitivity matrix

file cites more parameters than are adjustable in the PEST control file, the excess

parameters are simply ignored.

The easiest way to make a predictive sensitivity matrix file is as follows.

• When PEST is run in order to calculate observation sensitivities, design the model to

run in such a way that it makes one or more predictions, as well as calculating outputs

that correspond to historical observations listed in the PEST control file for calibration

purposes. This may require that the model be run not once, but twice, based on

different inputs, through a batch file serving as “the model” as seen by PEST.

• List these predictions in the PEST control file as additional “observations”. However

give them weights of zero.

• If this is done, the JCO file produced as an outcome of the PEST run will contain the

sensitivities of these predictions to all adjustable parameters. A predictive sensitivity

matrix file can be constructed for each such prediction using the JROW2VEC utility.

Next PREDVAR1 issues a series of prompts as follows.

Enter no. of singular values before truncation [<Enter> if no more]:

Enter a number between (and including) zero and the number of adjustable parameters

Linear Error and Uncertainty – Part I 108

featured in the PEST control file. Be aware, however, that if there are more adjustable

parameters than observations featured in the PEST control file, the number of non-zero-

valued singular values of the weighted Jacobian matrix can only be as large as the number of

observations. So do not enter a number higher than this. PREDVAR1 will inform you if this

number is too high and thus results in a zero-valued singular value; in fact it will cease

execution with an error message under these circumstances. When entering singular values in

response to the above series of prompts it is best to supply them in increasing order.

If truncation takes place at zero singular values, this is equivalent to not calibrating the model

at all. Hence predictive error variance is calculated using equation 10.3.7. As the number of

singular values prior to truncation increases, the first term of equation 10.3.1 normally falls.

In fact it will fall monotonically if C(k) is equal to σ2
kI where I is the identity matrix and σ2

k

is an appropriate “parameter reference variance”. In other cases, however, there may be

interruptions in the fall (and sometimes local rises) with increasing singular value, indicating

that calibration can actually increase the error variance of a prediction if C(k) contains

variances of very different magnitude, and/or indicates a high level of pre-calibration

parameter correlation. The former problem can be rectified by appropriate parameter scaling;

this should be done as a matter of course when calibrating a model in order to prevent this

problem. The latter can be rectified through Kahunen-Loève transformation.

The second term of equation 10.3.1 rises as the number of singular values prior to truncation

increases. At some number of pre-truncation singular values there is normally an optimum,

where the total predictive error variance (sum of the first and second terms of equation

10.3.1) is minimised. See section 6.2.5 of Doherty (2015) for details.

PREDVAR1 finally prompts for the names of its two output files.

Enter name for predictive error variance output file:

Enter name for SVD file [<Enter> to read an old one]:

The first file lists the contributions to predictive error variance made by the first and second

terms of equation 10.3.1 for each requested singular value. It also lists the total predictive

error variance, together with the predictive standard deviation (square root of this). If singular

values are arranged in increasing order, this file can serve as input to a plotting/graphing

program which can display the dependence of predictive error variance (and its two

components) on number of pre-truncation singular values.

PREDVAR1’s second output file is similar to that produced by PEST when implementing

singular value decomposition as a solution device for the inverse problem. It lists singular

values and respective eigencomponents of the weighted Jacobian matrix (actually ZtQZ

rather than Q1/2Z, as stated above). If the option it taken to read an old file, PREDVAR1

prompts for the name of this file. For large problems involving many parameters, making use

of eigencomponent data generated on a previous PREDVAR1 run can save a considerable

amount of time. It is important to note, however, that the results of a previous singular value

decomposition of the weighted Jacobian matrix are only appropriate for a current

PREDVAR1 run if the PEST control file (and any covariance matrices cited therein) is the

same for this run as it was for the run on which the SVD file was originally generated;

however parameter uncertainties and predictive sensitivities can change between these two

runs. Note also that there may be tiny differences between predictive error variances

calculated on the basis of stored SVD data and those calculated internally because of the

slight loss of precision incurred through ASCII file storage.

It is important to note that if the PEST control file read by PREDVAR1 instructs PEST to run

Linear Error and Uncertainty – Part I 109

in “regularisation” mode, regularisation observations and prior information equations are

ignored in formulating the Z matrix featured in the above equations. Thus it is assumed that

the only type or regularisation undertaken in solving the notional inverse problem implied by

equation 10.3.1 is that pertaining to truncated singular value decomposition, with the

truncation limit set at singular values specified by the user.

10.4 PREDVAR1A

10.4.1 General

The capabilities of PREDVAR1A are very similar to those of PREDVAR1. However there

are a number of notable differences, these being as follows.

1. Unlike PREDVAR1, PREDVAR1A does not undertake singular value decomposition

of the ZtQZ matrix. Rather, it undertakes singular value decomposition of Q1/2Z. In

many calibration contexts this is a numerically swifter procedure.

2. PREDVAR1A does not read or write an SVD file.

3. PREDVAR1A calculates error variance terms for not just one, but for many

predictions.

10.4.2 Using PREDVAR1A

PREDVAR1A prompts, together with typical responses, are displayed below.

Enter name of PEST control file: case.pst

Enter observation reference variance: 1.0

Enter name of parameter uncertainty file: param.unc

Enter name of predictive sensitivity matrix list file: predfile.lst

Enter no. of singular values before truncation [<Enter> if no more]: 0

Enter no. of singular values before truncation [<Enter> if no more]: 1

Enter no. of singular values before truncation [<Enter> if no more]: 2

Enter no. of singular values before truncation [<Enter> if no more]: 3

.

.

Enter no. of singular values before truncation [<Enter> if no more]: 50

Enter no. of singular values before truncation [<Enter> if no more]: <Enter>

Part of a “predictive sensitivity matrix list file” is shown below.

ar10.vec ar10.sen

ar9.vec ar9.sen

ar8.vec ar8.sen

ar7.vec ar7.sen

Figure 10.1 A predictive sensitivity matrix list file.

Each line of a predictive sensitivity matrix list file must contain two entries. The first is the

name of a predictive sensitivity file. The second is the name of the file to which predictive

error variances for all nominated singular values are to be written for the prediction whose

parameter sensitivities are contained in the first file cited on that line.

The following should be noted.

1. Blank lines are permissible in a predictive sensitivity matrix list file.

2. If a filename contains a blank character, its name should be enclosed by quotes.

Linear Error and Uncertainty – Part I 110

10.5 PREDVAR1B

10.5.1 General

PREDVAR1B implements theory that is demonstrated in White et al (2014) and that is

discussed in section 9.6 of Doherty (2015). In particular, it implements equation 9.6.6 of

Doherty (2015).

PREDVAR1B was designed to examine the error that is introduced to model predictions

through use of an imperfect model to make those predictions. As all models are imperfect,

analysis of defect-induced predictive error potential is important. However a requirement for

analysis of this type of error is that “the perfect model” exists alongside the imperfect model

so that errors incurred through use of the latter in place of the former can be quantified. Of

course, the perfect model can never exist. In practice, a more detailed model is used as a

surrogate for the perfect model. The outcomes of calculations made by PREDVAR1B based

on this surrogate model are therefore only indicative.

White et al (2014) and Doherty (2015) examine some repercussions of the use of a defective

model in the environmental decision-making context. Some of the conclusions from their

study (which can be verified through use of PREDVAR1B) are as follows.

• Even though outputs of an imperfect model may fit historical field data well as the

imperfect model is calibrated, the calibration process does not, of itself, guarantee that

predictions made by the calibrated imperfect model will be accurate. However the

theory behind PREDVAR1B demonstrates that, for some predictions, model defects

can indeed be “calibrated out”. For other predictions, the calibration process can

introduce substantial bias – bias that would not be present if the model had not been

calibrated. This happens because some parameters must play surrogate roles in the

calibration process as they compensate for the notional omission of some system

parameters from the defective model in order to allow the latter model to replicate

historical behaviour of the system which it is meant to simulate.

• Those predictions which are similar in character to measurements which comprise the

calibration dataset tend to be those which are most immune from calibration-induced

predictive bias.

• On the other hand, those predictions which are partly sensitive to null-space

parameter combinations and partly sensitive to solution-space parameter combinations

of the “reality model” tend to be those which are most at risk of incurring calibration-

induced predictive bias.

• The potential for calibration-induced predictive bias can often be reduced by seeking

a fit with the calibration dataset which is somewhat diminished with respect to that

which would be sought on the basis of measurement noise alone.

• Calibration-induced predictive bias can also be reduced through formulation of an

appropriate objective function which “filters out” those aspects of the information

contained within the calibration dataset which would otherwise flow into imperfect

information receptacles provided by a defective model.

PREDVAR1B allows these issues to be explored. Its operation is very similar to that of

PREDVAR1A. Recall that PREDVAR1A computes the solution space and null space

contributions to predictive error variance as a function of the number of singular values

employed in the calibration process. The greater the number of singular values, the better is

the fit between model outputs and field data. However beyond an optimum number of

Linear Error and Uncertainty – Part I 111

singular values, predictive error variance rapidly rises. The optimum level of fit is that which

reduces predictive error variance to a minimum.

PREDVAR1B adds a third term to the predictive error variance equation, this being model-

simplification error. This includes that which exists by virtue of model defects alone, as well

as that which remains (or is amplified) after the imperfect model is calibrated because of the

compensatory roles that parameters adjusted through the imperfect model calibration process

may play. Like PREDVAR1A, PREDVAR1B allows a modeller to locate the minimum of

the predictive error variance curve, and hence the optimum fit between model outputs and

field data that should be sought through the calibration process; for an imperfect model the

optimal fit is prediction-specific. It should be noted, however, that with simplification-

induced predictive error taken into account, the location of the predictive-error variance

minimum may not be as easy to find as when a perfect model is calibrated. Under the latter

circumstances, a discrete error variance minimum results from the interplay between the

monotonically decreasing (with increasing level of fit) null space contribution to predictive

error variance and the monotonically increasing (with increasing level of fit) solution space

contribution to predictive error variance (assuming that parameters have undergone Kahunen-

Loève transformation prior to estimation). In fact, an error variance minimum may not even

exist for some predictions made by a defective model, for it is possible that, for some

predictions, any history-matching can do more harm than good.

10.5.2 Theory

The theory on which PREDVAR1B is based in presented in section 9.6.1 of Doherty (2015).

As stated above, PREDVAR1B implements equation 9.6.6 of that text. This equation has

three terms on its right side. The first two terms are the same as those calculated by

PREDVAR1 and PREDVAR1A. The third term quantifies the contribution to predictive error

variance incurred through use of a calibrated, defective model. The total error variance is the

sum of these three terms.

In normal modelling practice it is not possible to calculate the third term of equation 9.6.6.

However in order to obtain some measure of the cost of model simplification, it may be

useful to build a complex model – more complex than you would actually use in practice. A

Jacobian matrix can then be calculated using this complex model in order to explore the

repercussions of using a simplified form of that same model in which some parameters (e.g.

boundary conditions, certain stresses, certain processes, and/or certain expressions of

heterogeneity) are fixed at values that you may normally deem to be “relatively error free”

during the calibration and predictive processes. This mimics what happens in real-world

modelling practice, whereby a simplified numerical expression of reality is declared (without

any analysis) to be “fit for purpose” despite the fact that many actual or implied parameters

are fixed at certain values – values that may in fact be wrong. The set of parameters that

remains adjustable comprises the “defective” model for the purpose of PREDVAR1B

analysis.

As is described in documentation for PREDVAR1 and PREDVAR1A above, it is good

practice to scale parameters by their innate variability (an even better practice is to subject

adjustable parameters to Kahunen-Loève transformation) before subjecting the resulting Z

matrix to singular value decomposition. The SCALEPAR utility can help in this regard.

10.5.3 Using PREDVAR1B

See documentation for PREDVAR1A above. PREDVAR1B’s prompts and typical responses

Linear Error and Uncertainty – Part I 112

follow.

Enter name of PEST control file: case.pst

Enter observation reference variance i.e. phi(nonreg)/nobs(nonreg): .14

Enter name of parameter uncertainty file: param.unc

Enter name of predictive sensitivity matrix list file: sen.lst

Enter no. of singular values before truncation [<Enter> if no more]: 0

Enter no. of singular values before truncation [<Enter> if no more]: 1

..

Enter no. of singular values before truncation [<Enter> if no more]: 40

Enter no. of singular values before truncation [<Enter> if no more]: 40

Enter no. of singular values before truncation [<Enter> if no more]: 60

Enter no. of singular values before truncation [<Enter> if no more]: <Enter>

- reading PEST control file temp.pst....

- file temp.pst read ok.

Parameter groups containing a non-zero number of non-tied and non-fixed

parameters will now be listed.

Identify simplicity-correction parameter groups.

Other groups are presumed to contain only calibration-adjustable parameters.

 Parameter group "ro"? [y/n]: n

 Parameter group "ro_0"? [y/n]: y

- reading Jacobian matrix file temp.jco....

- file temp.jco read ok.

- reading predictive sensitivity matrix file ar18.vec....

- file ar18.vec read ok.

- undertaking SVD on observation covariance matrixes...

- 1 covariance matrices decomposed.

- carrying out singular value decomposition of Q(1/2)X....

- reading parameter uncertainty file param.unc....

- parameter uncertainty file param.unc read ok.

- computing error variance terms for truncation at 0 singular values

- computing first term

- computing second term

- computing third term

- computing error variance terms for truncation at 1 singular values

- computing first term

- computing second term

- computing third term

 etc.

As is clear from the above, the user is asked to partition parameters into those that are

“calibration-adjustable” and those that are “correction parameters”. Sensitivities of model

outputs to all of these are required. They must lie within a JCO file computed by PEST that

matches the PEST control file whose name is supplied to PREDVAR1B. A set of sensitivities

of a prediction to all parameters, both calibration-adjustable model parameters and simplicity-

correction parameters, must also be supplied. If the prediction of interest is featured in the

same PEST control file as that read by PREDVAR1B (as a dummy observation with a weight

of zero), predictive sensitivities can be extracted from the JCO file which complements the

PEST control file using the JROW2VEC utility. Otherwise they must be extracted from

another JCO file which features the same calibration-adjustable and simplicity-correction

Linear Error and Uncertainty – Part I 113

parameters. Alternatively, to examine the post-calibration error variance of a single

parameter, supply a “predictive sensitivity” vector which is comprised of zeroes except for

the single element that represents the parameter of interest.

Simplicity-correction parameters must belong to one or more discrete parameter groups

which are featured in the PEST control file supplied to PREDVAR1B. A parameter group

must not house both calibration-adjustable parameters and simplicity-correction parameters.

The following points are worth noting.

• Weights employed in the calibration dataset should reflect measurement/structural

noise; that is, weights should be proportional to the inverse of the standard deviations

of measurement/structural noise. PREDVAR1B calculates C(ε) from these weights

(and/or covariance matrices associated with measurements), together with the user-

supplied reference variance. If weights are the inverse of the standard deviations of

measurement/structural noise, and/or observation covariance matrice(s) are supplied

that are equal to C(ε), then the reference variance is unity.

• You should request that enough singular values be employed to allow predictive error

variance terms, and total predictive error variance, to be plotted against enough

singular values for the minimum in the predictive error variance curve to be

identified. However the maximum number of singular value to use should be no

greater than either the maximum number of adjustable parameters, or the maximum

number of non-zero-weighted observations, whichever is smaller. PREDVAR1B will

inform you if more singular values than this are requested.

• A singular value of zero corresponds to no calibration at all.

10.6 PREDVAR1C

10.6.1 General

The PREDVAR1C utility is similar to the PREDVAR1B utility. However its functionality

differs from that of PREDVAR1B in two important respects. These are as follows.

• PREDVAR1C insists that the prior covariance matrix C(k) be diagonal. Hence no

parameters must show prior correlation.

• PREDVAR1C provides a measure of expected goodness-of-fit between model outputs

and field data, this being the sum of the diagonal elements of the weighted residuals

covariance matrix divided by the number of observations. Ideally, if each

measurement weight supplied in the PEST control file is equal to the inverse of the

standard deviation of respective measurement/structural noise, and/or observation

covariance matrices assigned to observation groups in the PEST control file are equal

to that of measurement/structural noise, then the sum of the diagonal elements of the

weighted residuals covariance matrix should approximate the number of non-zero-

weighted observations comprising the calibration dataset. This sum divided by the

number of non-zero-weighted observations should therefore be approximately equal

to 1.0. (Actually, it will be slightly above this value as the deployment of

regularisation induces some degree of model-to-measurement misfit; see section 9.3.3

of Doherty, 2015).

10.6.2 Theory

The theory implemented by PREDVAR1C is discussed in section 9.3.2 of Doherty (2015).

Linear Error and Uncertainty – Part I 114

However it is repeated here for clarity. We commence with equation 9.3.4 of Doherty (2015):

h = Zmkm + Zdkd + ε (10.6.1)

In this equation km represents parameters employed by a simplified model whereas kd

represents “correction parameters” which encapsulate differences between a simple model

and the complexity of the real-world (the latter being represented by a more complex model).

Zm and Zd represent processes which act on km and kd respectively. As usual h represents

measurements comprising the calibration dataset while ε represents noise associated with

these measurements.

Using singular value decomposition, the parameter field km assigned to the calibrated simple

model is estimated as

 km = V1S
-1

1U
t
1h (10.6.2)

which, after equation 10.6.1 is substituted into equation 10.6.2 becomes (after some

simplification)

 km = VtVt
1km + V1S

-1
1U

t
1ε + V1S

-1
1U

t
1Zdkd (10.6.3)

Residuals r pertaining to the calibrated model are calculated as

 r = h - Zmkm = Zmkm + Zdkd + ε – Zmkm (10.6.4)

After some manipulation of the terms of this equation we obtain

 r = U2S2V
t
2km + U2U

t
2ε + U2U

t
2Zdkd (10.6.5)

The covariance matrix of residuals of the calibrated model can be formulated from the above

equation as

C(r) = U2S2V
t
2C(km)V2S2U

t
2 + U2U

t
2C(ε)U2U

t
2 + U2U

t
2ZdC(kd)Z

t
dU2U

t
2 (10.6.6)

Suppose that the following conditions are met.

 C(k) = I (10.6.7a)

 C(kc) = I (10.6.7b)

 C(ε) = I (10.6.7c)

Then equation (10.6.6) becomes

 C(r) = U2S
2

2U
t
2 + U2U

t
2 + U2U

t
2ZdZ

t
dU2U

t
2 (10.6.8)

PREDVAR1C internally normalizes parameters (and alters sensitivities accordingly) so that

conditions (10.6.7a) and (10.6.7b) are met.

For the sake of keeping the above equations simple, user-specified weights employed in the

inversion process are not cited in them. Nevertheless, equation (10.6.7c) is respected if the

user supplies weights in the PEST control file which are equal to the inverse of the standard

deviation of measurement/structural noise, and/or supplies a covariance matrix for some or

all observation groups which is equal to C(ε) for each group. (In practice proportionality,

together with a reference variance for weights and observation covariance matrices, can

replace equality when using PREDVAR1C.)

If the number of singular values is zero, then the model is not calibrated at all; that is, no

history-matching takes place. Under these circumstances equation 10.6.8 describes model-to-

measurement misfit resulting from an uncalibrated, defective model, including that induced

by the presence of measurement noise.

Linear Error and Uncertainty – Part I 115

The first and second terms of equation 10.6.8 fall with increasing number of singular values

employed in the inversion process (the number of columns comprising U2 decreases with

increasing singular value truncation point). When singular values fall to zero with increasing

singular value index, so do contributions made by the first term. The second term is equal to

the identity matrix I when zero singular values are used in model calibration (that is when the

model is not calibrated at all); it falls uniformly as the number of singular values used in the

inversion process increases.

The behaviour of the third term of 10.6.8 as singular values increase is context-specific. If Zd

is orthogonal to U2, then it is zero. When zero singular values are employed in the calibration

process (i.e. when the model is not calibrated at all), this implies that model defects do not

affect model outputs that correspond to members of the calibration dataset. Alternatively, this

term may start off as non-zero, but fall to a low number as the number of singular values

employed in the calibration process increases. This implies that model parameters that are

adjusted through the calibration process (i.e. the km parameters as distinct from the kd

parameters) can assume values that compensate for model defects (i.e. for the presence of kd

parameters) to ensure that the calibration process achieves a good fit with the calibration

dataset.

If a model has no defects then the third term of equation 10.6.8 is absent. In this case, if the

conditions implied by equations 10.6.7a and 10.6.7c are respected, the diagonal elements of

C(r) should be in the vicinity of 1.0 as the number of singular values employed in the

inversion process increases to the point at which the model can be considered as “calibrated”.

This is the point at which parameter and predictive error variances are minimized – see

documentation of PREDVAR1 and PREDVAR1A. The second term of equation 10.6.8 will

be less than 1.0 at this point, while the first term will have descended from possibly high

values to values of 1.0 or below. (Eventually this term will be zero; this occurs when the

singular value truncation point is such that singular values are zero.)

10.6.3 Using PREDVAR1C

The running of PREDVAR1C is identical to the running of PREDVAR1B except for the fact

that PREDVAR1C asks two other questions. These are as follows.

Calculate residuals statistics? [y/n]:

Enter name for residuals statistics file:

The second question is asked only if the response to the first question is “y”.

The first part of a residual statistics file written by PREDVAR1C is illustrated in Figure 10.2.

sing_val first_term second_term third_term sum_of_terms

 0 1.105678 1.000000 0.7587583 2.864436

 1 0.6062968 0.9473684 0.7545655 2.308231

 2 0.2745901 0.8947368 0.7279764 1.897303

 3 0.1040756 0.8421053 0.6870091 1.633190

 4 3.3155639E-02 0.7894737 0.6434713 1.466101

 5 8.8168476E-03 0.7368421 0.6037423 1.349401

 6 1.9222139E-03 0.6842105 0.5711024 1.257235

 7 4.0396902E-04 0.6315789 0.5486338 1.180617

Figure 10.2 The first part of a residual statistics file.

The order of terms referenced in the header to the residual statistics file is the same as that of

terms featured in equation 10.6.8. The items listed in each column are the sum of the diagonal

elements of C(r) calculated using only that term, with this sum divided by the number of non-

zero-weighted observations featured in the PEST control file.

Linear Error and Uncertainty – Part I 116

When using PREDVAR1C it is important to keep the following points in mind.

1. As has already been discussed, weights supplied in the PEST control file should be

proportional to the inverse of the standard deviation of measurement/structural noise.

This strategy allows condition 10.6.7c to be satisfied once the proportionality constant

is supplied through the reference variance. Alternatively (or as well), a covariance

matrix proportional to C(ε) can be supplied for one or more observation groups. (If

desired, the PWTADJ2 utility followed by JCO2JCO can be used to create a PEST

control file with correct weights together with a corresponding JCO file prior to

running PREDVAR1C; the reference variance associated with the PWTADJ2-created

PEST control file is 1.0.)

2. If the above strategy is followed then a “sum_of_terms” value (i.e. final column of the

residuals file) approaching 1.0 indicates a fit with the field data that is commensurate

with that expected from measurement noise alone.

3. Reduction of the value of the third term with an increasing number of singular values

indicates that model defects are being “calibrated out”. Adjustable parameters may

therefore be adopting surrogate roles to achieve a high level of model-to-measurement

fit.

4. PREDVAR1C writes all output files that are written by PREDVAR1B. Hence it can

be used as a replacement for PREDVAR1B. In fact, its use is preferred to that of

PREDVAR1B as the internal normalization of sensitivities to achieve condition

10.6.7a results in a monotonic relationship between the null space component of

predictive error variance and number of singular values used in the inversion process.

5. Regularisation observations and prior information equations cited in a PEST control

file that is read by PREDVAR1C are ignored.

Calculations undertaken by PREDVAR1C are memory and cpu-intensive. Hence execution

speed may be slow. If observation numbers are high, memory and cpu requirements may be

impossible to meet. If this occurs use a 64 bit version of this utility. Consider also reducing

the number of observations featured in the PEST control file.

10.7 PREDVAR2

10.7.1 General

In contrast to PREDVAR1B and PREDVAR1C, and in similar fashion to other members of

the PREDVAR suite, PREDVAR2 does not consider model defects. Operation of

PREDVAR2 is, in fact, based on the same principles as those on which PREDVAR1is based.

However instead of calculating the dependence of predictive error variance on the number of

singular values employed in the truncated singular value decomposition inversion process

through which R and G of equation 10.3.1 are evaluated, it supports calculation of predictive

error variance based on a sequence of different parameter uncertainty files, all for the same

singular value truncation limit. This can serve at least the following purposes.

1. If, in each of these files, a particular parameter, or parameter type, is assigned zero

variance (and is therefore assumed to be perfectly known), the reduction in error

variance accrued from knowing that parameter or parameter type can be construed as

a measure of the contribution made to the variance of the prediction by that parameter

type. This analysis can be undertaken at an optimum number of singular values as

determined by prior use of PREDVAR1. It can also be undertaken at zero singular

values, to determine pre-calibration contribution of different parameters and/or

Linear Error and Uncertainty – Part I 117

parameter types to predictive error variance. The change between pre- and post-

calibration predictive error variance is a measure of the effect that the calibration

process has in reducing the effect of that parameter, or parameter type, on the error

variance of the studied prediction.

2. Where a parameter is spatially variable, and where this variability is characterized

within a model using a mechanism such as pilot points, contribution to predictive

error variance made by different parameters can be contoured. This presents a graphic

means by which the worth of making direct property measurements in different parts

of the model domain, as a means of reducing the uncertainty of a particular prediction,

can be assessed. The variance of the “measured” parameter does not need to be

reduced to zero in this process; it can simply be diminished, thus reflecting the fact

that direct “measurements” of system properties have their own sources of

uncertainty.

Like PREDVAR1 (but unlike PREDVAR1A), PREDVAR2 undertakes singular value

decomposition of the ZtQZ matrix rather than the Q1/2Z matrix (where Z is defined in

equation 10.3.6). Hence its execution may be a little slow where parameter and/or

observation numbers are large.

Note however that PREDUNC-suite programs documented later in this section often provide

better measures of data worth than PREDVAR-suite programs as PREDUNC-suite programs

calculate parameter and predictive uncertainty rather than error variance. Uncertainty can be

quicker to calculate; furthermore uncertainty provides a slightly more intrinsic measure of the

information content of a calibration dataset than does error variance, the latter being a

function of the regularisation device employed to achieve calibration uniqueness, in this case

singular value decomposition at a user-specified truncation point.

10.7.2 Using PREDVAR2

Like PREDVAR1, PREDVAR2 commences execution with the prompt

Enter name of PEST control file:

It is assumed that a JCO file exists corresponding to the PEST control file whose name is

provided in response to the previous prompt. (PREDVAR2 will cease execution with an error

message if this is not the case). It is important to note that, as for PREDVAR1, the model

need not be calibrated; hence values employed in the PEST control file (and those on which

derivatives recorded in the JCO file are based) can be comprised of best parameter estimates

originating from outside the calibration process. A JCO file pertaining to these parameter

estimates can be obtained by running PEST on the basis of a PEST control file in which these

parameter values feature as initial values; NOPTMAX should be set to -2 in this file. In other

circumstances it may be convenient to build this JCO file from a JCO file recorded on a

previous PEST run using the JCO2JCO utility.

As for PREDVAR1, it is assumed that the inverse squares of weights contained in the cited

PEST control file are proportional to measurement error variances, and that any observation

covariance matrices cited in the PEST control file are related to true measurement error

covariances using the same proportionality constant. PREDVAR2 asks for the value of this

constant, that is for the reference variance. The prompt is

Enter observation reference variance:

A suitable value for the reference variance can be obtained by dividing the (measurement)

objective function by the number of non-zero-weighted, non-regularisation observations

Linear Error and Uncertainty – Part I 118

featured in the inverse problem.

Next PREDVAR2 prompts

Enter name of parameter uncertainty file listing file:

A parameter uncertainty file listing file must list the names of parameter uncertainty files, one

after the other; see the example below.

Horizontal K’s set to zero

param1.unc

Vertical K’s set to zero

param2.unc

Sy’s set to zero

param3.unc

Figure 10.3 Part of a parameter uncertainty file listing file.

Any line within a parameter uncertainty file listing file that begins with the “#” character, or

is blank, is ignored. Files cited within this file must be parameter uncertainty files (use quotes

to surround filenames containing a blank). Specifications for a parameter uncertainty file are

provided in section 2.5 of this manual. There is no limit to the number of parameter

uncertainty files which can be so listed. Each one of these files allows construction of a C(k)

matrix for use in equation 10.3.1.

Next PREDVAR2 asks for the name of a predictive sensitivity matrix file. This contains the y

vector featured in equation 10.3.1. This matrix can be built using a text editor if desired (see

the format for this file in section 2.4 of this manual). However in most cases it is easier to

extract it from a JCO file using the JROW2VEC utility.

PREDVAR2’s next prompt is

Enter number of singular values before truncation:

Enter a number between zero and the number of adjustable parameters cited in the PEST

control file; on most occasions the number of singular values should correspond to the

optimum for the prediction of interest identified using PREDVAR1.

PREDVAR2 next prompts for the name of its principal output file.

Enter name for predictive error variance output file:

For each parameter uncertainty file listed in the parameter uncertainty file listing file, the

PREDVAR2-generated output file will contain predictive error variance components

corresponding to the first and second terms of equation 10.3.1, as well as the total predictive

error variance; it will also list the square root of the later as the total predictive standard

deviation.

Finally PREDVAR2 prompts

Enter name for SVD file [<Enter> to read an old one]:

PREDVAR2 records the outcomes of singular value decomposition of the ZtQZ matrix in an

ASCII file. This may be useful for its own sake (in order that the user may be aware of the

linear parameter combinations which define orthogonal directions in parameter space which

are used as a basis for subdividing that space into calibration solution and null subspaces).

However if this file is read in a subsequent PREDVAR2 run (instead of undertaking singular

value decomposition of ZtQZ again), considerable savings in computation time can be

achieved where large numbers of adjustable parameters are cited in the PEST control file

(with slight loss of precision incurred through having to read these results from an ASCII

Linear Error and Uncertainty – Part I 119

file). However for the SVD file to be valid for the current run, no alterations should have

been made to the PEST control file on which the current PREDVAR2 run is based between

this run and its previous run. If you press the <Enter> key in response to the above prompt,

signalling that such an old SVD file should be read, PREDVAR2 then prompts for the name

of this file.

After all of the above questions have been answered, PREDVAR2 undertakes its calculations,

recording the progress of its work to the screen. Its output file can be inspected at any time

during these calculations.

10.8 PREDVAR3

10.8.1 General

PREDVAR3 bears some resemblance to PREDVAR2 in that it is employed for calculation of

the contribution of different parameter types, or parameter groups, to the potential error of a

prediction of interest. However the methodology underpinning its use is more general than

that of PREDVAR2. It has been largely superseded by PREDVAR4 however (see below).

Hence it is recommended that the latter program be used instead of PREDVAR3.

Nevertheless PREDVAR3 is retained in the PEST utility suite as it may prove useful to some.

As for PREDVAR2 and PREDVAR1, use of PREDVAR3 does not depend on the existence

of a calibrated model. All that is required is that sensitivities of model-generated

measurement-equivalents to all parameters employed by the model be available, and that the

sensitivities of a model prediction of interest to all parameters employed by the model also be

available.

There are a number of ways in which the “contribution to total predictive error variance” by a

particular parameter, or parameter type/group can be defined. One way in which such a

quantity can be calculated is through undertaking the following exercise.

1. Use PREDVAR1 (possibly in conjunction with SCALEPAR in order to scale

parameters by their innate variabilities) to determine the minimum predictive error

variance achievable for a certain prediction. This is accomplished by plotting

predictive error variance versus number of singular values, and identifying the

minimum of this curve.

2. Build a new PEST control file in which parameters comprising a particular type or

group are held fixed, thus implying that they are notionally perfectly known by the

modeller.

3. Obtain the Jacobian matrix pertaining to this new PEST control file. This is normally

easily obtained from the Jacobian matrix corresponding to the original PEST control

file (in which no parameters are fixed) using the JCO2JCO utility.

4. Run PREDVAR1 on the basis of this new PEST control file and complimentary

Jacobian matrix file to calculate minimised predictive error variance. The difference

between this predictive error variance and the original predictive error variance based

on a full parameter set is a measure of the amount by which the attainment of perfect

knowledge of the newly fixed parameters would reduce the error variance of the

prediction of interest. It can thus be considered to quantify the “contribution” made by

these parameters to the error variance of the prediction of interest.

PREDVAR3 carries out the same operations as listed above, but without the need for

Linear Error and Uncertainty – Part I 120

production of new PEST control file and a new Jacobian matrix file, and without the need to

run PREDVAR1 repeatedly. Because of its similarity to PREDVAR1, many of its inputs

resemble that of this program.

10.8.2 Using PREDVAR3

PREDVAR3’s first four prompts are the same as those of PREDVAR1. They are repeated

below.

Enter name of PEST control file:

Enter observation reference variance:

Enter name of parameter uncertainty file:

Enter name of predictive sensitivity matrix file:

See documentation of PREDVAR1 for details of how to respond to these prompts. (Note that

use of PREDVAR3, like that of PREDVAR1, assumes that observation weights contained in

the PEST control file are inversely proportional to measurement uncertainties, and/or that one

or a number of observation covariance matrices are supplied whose elements are related to

measurement error variance by the same constant of proportionality, this being the reference

variance referred to above; see documentation of PREDVAR1 for further details.)

Next PREDVAR3 prompts for a “singular value list” file.

Enter name of singular value list file:

This is a file containing singular values written one to a line. For every parameter type

nominated by the user (see below), PREDVAR3 calculates the predictive error variance

corresponding to all of these singular values. It then selects the minimum of these variances

and records that on its output file. It is important to note that if a model has many parameters,

then use of many singular values can lengthen PREDVAR3 execution time a great deal.

Normally you will know roughly where the minimum will lie, and can properly span this

singular value interval. If the interval is wide, then perhaps employing a singular value set

with an increment of two or three, rather than unity, may also help. If it is found that

minimum error variance exists at either end of the supplied sequence of singular values, this

is evidence that a large enough range of singular values may not have been spanned.

PREDVAR3 lists to its output file the singular value corresponding to the minimum

predictive error variance for each parameter type; see below.

Next PREDVAR3 prompts

Enter name of parameter type list file:

The format of such a file is illustrated in figure 10.4.

Linear Error and Uncertainty – Part I 121

* parameter type “none”

* parameter type ro

ro1

ro2

ro3

ro4

ro5

* parameter type thickness

th1

th2

th3

th4

* parameter type “bot_elev”

belev1

belev2

etc.

Figure 10.4 Example of a parameter type list file.

Normally the parameter type list file will be prepared by extracting a list of parameters from

the PEST control file for the current case and simply inserting parameter type identifiers

within this list as shown above. Each set of parameters appearing between two such

identifiers (or between an identifier and the end of the file) comprises a “parameter type”,

with the name of this type being defined after the “* parameter type” string which identifies

the beginning of the listing for that type.

Note the following.

1. The list of parameters comprising a certain type can be empty. In this case no

parameters are frozen and the predictive error variance is equivalent to that which

would be computed by PREDVAR1 on the basis of all adjustable model parameters.

2. A given parameter can belong to more than one type if desired.

3. There is no limit to the number of parameter types which can be represented in a

parameter type list file.

4. The name of a parameter type should be 12 characters or less in length. It can

optionally be surrounded by quotes.

5. If the overall C(k) matrix for the current inverse problem indicates that correlation

exists between certain parameters (that is, if C(k) is not a diagonal matrix), then

correlated parameters must belong to the same parameter type, and must be all frozen

together or not at all. (Proper calculation of separate predictive error variance

contributions by parameters which are correlated requires that the C(k) matrix be

conditioned as a result of the attainment of perfect knowledge of the values of the

notionally fixed parameters. Where a fixed parameter is not correlated with any other

parameter, such conditioning of C(k) is not necessary.)

For each parameter type identified in the parameter type listing file, PREDVAR3 computes

the predictive error variance for all singular values nominated in the singular value list file. It

then records the minimum such variance to its output file, an example of which is shown

below. Also recorded are the first and second predictive error terms corresponding to the

minimized predictive error variance.

Linear Error and Uncertainty – Part I 122

Name of prediction = "ar10"

Fixed_params First_term Second_term Minimized_error_variance Sing_vals_at_min

none 4.4625057E-02 0.1285734 0.1731985 4

top 4.0642764E-02 0.1438543 0.1844970 2

bottom 1.9366123E-02 9.0539228E-03 2.8420046E-02 2

middle 3.4950000E-02 5.6072226E-02 9.1022226E-02 4

Figure 10.5 Part of a PREDVAR3 output file.

A PREDVAR3 output file is easily imported into a spreadsheet program such as EXCEL for

undertaking the subtractions necessary to obtain contributions made by different parameter

types to the variance of a certain prediction.

10.9 PREDVAR4

PREDVAR4’s purpose and use are identical to those of PREDVAR3. However it offers a

slightly higher level of functionality than that offered by PREDVAR3.

If certain parameters are frozen (i.e. if perfect knowledge of the values of these parameters is

assumed) for the purpose of calculating their contribution to predictive error variance, and if

these parameters are correlated with non-frozen parameters, the C(k) matrix of the latter is

conditioned by the fact that the former are now notionally perfectly known, and hence have

no uncertainty associated with them. Use of the conditioned C(k) matrix in predictive error

variance computation results in an altered error variance for many predictions, this reflecting

the fact that notional perfect knowledge of the frozen parameters has implications for

knowledge of correlated (from a prior knowledge point of view) non-frozen parameters as

well.

Conditioning of the C(k) covariance matrix is carried out using equation 3.8.5 of Doherty

(2015).

See also the PREDUNC4 utility. This computes the contributions of different parameter types

to predictive uncertainty rather than to predictive error variance. This is quicker to compute;

furthermore uncertainty is a more “natural” quantity than “error” when assessing parameter

importance.

10.10 PREDVAR5

10.10.1 General

PREDVAR5 is used for analysing the effect of individual observations, or groups of

observations, on the error variance of a particular prediction. It has two modes of operation.

These are as follows.

1. It allows ranking of the relative worth of existing observations by calculating

predictive error variance with selected ones, or groups, of these observations removed

from the calibration dataset.

2. It allows ranking of the relative worth of new observations by calculating predictive

error variance with selected ones, or groups, of these new observations added to the

existing calibration dataset.

As for PREDVAR3 and PREDVAR4 (which work with parameter contributions to

predictive error variance instead of observation contributions), PREDVAR5 allows

Linear Error and Uncertainty – Part I 123

observations to be grouped into “types” for addition to, or subtraction from, the existing

calibration dataset. These groupings are provided in an “observation type list file”, the format

of which is very similar to that of the parameter type list file used by PREDVAR3 and

PREDVAR4. Figure 10.6 illustrates such a file.

* observation type "base"

ar8

ar9

..

ar34

* observation type “none”

* observation type "type1"

ar5

ar3

ar4

* observation type "flows"

flow1

flow2

* observation type "heads"

head1

head2

etc.

Figure 10.6 Format of an observation type list file.

The PREDVAR5 observation addition and subtraction options are now discussed in more

detail.

Subtracting Observations

This is the easier of the two options to implement. In this case each set of observations

belonging to the different observation types nominated in the observation type list file is, in

turn, removed from an existing PEST input dataset as set out in an existing PEST control file;

this is affected by setting all of the pertinent observations weights to zero. Not only

observations can be removed, but prior information equations can be removed as well.

However it is important to note that regularisation observations and prior information

equations are ignored when PREDVAR5 (and any of the other PREDVAR suite programs)

calculate predictive error variance. If the PEST control file whose name is provided to

PREDVAR5 instructs PEST to run in “regularisation” mode, and if an observation or prior

information equation is cited in an observation type list file which belongs to a regularisation

group, PREDVAR5 will cease execution with an error message.

Naturally, each observation cited in an observation type list file must be cited in the PEST

control file which defines the current inverse problem.

An observation type can have no members; often the first nominated observation type has no

members. Thus PREDVAR5 will calculate predictive error variance with no observations

subtracted from the current PEST dataset. The contributions that other nominated types of

observation make to the accuracy of a certain prediction can then be evaluated by subtracting

the error variance of that prediction with the observation type included, from that calculated

with it missing. PREDVAR5 does not undertake this subtraction itself. However it can be

easily carried out if the PREDVAR5 output file is imported into a spreadsheet.

Linear Error and Uncertainty – Part I 124

Adding Observations

In this case the first observation type listed in the observation type list file must be a “base

type”, and must be named “base”. As for the subtraction alternative, all observations cited in

the observation type list file must also be cited in the PEST control file which defines the

current inverse problem. The set of base observations are always employed in the notional

inversion processes carried out by PREDVAR5. Other observation types are added to this

base set in sequential PREDVAR5 predictive error variance calculation operations. The effect

that each set of new observations has in reducing the error variance of the nominated

prediction can then be judged by subtracting the error variance computed with inclusion of

the new observation type in the notional inversion process from that computed on the basis of

the base observation type alone. All observations contained within the PEST control file that

do not belong to the base observation type, or to the observation type that is being currently

processed, are assigned a weight of zero.

As for the observation subtraction option, prior information can be included in an observation

type. However if, in the PEST control file read by PREDVAR5 which defines the current

inverse problem, PEST is run in “regularisation” mode, a regularisation observation or prior

information equation cannot be cited in the observation type listing file, as PREDVAR5

ignores regularisation observations and prior information equations.

The base observation type can be empty if desired. In this case the contribution to error

variance made by the second term of equation 10.3.1 (i.e. the “measurement noise term”) is

zero, and that made by the first term is the error variance under pre-calibration conditions (i.e.

the pre-calibration predictive uncertainty). However other observation types cannot be empty

in this case. Where the base observation type is empty, each listed observation type

sequentially comprises the entirety of the tested calibration dataset.

The “observation addition” option is useful for assessing the relative worth of different data

acquisition strategies. All possible additional observations must be included in the PEST

control file, along with the existing calibration dataset (the latter comprising the base

observation type). PREDVAR5 then computes the predictive error variance with different

observation types in turn added to the set of base observations. You can then compare the

relative efficacy of these observation types in lowering the error variance of the identified

prediction. Note that a given observation can appear in more than one observation type.

10.10.2 Using PREDVAR5

PREDVAR5 commences execution with the prompt

Enter name of PEST control file:

As for the other PREDVAR-suite programs, the PEST control file provides specifications for

the current inverse problem. It defines the parameters involved in that problem and their

transformation status. It is assumed that a corresponding Jacobian matrix file (i.e. a JCO file)

exists; this is assumed to have the same filename base as the PEST control file, but to possess

an extension of “.jco”. It may have been created on a previous PEST run (possibly with the

NOPTMAX variable set to -2 so that the run was carried out specifically for this purpose), or

it may have been created using the JCO2JCO utility from an existing JCO file pertaining to

another PEST control file citing a superset of the parameters and observations which

comprise the current inverse problem.

Then it asks

Enter observation reference variance:

Linear Error and Uncertainty – Part I 125

This is discussed below. PREDVAR5’s next prompt is

Enter name of parameter uncertainty file:

This file provides the C(k) matrix of equation 10.3.1; see section 2.5 of this manual for its

specifications. Next PREDVAR5 prompts

Enter name of predictive sensitivity matrix file:

The contents of this file must be in accordance with PEST matrix file format. It must contain

the sensitivities of a prediction of interest to parameters cited in the PEST control file. Note

the following.

1. Sensitivities to parameters additional to those existing in the PEST control file are

ignored. Also, the ordering of parameters in the matrix file does not need to be the

same as in the PEST control file.

2. If a parameter is log-transformed or has other parameters tied to it, this must be

reflected in the sensitivities supplied in this file.

3. If a parameter is cited in the PEST control file, and is not fixed or tied, but is not cited

in the parameter sensitivity vector, PREDVAR5 ceases execution with an appropriate

error message.

Normally the predictive sensitivity vector will have been extracted from a JCO file using the

JROW2VEC utility.

Next PREDVAR5 prompts

Enter name of singular value list file:

The role of this file is similar to its role for other PREDVAR-suite programs. In the present

case it provides a list of singular values for which PREDVAR5 calculates predictive error

variance for each of the various observation types for which this is required. It chooses the

minimum predictive error variance in each case. It is important to ensure that the range of

singular values provided in this file is sufficient to encompass the predictive error variance

minimum (a previous PREDVAR1 exercise may help in this regard). It is also a good idea for

singular values to be sequential, and separated by unity. This minimises “granularity” in

predictive error variance contributions when large numbers are subtracted from each other to

form smaller ones, as must occur when predictive error variance differences are calculated.

PREDVAR5’s next prompt is

Enter name of observation type list file:

The format of this file is described above. Then

Subtract list members or add to base observations [s/a]:

This is where you select between the two modes of PREDVAR5 operation described above.

Its final prompt is

Enter name for predictive error variance output file:

The PREDVAR5 output file is similar to that of PREDVAR3 and PREDVAR4. It is normally

best to import this file into a spreadsheet. For the observation addition option, subtract the

predictive error variance calculated with each new set of nominated observations from the

predictive error variance computed with no new observations (the latter can be computed

using an empty observation type if you wish) to calculate the effect that each observation

type would have in reducing predictive error variance from its current value. For the

Linear Error and Uncertainty – Part I 126

observation subtraction option, subtract the predictive error variance computed with no

observations subtracted from that calculated with each nominated observation type

withdrawn to compute the effect that each observation type has in achieving the predictive

error variance of the currently calibrated model.

10.10.3 Observation Weights and Reference Variance

Like other PREDVAR-suite programs, PREDVAR5 assumes that observation weights

supplied in the PEST control file are proportional to the inverse of measurement noise

variances (squares of standard deviations). An observation covariance matrix may be

supplied for one or a number of observation groups cited in the PEST control file if you wish;

the same constant of proportionality (i.e. the reference variance) is assumed to prevail

between this matrix and measurement noise variance. Use of the PWTADJ2 utility following

a calibration exercise can create a PEST control file in which this constant of proportionality

is 1.0. Alternatively, a value for the reference variance can be estimated by dividing the

calculated or estimated value of the (measurement) objective function associated with the

calibration process by the number of non-zero-weighted, non-regularisation observations

used in this process.

10.10.4 Parameter Scaling

Ideally, parameters should be scaled using the SCALEPAR utility before using any of the

PREDVAR-suite programs (except PREDVAR1C). This helps to ensure that there are no

rises in predictive error variance before the latter starts to fall as singular values are increased

(or that these rises are small, as can happen where some parameters are correlated with each

other through non-diagonal terms of the C(k) matrix). It also promotes minimisation of

predictive error variance. You don’t actually need to run PEST using the PEST calibration

dataset generated by SCALEPAR to obtain scaled parameters; however you do need to allow

SCALEPAR to compute the scaled parameter Jacobian matrix. Furthermore you need to

adjust parameter standard deviations such that they are all unity; similarly, parameter

covariance matrices should be adjusted so that their diagonal elements are all unity in

harmony with SCALEPAR’s re-scaling calculations; off-diagonal elements must be adjusted

accordingly. Predictive sensitivities must be scaled in the same way that observation

sensitivities are scaled.

10.10.5 PREDUNC5 instead of PREDUNC4

See the PREDUNC5 utility documented below. This uses predictive uncertainty rather than

predictive error variance to assess observation worth. Predictive uncertainty is quicker to

compute than predictive error variance. No parameter scaling is required. Predictive

uncertainty does not suffer the same singular value granularity as does predictive error

variance. In addition to this, uncertainty is a more “natural” quantity than “error” (though the

two should differ only slightly – see Doherty (2015)). Hence use of PREDUNC5 is

recommended over use of PREDVAR5 for assessment of data worth.

10.11 PARVAR1

PARVAR1 calculates the post-calibration error variance of all parameters employed by a

model. Like PREDVAR-suite programs, it assumes that model calibration takes place

through singular value decomposition; the user informs PARVAR1 of the dimensionality of

the solution space (i.e. the number of pre-truncation singular values used in notional

estimation of parameters). It uses the same formula to calculate parameter error variance as

Linear Error and Uncertainty – Part I 127

that used by PREDVAR1A to calculate predictive error variance. However the “predictive

sensitivity vector” of a parameter is simply a vector in which all elements of the vector are

zero except for that pertaining to the parameter of interest; the value of this sensitivity is 1.0.

The calculation is repeated for each adjustable parameter.

Typical prompts and responses are as follows.

Enter name of PEST control file: pestcase.pst

Enter observation reference variance: 2.5

Enter name of parameter uncertainty file: param.unc

Enter no. of singular values before truncation: 12

Enter name for output file: var.tab

Once PARVAR1 has been informed of the name of a PEST control file, it immediately

checks that the corresponding Jacobian matrix file is also present; if this is not the case it

ceases execution with an appropriate error message. It ignores all regularisation observations

and prior information that is contained in the PEST control file when computing post-

calibration parameter error variance.

As usual, the observation reference variance can be calculated as the actual or estimated

(measurement) objective function divided by the number of non-zero-weighted, non-

regularisation observations included in the calibration dataset.

The format of a parameter uncertainty file is specified in section 2.5 of this manual.

The first part of a PARVAR1 output file is shown below.

Parameter error variances for 12 singular values

 parameter variance_1 variance_2 total_variance standard_deviation

 k_ppt1 0.5830897 1.1113309E-03 0.5842010 0.7643304

 k_ppt2 0.5905922 3.2496525E-04 0.5909172 0.7687114

 k_ppt3 0.5957456 1.2426367E-04 0.5958699 0.7719261

 k_ppt4 0.5886176 6.6431960E-04 0.5892819 0.7676470

 k_ppt5 0.5885078 6.6709287E-04 0.5891749 0.7675773

 k_ppt6 0.5956354 1.3614296E-04 0.5957715 0.7718624

 k_ppt7 0.5913795 2.6715074E-04 0.5916467 0.7691857

 k_ppt8 0.5817068 1.3035155E-03 0.5830103 0.7635511

 k_ppt9 0.5420429 7.3421960E-03 0.5493851 0.7412052

 k_ppt10 0.5616598 3.4346757E-03 0.5650944 0.7517276

 k_ppt11 0.5856337 7.0444812E-04 0.5863381 0.7657272

 etc.

Figure 10.7 Part of a PARVAR1 output file.

In the table that is recorded on the PARVAR1 output file, “variance_1” and “variance_2”

refer to the null space and solution space contributions to total posterior parameter error

variance; these are the first and second terms of equation 10.3.1. These sum to the total

parameter error variance, the square root of which is the post-calibration parameter standard

deviation; the last of these is tabulated in the final column of the PARVAR1 output file.

10.12 PREDUNC1

10.12.1 General

The PREDUNC suite of programs have much in common with the PREDVAR suite of

programs. However their major difference is that they calculate predictive uncertainty

variance rather than predictive error variance. Hence parameter importance (PREDUNC4)

Linear Error and Uncertainty – Part I 128

and observation data worth (PREDUNC5) are assessed in terms of their effects on predictive

uncertainty rather than on predictive error variance. (Note that the value of a parameter can

be considered to be a model prediction; the sensitivity vector for this prediction has elements

of zero, except for that pertaining to the parameter of interest, for which the sensitivity value

is 1.0.)

The PREDUNC suite of programs base their analyses on equations 7.4.1 and 7.4.2 presented

in Doherty (2015); these are the same equation (the linearized form of Bayes equation) but

expressed in different ways. The assumptions that underpin derivation of these equations are

as follows.

1. The model is linear, so that its action can be replaced by a Jacobian matrix (the Z

matrix in the equations referred to above);

2. Prior parameter probabilities expressed by the covariance matrix C(k) are Gaussian;

3. Measurement noise expressed by the covariance matrix C(ε) is Gaussian.

PREDUNC1 is the simplest member of the PREDUNC suite. Its purpose is solely to calculate

the pre- and post-calibration (i.e. prior and posterior) uncertainty variance of a prediction.

(Recall that the variance is the square of the standard deviation.)

10.12.2 Using PREDUNC1

Use of PREDUNC1 is very similar to that of PREDVAR1. However a list of singular values

is not required for computation of σ2
s (i.e. the uncertainty variance of prediction s); hence

singular values are not requested.

Like PREDVAR1, PREDUNC1 commences execution with the prompt

Enter name of PEST control file:

PREDUNC1 checks that a JCO file exists which complements the PEST control file. If it

does not exist, PREDUNC1 ceases execution with an appropriate error message.

PREDUNC1 (and other members of the PREDUNC suite) will also cease execution with an

error message if the PESTMODE variable in the PEST control file is set to “regularisation”.

If your PEST file includes regularisation observations and/or prior information, these can be

removed using the SUBREG1 utility. A complementary JCO file for this new PEST control

file can then be built using the JCO2JCO utility.

PREDUNC1’s next prompt is

Enter observation reference variance:

As is done by members of the PREDVAR utility suite, PREDUNC-suite programs obtain

statistics of measurement noise (i.e. the C(ε) matrix) from the user-nominated PEST control

file. Where measurement weights are employed in this file, PREDUNC1 assumes that the

square of each such weight is proportional to the inverse of the variance of the noise

associated with the respective measurement, the proportionality constant being the reference

variance σ2
r. Thus the standard deviation of measurement noise associated with each

measurement is presumed to be σr times the inverse of the weight ascribed to that

measurement, where σr is the square root of the reference variance supplied by the user.

Where an observation covariance matrix is supplied for some or all observations, this same

reference variance is assumed to apply.

A value for the reference variance can be calculated by dividing the calculated or expected

value of the objective function by the number of non-zero-weighted observations featured in

the inverse problem.

Linear Error and Uncertainty – Part I 129

PREDUNC1’s next prompt is

Enter name of parameter uncertainty file:

in response to which the name of a file specifying prior parameter uncertainties (i.e. the C(k)

matrix) must be supplied; see section 2.5 of this manual for specifications of this type of file.

PREDUNC1’s next prompt is

Enter name of predictive sensitivity matrix file:

The response to this prompt must be the name of a file written by a program such as

JROW2VEC which lists (as a vector) the sensitivity of a prediction to each adjustable

parameter. Note that the ordering of parameters in the predictive sensitivity file does not need

to be the same as that in the PEST control file; nor does it matter if extra parameters are cited

in this file.

Next PREDUNC1 asks

Use which version of linear predictive uncertainty equation:-

 if version optimized for small number of parameters - enter 1

 if version optimized for small number of observations - enter 2

 Enter your choice:

The “version optimised for small number of parameters” is equation 7.4.2 of Doherty (2015);

the version optimised for small number of observations is equation 7.4.1. If in doubt chose

the first of these alternatives as its calculation requires fewer matrix operations.

PREDUNC1 next computes the pre- and post-calibration uncertainty of the prediction, and

writes these to the screen.

Unlike PREDVAR-suite utilities, PREDUNC-suite utilities do not compute separate

contributions to predictive error variance made by the calibration solution and null spaces, for

no singular value decomposition is undertaken of the weighted sensitivity matrix. However

contributions made by these spaces can be computed in an indirect way by increasing the

weights assigned to all measurements (or decreasing the value supplied for the reference

variance). When measurement weights are very high (and hence measurement noise is

assumed to be low), the resulting predictive uncertainty is attributable solely to

nonuniqueness of solution of the inverse problem; that is, it is a direct outcome of the

existence and size of the calibration null space.

10.13 PREDUNC4

PREDUNC4 is to PREDUNC1 what PREDVAR4 is to PREDVAR1. That is, it computes the

decrease in predictive uncertainty where groups of parameters are sequentially removed from

the parameter estimation process, the names of these parameters being supplied in a

“parameter type list file” (see documentation of PREDVAR4 for specifications of this file).

This decrease in uncertainty accrued through acquiring perfect knowledge of the values of

this group of parameters can be loosely described as the “contribution that this group of

parameters makes to the uncertainty of the prediction”. Unlike PREDVAR4, PREDUNC4

does not prompt for a singular value list file, for the means by which predictive uncertainty is

calculated is the same as that employed by PREDUNC1, this not requiring that singular value

decomposition of the weighted Jacobian matrix be undertaken.

Refer to documentation of PREDVAR4 for usage details of PREDUNC4. In general, it is

better to use PREDUNC4 than PREDVAR4 for assessment of parameter importance with

respect to a particular prediction, as uncertainty is an easier and “more natural” quantity to

Linear Error and Uncertainty – Part I 130

compute than error.

10.14 PREDUNC5

PREDUNC5 is to PREDUNC1 what PREDVAR5 is to PREDVAR1. That is, it computes

alterations to the uncertainty of a prediction where groups of observations are sequentially

added to, or subtracted from, the calibration dataset. The names of these observations are

supplied in an “observation type list file”, specifications for which are supplied with

documentation of PREDVAR5. Unlike PREDVAR5, PREDUNC5 does not prompt for the

name of a singular value list file, for the means by which predictive uncertainty is calculated

is the same as that employed by PREDUNC1, this not requiring that singular value

decomposition of the weighted Jacobian matrix be undertaken.

Refer to documentation of PREDVAR5 for usage details of PREDUNC5. In general, it is

better to use PREDUNC5 than PREDVAR5 for assessment of data worth with respect to a

particular prediction, as uncertainty is an easier and “more natural” quantity to compute than

error.

10.15 PREDUNC6

PREDUNC6 performs a similar function to PREDUNC1 in that it computes pre- and post-

calibration predictive uncertainty. Unlike PREDUNC4 and PREDUNC5 however, it does not

compute any “value-added” information such as contributions made to predictive uncertainty

by different parameters, or alterations to predictive uncertainty promulgated through

inclusion or exclusion of observations from the calibration process.

In contrast to PREDUNC1, PREDUNC6 computes pre-and post-calibration uncertainties for

multiple predictions. It records the outcomes of its calculations in a tabular data file that is

readily amenable to processing using other software.

Like PREDUNC1, PREDUNC6 issues the following prompts when it commences execution;

typical responses are also shown.

Enter name of PEST control file: case13.pst

Enter observation reference variance: 1.0

Enter name of parameter uncertainty file: param.unc

As usual, a JCO file must exist to complement the PEST control file. For the above example

this file would be named case13.jco.

PREDUNC6’s next prompt is

Enter name of predictive sensitivity JCO file:

This file must be a Jacobian matrix file written by PEST. Hence it should contain the

sensitivities of one or many “observations” which are cited in its complementary PEST

control file to all adjustable parameters cited in that file. PREDUNC6 assumes that every

“observation” is in fact a prediction whose uncertainty is to be computed. For this to be

possible, the Jacobian matrix file should feature the same parameters as those that are

featured in the PEST control file on which the inverse problem is based - that is the PEST

control file whose name is supplied in response to the first of PREDUNC6’s prompts.

However it does not matter if the predictive sensitivity JCO file features more parameters

than this, or if the parameters are represented in a different order; PREDUNC6 will undertake

the necessary adjustment and re-ordering of predictive sensitivity vectors.

Linear Error and Uncertainty – Part I 131

Next PREDUNC6 prompts for the name of the file that it must write.

Enter name for output uncertainty table file:

Upon completion of PREDUNC6 execution, this file will contain a listing of all predictions

named in the predictive sensitivity JCO file, together with the pre-calibration and post-

calibration uncertainty, and uncertainty variance, associated with each (the latter is the square

of the former).

PREDUNC6’s final prompt is

Use which version of linear predictive uncertainty equation:-

 if version optimized for small number of parameters - enter 1

 if version optimized for small number of observations - enter 2

 Enter your choice:

See documentation of PREDUNC1 for details of these options. If in doubt enter “1”.

Note the following.

1. Don’t forget the extremely useful JCO2JCO utility. This allows you to modify a

PEST control file (for example by removing observations), and to then obtain a

complementary JCO file. This can be very useful in constructing the predictive

sensitivity JCO file required by PREDUNC6.

2. Parameters cited in the PEST control file on which the predictive sensitivity JCO file

is based must be logarithmically transformed (or not) in the same way as in the PEST

control file which defines the inverse problem. Similarly, if a parameter is a parent

parameter to tied parameters in the latter file, it must perform the same role in the

former file. These measures ensure consistency of sensitivities.

10.16 PREDUNC7

The PREDUNC7 utility is similar to the PREDUNC1 utility. However instead of computing

the uncertainty of a prediction, it computes the covariance matrix pertaining to the posterior

parameter probability distribution. This can be computed in either of two ways. The first is

through equation 7.3.15 of Doherty (2015) while the second is through equation 7.3.4 of

Doherty (2015). Both equations compute the same thing; however the matrix manipulations

are somewhat different. In theory, use of the second equation is slow if there are many

observations while use of the first equation is slow if there are many parameters. In practice,

because equation 7.3.4 involves a large number of matrix multiplications, its use can incur

numerical errors where parameter numbers are large. In either case, calculation of the

posterior covariance matrix can take a long time where parameter numbers are very high.

PREDUNC7’s prompts are as follows.

Enter name of PEST control file:

Enter observation reference variance:

Enter name of prior parameter uncertainty file:

Enter name for posterior parameter covariance matrix file:

Enter name for posterior parameter uncertainty file:

Use which version of linear predictive uncertainty equation:-

 if version optimized for small number of parameters - enter 1

 if version optimized for small number of observations - enter 2

Enter your choice:

Linear Error and Uncertainty – Part I 132

Option 1 uses equation 7.3.15 while option 2 uses equation 7.3.4 from Doherty (2015). If in

doubt use option 1 (because it is less susceptible to numerical error).

The covariance matrix computed by PREDUNC7 is written in PEST matrix file format to a

file of your choice. Note that each row of the matrix wraps onto a new line after each

succession of eight element values. The posterior parameter uncertainty file simply cites this

matrix file within a COVARIANCE_MATRIX block. The posterior parameter uncertainty

file can be used by programs such as RANDPAR to generate random samples from the

posterior parameter probability distribution.

In calculating C(ε) PEST divides weights provided in the “observation data” section of the

PEST control file by the square root of the reference variance supplied in response to the

second of the above prompts. The reference variance can be approximated as the objective

function achieved or expected through calibration divided by the sum of non-zero-weighted

observations. (It is not wise to include prior information in the PEST control file provided to

PREDUNC7 - or to any other member of the PREDUNC suite - as expert parameter

knowledge is accounted for in the prior parameter uncertainty file.)

10.17 GENLINPRED

10.17.1 General

GENLINPRED stands for “generalized linear predictive uncertainty/error analyser”. It is

actually a driver program which runs a number of other PEST utilities, these being

SCALEPAR, JROW2VEC, SUPCALC, IDENTPAR, PREDUNC1, PREDUNC4,

PREDUNC5, PREDVAR1, PREDVAR4 and PREDVAR5. As such, it carries out a variety

of tasks related to assessment of the uncertainty and/or error variance of a parameter or

prediction, collecting the information that it gathers into a single output file. Tables within

this file are readily pasted into Microsoft EXCEL, or any other graphing program, for

graphical analysis.

Because it is a driver program, and because it therefore runs other programs to carry out

various computational tasks, some of these tasks are repeated by the different programs (for

example the task of undertaking singular value decomposition of a weighted sensitivity

matrix). Thus, from a computational point of view, using GENLINPRED to conduct

error/uncertainty analysis is inefficient. However from a user’s point of view its use can be

efficient, for it performs a multitude of related tasks based on minimal user keyboard input

and/or input file preparation.

10.17.2 Tasks Carried out by GENLINPRED

GENLINPRED carries out some or all (as requested by the user) of the following tasks.

1. It optionally uses SUPCALC to compute the optimum dimensionality of the

calibration solution and null spaces for a particular parameter estimation problem.

2. On the basis of this subdivision (or using calibration solution and null space

dimensionalities supplied by the user), it can compute the identifiability of each

parameter (using the IDENTPAR utility) and the relative error variance reduction of

each parameter (using PREDVAR1A). It can also compute the relative uncertainty

variance reduction of each parameter using the PREDUNC1 utility; note that this

latter quantity does not require subdivision of parameter space into solution and null

subspaces (and is far quicker to calculate than relative error variance reduction).

Linear Error and Uncertainty – Part I 133

3. If requested, GENLINPRED computes the solution space and null space components

of the total error variance of a nominated prediction (which may in fact be the

estimated value of a parameter) at different singular value truncation levels. This

allows you to graph the dependence of these quantities on the number of pre-

truncation singular values employed in calibration of a model. It uses PREDVAR1A

for this purpose.

4. Pre- and post-calibration uncertainties of a nominated prediction can be computed

using the PREDUNC1 utility.

5. The contributions to the pre- and post-calibration error variance and/or uncertainty of

a nominated prediction (or parameter) made by different parameter groups, or by

different individual parameters, can be computed using the PREDVAR4 and/or

PREDUNC4 utilities.

6. The worth of different observation groups, or of different individual observations, in

lowering the post-calibration error variance and/or uncertainty of a nominated

prediction (or parameter) can be computed using PREDVAR5 and/or PREDUNC5 by

selectively removing those observation (groups) from the total calibration dataset and

monitoring the rise in predictive error variance (uncertainty variance) thereby

incurred.

7. The worth of different observation groups, or of different individual observations, in

lowering the post-calibration error variance and/or uncertainty of a nominated

prediction (or parameter) can be computed using PREDVAR5 and/or PREDUNC5 by

selectively adding those observation (groups) to a null calibration dataset and

monitoring the fall in predictive error variance (uncertainty variance) thereby accrued.

All operations are carried out on a PEST input dataset supplied by the user. GENLINPRED

internally modifies this dataset by scaling parameters by their pre-calibration variabilities.

Where calibration is notionally, or actually, implemented using truncated singular value

decomposition, this operation results in lower predictive error variance than where unscaled

parameters are estimated through the inverse problem solution process.

10.17.3 Predictive Error Variance and Predictive Uncertainty

As is explained elsewhere in the present chapter, PREDVAR-suite utilities calculate the error

variance of a particular prediction (which may also be a parameter), whereas PREDUNC-

suite utilities calculate the uncertainty of that prediction (or parameter). As is explained by

Doherty (2015), uncertainty is an intrinsic quality of parameters and of the calibration

dataset, and is obtained by conditioning a pre-calibration (i.e. prior) parameter uncertainty

covariance matrix on the basis of observations comprising the calibration dataset. On the

other hand, “error” is a concept that is associated with the notion of calibration, and

quantifies the extent to which a prediction made by a calibrated model may be wrong. The

PREDVAR utility suite notionally implements model calibration using truncated singular

value decomposition as an inverse problem solution device; truncation takes place at that

singular value at which the error variance of the prediction of interest is minimized. It can be

shown that posterior predictive (or parameter) uncertainty is always less than posterior

predictive (or parameter) error variance; see section 7.4.1.3 of Doherty (2015).

It is important to note that even though GENLINPRED (and the utility programs that it runs)

computes predictive uncertainty and predictive error variance, it does not actually make a

prediction; nor does it calibrate a model. Its calculations are made on the basis of sensitivities

Linear Error and Uncertainty – Part I 134

alone, and no parameter adjustment actually takes place. Moreover, a model does not need to

be actually calibrated for GENLINPRED to be employed for calculation of quantities that are

salient to model calibration, parameterisation, and predictive uncertainty analysis.

Sensitivities calculated on the basis of current parameter values are employed, whether or not

those parameter values result in a calibrated model. Naturally, the results of GENLINPRED

analysis may show some degree of parameter-dependence for seriously nonlinear models

where sensitivities are strong functions of parameter values. However experience has

demonstrated that broad outcomes of linear analysis are robust on most occasions for most

models. Thus, for example, if a particular parameter group is identified as making a large

contribution to the uncertainty of a particular prediction relative to that made by other

parameter groups on the basis of current parameter values, that conclusion is likely to be

robust. However the actual number calculated for that contribution is likely to change with

parameter values.

10.17.4 The Prior Covariance Matrix

As is discussed by Doherty (2015), highly-parameterized error/uncertainty analysis requires

that the user provide a covariance matrix of innate parameter variability; this is referred to as

the C(k) matrix in Doherty (2015) and in equations provided in this manual. This can also be

viewed as a covariance matrix of pre-calibration parameter uncertainty. As such, this matrix

provides a statistical encapsulation of what is known, and of what is unknown, about system

properties before an attempt is made to refine that knowledge through matching model

outputs to historical observations of system state. Lack of knowledge of system parameters is

expressed by the fact that the C(k) matrix has non-zero diagonal elements, thereby

demonstrating that parameter values are only approximately known. Knowledge is expressed

by the fact that these diagonal elements are finite, and that non-zero off-diagonal elements

may depict a propensity for spatial correlation of heterogeneous parameter fields.

The C(k) matrix is supplied to GENLINPRED through a parameter uncertainty file. The

format of this file is discussed in section 2.5 of this manual. This file can be easily prepared

using a text editor. Where pilot points parameterisation is employed, assistance in its

preparation can be obtained from the PARCOV utility and from the PPCOV family of

utilities supplied with the PEST Groundwater Data Utilities suite.

It is important to note that if a parameter is designated as log-transformed in the PEST control

file supplied to GENLINPRED, its pre-calibration uncertainty, as provided in the uncertainty

file, must pertain to the log (to base 10) of that parameter.

10.17.5 Observations and Predictions

Use of GENLINPRED requires that a PEST control file and corresponding JCO file be

provided to it. The latter can be obtained from the former by running PEST with the

NOPTMAX termination control variable set to -1 or -2. Observations cited within the

“observation data” section of the PEST control file comprise the calibration dataset. These

provide the basis for estimation of parameters through notional calibration implemented

using truncated singular value decomposition by the PREDVAR suite of programs; at the

same time, they provide the basis for conditioning of pre-calibration parameter uncertainties

undertaken using the PREDUNC suite of programs.

The prediction whose uncertainty and error variance is analysed by GENLINPRED can be

any function of the adjustable parameters cited in the user-supplied PEST control file. For a

linear model, this function is represented by its sensitivities to all adjustable parameters.

Linear Error and Uncertainty – Part I 135

These sensitivities may be provided through a “sensitivity file”. This file must adopt PEST

matrix file format – see section 2.4 of this manual; sensitivities must be provided as a vector,

that is, as a matrix with one column and with one row for each adjustable parameter.

Alternatively predictive sensitivities may comprise one row of a Jacobian matrix, either the

Jacobian matrix that complements the PEST control file which defines the inverse problem,

or another Jacobian matrix altogether that was produced on the basis of a PEST control file

that was built specifically for obtaining the sensitivities of one or a number of predictions to

the same adjustable parameters as those that are employed in the inversion process. A third

possibility is that the “prediction” may actually be a parameter. In this case GENLINPRED

writes the prediction sensitivity file itself; sensitivities of this prediction to all parameters,

except for the one in question, are zero.

A particularly easy way to implement predictive error and uncertainty analysis is to build a

PEST control file that includes not only observations that are employed in the calibration

process, but also one or a number of predictions that are to be subjected to error/uncertainty

analysis. When PEST is then run with NOPTMAX set to -1 or -2, sensitivities of these

predictions to all adjustable parameters are automatically computed, along with the

sensitivities of observations comprising the calibration dataset. If the “prediction

observations” are assigned weights of zero, they do not actually take part in the inversion

process; they are simply “carried” in that process for the purpose of obtaining sensitivities.

When using GENLINPRED, the user then informs it that predictive sensitivities reside in the

JCO file that complements the PEST control file that is supplied to it.

10.17.6 Making GENLINPRED Easier to Use

As it requires more information than can be provided through the command line,

GENLINPRED gathers information from the user through the user’s responses to a series of

prompts. Unfortunately GENLINPRED issues many prompts, and it is easy to make a

mistake in responding to one of them. Because of this, GENLINPRED provides backtracking

capabilities. If you respond to any prompt by simply pressing “e” (for “escape”) followed by

<Enter>, GENLINPRED will take you back to its previous prompt so that you may provide

an alternative response to this prompt if you wish. This process can continue right back to

GENLINPRED’s first prompt.

In order to reduce the need to provide responses for a large number of prompts,

GENLINPRED provides you with two options for prompt sequences. As will be seen shortly,

through one of its early prompts GENLINPRED provides you with the option of receiving an

abbreviated set of prompts. If this option is selected, GENLINPRED does not ask whether

you wish to undertake parameter estimability analysis; instead it assumes that this is not

required. Furthermore, when undertaking parameter/predictive error/uncertainty analysis, no

prompts are in fact issued for error analysis, so that only uncertainty analysis is undertaken.

As a further means of enhancing ease of use, a default response is provided for most of

GENLINPRED’s prompts; by pressing the <Enter> key, the default is accepted. You should

note, however, that while responding with a simple press of the <Enter> key may be the

easiest way to respond to a prompt, it is not always the correct way. This applies in particular

to prompts regarding observation weights and the use of parameter bounds as measures of

pre-calibration parameter uncertainty.

As a final means to expedite GENLINPRED user interaction, GENLINPRED writes an

optional “response file”. This records your responses to each of its prompts. Suppose that this

file is named genlinpred.rsp (it is your choice). Then after it has been run on the basis of

Linear Error and Uncertainty – Part I 136

keyboard input supplied by you in response to each of its individual prompts, GENLINPRED

can then be run again using the command

genlinpred < genlinpred.rsp

to produce identical output. Alternatively, one or more responses to GENLINPRED’s

prompts can be altered through editing of this file before issuing the above command.

Because GENLINPRED labels its prompts when writing the response file (see the figure

below) this is easy to do. However if you do this, it is important to note the following.

1. The number and nature of GENLINPRED’s prompts depend on answers to previous

prompts. Hence if, for example, you alter a “y” to a “n” in the response file, this may

invalidate the file, as the ensuing questions may be different, or may not be asked at

all. However responses to prompts for items such as filenames, number of singular

values, the name of a prediction or parameter etc., can be altered with impunity.

2. When reading its response file, GENLINPRED ignores all characters following the

“!” character. This character should not be removed from any line of the file.

However it, together with ensuing text, can be moved to the right to make room for a

longer response to a particular prompt (this will apply only to filenames) if this is

required.

! GENLINPRED response file. Beware of altering single letter responses as ensuing GENLINPRED

prompts may be different

f ! abbreviated or full input?

temp1.pst ! PEST control file

b ! bounds or uncertainty file for parameter uncertainties?

y ! are weights the inverse of measurement uncertainty?

genlinpred.out ! GENLINPRED output file

y ! perform global parameter estimability analysis?

y ! compute parameter identifiabilities?

y ! compute relative parameter error reduction?

y ! use SUPCALC to estimate solution space dimensionality?

y ! compute relative parameter uncertainty reduction?

y ! perform comprehensive analysis of prediction or parameter?

ar10 ! name of prediction or parameter to analyse

ar10.vec ! file to read predictive sensitivities or "p" for parameter

y ! compute solution/null space contributions to predictive error?

y ! compute predictive uncertainty?

y ! compute parameter contributions to parameter or predictive error?

y ! compute parameter contributions to uncertainty?

g ! for individual parameters or parameter groups?

y ! compute observation worth with respect to error?

y ! compute observation worth with respect to uncertainty?

g ! for individual observations or for observation groups?

y ! over-ride SUPCALC calculation of solution space dimensions?

e ! escape

y ! over-ride SUPCALC calculation of solution space dimensions?

7 ! new solution space dimensions

Figure 10.8 Example of a GENLINPRED response file.

10.17.7 Using GENLINPRED

Because GENLINPRED runs other programs of the PEST suite, it is important to ensure that

the executable files for these programs reside in a directory that is cited in the PATH

environment variable.

GENLINPRED begins execution with the prompt

Enter name of response file (<Enter> if none):

In response to this prompt, provide the name of the file to which ensuing GENLINPRED

prompts, together with your responses to these prompts, will be recorded. Alternatively

simply press the <Enter> key. Next GENLINPRED asks

Linear Error and Uncertainty – Part I 137

Use abbreviated or full input? [a/f] (<Enter if “f”):

If the “a” option is chosen, a subset of the following set of prompts will be offered, as was

mentioned above.

Having dealt with the preliminaries, GENLINPRED now gets down to business. It asks

Enter name of PEST control file:

Supply the name of a PEST control file which meets the following specifications.

1. It must contain no prior information.

2. It must instruct PEST to run in “estimation” mode.

3. A JCO file corresponding to this file must be present in the same directory as that in

which the PEST control file resides.

If any of these conditions are violated GENLINPRED will cease execution with an

appropriate error message.

GENLINPRED next asks for a C(k) matrix. Two options are available, as evinced by the

following prompt.

Use bounds or uncert file for param uncertainties [b/u] <Enter> if "b":

If you respond with “b”, GENLINPRED builds a C(k) matrix itself, this being a diagonal

matrix which thereby assumes statistical independence of all adjustable parameters. The

standard deviation of each parameter is obtained by dividing the difference between its upper

and lower bounds (as represented in the PEST control file) by 4, this strategy being based on

the assumptions that

1. parameters are normally distributed, and

2. their upper and lower bounds approximately demarcate their 95% confidence

intervals.

On the other hand, if your response to the above prompt is “u”, GENLINPRED prompts for

the name of an uncertainty file. The prompt is

Enter name of parameter uncertainty file:

Calculation of predictive error/uncertainty requires knowledge of the statistics of

measurement noise. GENLINPRED assumes that the weight provided for each observation in

the PEST control file is inversely proportional to the uncertainty associated with each field

measurement. First it asks

Are weights the inverse of measurement uncertainty? [y/n] <Enter> if "y":

A response of “y” signifies a proportionality constant of 1.0. However, if your response to the

above prompt is “n”, GENLINPRED asks

Enter factor for weights to make this so:

Provide a factor here by which all weights should be multiplied in order for the inverse of

each of them to thereby equal the uncertainty associated with the measurement to which it is

assigned. The square of this factor will also be applied to the inverse of any observation

covariance matrices supplied in the “observation groups” section of the PEST control file.

Conceptually, weights are equal to the inverse of measurement uncertainties when the

calibration objective function is roughly equal to the number of non-zero-weighted

observations comprising the calibration dataset (for then each squared weighted residual is,

Linear Error and Uncertainty – Part I 138

on average, approximately equal to 1.0). Practically, however, weights supplied to

GENLINPRED may need to be lower than this (suggesting higher measurement noise), to

account for the fact that the presence of structural error within the measurement dataset

(which always shows a high degree of temporal and/or spatial correlation) diminishes its

information content to a greater degree than the presence of noise which shows little or no

spatial/temporal correlation. This is further discussed below.

The easiest way to ensure that weights are at least approximately equal to

measurement/structural uncertainty (so that a response of “y” can be provided for the above

prompt) is to use the PWTADJ2 utility. This builds a PEST control file in which weights are

calculated to be commensurate with misfit attained through a previous calibration exercise.

Next GENLINPRED prompts for the name of its output file. This is the file to which the

outcomes of all of GENLINPRED’s analyses will be written. The prompt is

Enter name for output file (<Enter> if genlinpred.out):

GENLINPRED’s next prompt is

Perform global parameter estimability analysis? [y/n] <Enter> if "n":

This type of analysis pertains only to parameters. If the response to the above prompt is “y”

you are given the option of undertaking the following types of analysis.

Compute parameter identifiabilities? [y/n] <Enter> if "y":

Compute relative parameter error reduction? [y/n] <Enter> if "n":

Use SUPCALC to estimate soln space dimensions? [y/n] <Enter> if "y":

Compute relative parameter uncertainty reduction? [y/n] <Enter> if "n":

Note that the third of the above questions is asked only if the response to either of the first

two prompts is “y”, for calculation of both parameter identifiability and relative parameter

error reduction requires knowledge of the dimensions of the calibration solution (and hence

null) spaces. These can be evaluated by SUPCALC; if so, you have the ability to over-ride

SUPCALC’s calculations (see below). Alternatively, you may supply the dimensions of the

calibration solution space yourself and dispense with the running of SUPCALC altogether.

Hence if the response to the third of the above prompts is “n”, GENLINPRED asks

Enter solution space dimensionality:

in response to which a number greater than zero and less than or equal to the number of

adjustable parameters and/or observations featured in the PEST control file must be supplied.

GENLINPRED’s next prompt is

Perform comprehensive analysis of a prediction/param? [y/n] <Enter> if "y":

If the response to this prompt is “n”, GENLINPRED commences work (see below).

Alternatively, if the response to this prompt is “y”, GENLINPRED then inquires

Enter name of prediction/parameter to analyse:

If the name of a prediction is supplied in response to the above prompt, GENLINPRED asks:

Enter file to read its sensitivities ["p" if a parameter]:

If you wish to analyse the error/uncertainty of a particular parameter as if it were a prediction,

then that parameter’s name should be provided in response to the preceding prompt. The fact

that this is a parameter must then be indicated by responding to the current prompt with “p”.

Otherwise, provide the name of the file in which the sensitivities of the prediction to all

adjustable parameters featured in the inverse problem can be found. If the extension of the

supplied filename is “.jco”, GENLINPRED assumes that the file is a JCO file; it will then use

Linear Error and Uncertainty – Part I 139

the JROW2VEC utility to extract sensitivities from the pertinent row of this file, re-writing

these in PEST matrix file format. Alternatively, if any other filename extension is supplied,

GENLINPRED will assume that the predictive sensitivity file is already in PEST matrix file

format, with sensitivities recorded as a vector, i.e. as a matrix with a single column.

You are then presented with options for prediction/parameter analysis. These commence with

Compute total predictive error and soln/null space contribs? [y/n]:

Compute total predictive uncertainty? [y/n]:

An affirmative response to the first of the above prompts will result in GENLINPRED

running PREDVAR1 to compute predictive error variance at many different singular value

truncation levels, this providing the information through which graphs of solution and null

space contributions to predictive error variance versus number of singular values used in

estimation of parameters may be computed. An affirmative response to the second of the

above prompts will cause GENLINPRED to employ PREDUNC1 to compute the pre- and

post-calibration uncertainties of the chosen prediction or parameter.

GENLINPRED then asks

Compute parameter contributions to error? [y/n] <Enter> if "n":

Compute parameter contributions to uncertainty? [y/n] <Enter> if "y":

and, if the response to either of the above prompts is “y”,

For indiv parameters or for parameter groups? [i/g] <Enter> if "g":

PREDVAR4 and PREDUNC4 are employed for calculation of parameter contributions to

predictive error and uncertainty variance respectively. Contributions can be calculated for

either individual parameters or for groups of parameters. The latter is recommended, for the

former may take a long time. The names of parameter groups are read from the “parameter

groups” section of the PEST control file; the group to which each parameter belongs is cited

in the “parameter data” section of the PEST control file. Note that if a parameter group

contains no adjustable parameters, it is not featured in GENLINPRED’s analysis. Note also

that calculation of contributions to uncertainty is a far less numerically intensive procedure

than calculation of contributions to error as the latter requires calculation of error variance at

many different singular values so that it can be minimized; also uncertainty is a more

“natural” concept than error.

Next GENLINPRED asks

Compute observation worth wrt error? [y/n] <Enter> if "n":

Compute observation worth wrt uncertainty? [y/n] <Enter> if "y":

and, if the response to either of the above prompts is “y”:

For indiv observations or for observation groups? [i/g] <Enter> if "g":

PREDVAR5 and PREDUNC5 are employed for calculation of the worth of individual

observations, or groups of observations. The option to compute worth of groups of

observations or individual observations is selected in response to the last of the above

prompts; the “groups” option is recommended as the “individual” option may require too

much computation. Two means of calculating observation worth are provided by

PREDVAR5 and PREDUNC5; GENLINPRED uses both of these. One method is to compute

the increase in predictive error/uncertainty accrued through omitting the nominated

observation (group) from the calibration dataset; the other is to compute the decrease in pre-

calibration error/uncertainty incurred through having that observation (group) as the sole

member of the calibration dataset. Note that calculation of worth with respect to uncertainty

Linear Error and Uncertainty – Part I 140

is a far less numerically intensive procedure than calculation of worth with respect to error;

also uncertainty is a more “natural” concept than error.

GENLINPRED then gets down to work. Regardless of your selected processing options,

GENLINPRED first runs SCALEPAR to create a PEST input dataset based on scaled

parameters. Then it may run SUPCALC to compute an appropriate dimensionality for the

calibration solution and null spaces. If so, it writes the outcome of this calculation to the

screen and asks whether you would like to accept this, or override it. The prompt is

SUPCALC has recommended the use of N solution space dimensions

 for computation of parameter identifiability and relative

 error reduction.

Do you wish to over-ride this? [y/n] <Enter> if "n":

If your response is “y”, an appropriate solution space dimensionality must be provided (in

response to a GENLINPRED prompt requesting this); this is further discussed below. Note

that the dimensionality of the solution and null spaces only features in computation of

identifiability and relative parameter error reduction. Computation of relative parameter

uncertainty reduction, and of all prediction-related quantities, is independent of this choice.

Where uncertainty analysis is undertaken (by PREDUNC-suite programs) no formal

subdivision of parameter space into solution and null spaces is required. In contrast, where

error variance analysis is undertaken (by members of the PREDVAR suite), the predictive

error variance is minimised with respect to singular value number on each occasion that

predictive error variance is calculated; this can be a numerically intensive procedure.

10.17.8 Error and Uncertainty Tables

An inspection of tables produced by GENLINPRED may reveal the following.

1. Predictive error variance is greater than predictive uncertainty variance. (This is in

harmony with theory; see section 7.4.1.3 of Doherty, 2015.)

2. Some parameter contributions to predictive error variance can be slightly negative.

3. The worth of some observations, as assessed through their ability to lower predictive

error variance, can be slightly negative.

Unfortunately, analysis of predictive error is not as “clean” as that of predictive uncertainty.

It is a “granular” procedure as it depends on a (necessarily discontinuous) number of singular

values employed in the notional truncated singular value decomposition calibration exercise

through which it is assessed. Furthermore, it is not a Bayesian procedure; error limits are less

statistically efficient than are uncertainty limits. Nevertheless, it imitates what happens in

practice where a model is normally calibrated first and then used as a basis for predictive

error analysis in lieu of predictive uncertainty analysis because implementation of Bayesian

analysis in conjunction with highly-parameterized nonlinear models is a task that can attract

an overwhelming numerical burden. In the linear context, however, things are different, for in

this context parameter and predictive uncertainties can be calculated relatively easily

(provided the Gaussian assumption is valid). Hence the outcomes of uncertainty analysis

should be used in preference to the outcomes of error analysis when assessing parameter

importance and observation worth.

10.17.9 Identifiability

Computation of parameter identifiability requires that an estimate be provided of the

dimensionality of the calibration solution and null spaces. SUPCALC provides such an

Linear Error and Uncertainty – Part I 141

estimate. However its estimate is approximate, with a tendency for it to err on the side of too

large a solution space dimensionality, and too small a null space dimensionality. The reason

for this is that in most calibration contexts the bulk of “measurement noise” is in fact

structural noise. Unfortunately this has a spatial and temporal correlation structure that

SUPCALC (or anything else for that matter) cannot properly take into account. This

diminishes the information content of the calibration dataset, or at least the information that

can be transferred to model parameters. This, in turn, expands the null space to a higher

dimensionality than that calculated by SUPCALC under the assumption of limited

measurement noise correlation (an assumption that is implied in the use of weights for

observations rather than a covariance matrix). Hence there may be occasions when you

should over-ride SUPCALC’s estimate of the dimensionality of the calibration solution and

null spaces with a smaller estimate of the former (and thereby a larger estimate of the latter).

10.17.10 Pre- and Post-Calibration Parameter Contributions to Error/Uncertainty

Based on its running of PREDVAR4 and PREDUNC4, GENLINPRED tabulates pre- and

post-calibration contributions to predictive error/uncertainty made by different parameter

groups (or by individual parameters). Bar charts which depict these quantities are very

informative, for they convey to the user (amongst other things)

1. the effectiveness (or otherwise) of the calibration process in reducing the

contributions that different parameter types make to the errors/uncertainties of critical

predictions required of a model; and

2. the parameter types that still contribute significantly to these errors/uncertainties, even

after the model has been calibrated.

Plots such as these will often reveal that the post-calibration contribution that a parameter

makes to the error/uncertainty of a prediction of interest is greater than its pre-calibration

contribution. This enigmatic occurrence is an outcome of the definition of “contribution to

error/uncertainty” made by a particular parameter (or parameter group). This is defined as the

decrease in error/uncertainty of the prediction of interest accrued through gaining perfect

knowledge of the parameter in question (or of all parameters within a defined parameter

group).

Prior to calibration, the uncertainty of a particular prediction may have no relation to that of a

certain parameter (or group of parameters), because the prediction may be insensitive to that

parameter (or group of parameters). However that prediction may be sensitive to one or more

parameters with which the first parameter (or group of parameters) becomes correlated

through the parameter estimation process. This means that perfect knowledge of the first

parameter (group) allows better estimation of the second parameter (group) to take place

through the model calibration process; hence acquisition of better knowledge of the first

parameter (group) reduces the uncertainty of the prediction of interest, notwithstanding the

fact that this prediction is insensitive to it. The post-calibration “contribution” made by

members of the first parameter (group) to the uncertainty of the prediction of interest may

therefore be significant, even though it only influences this prediction indirectly through

calibration-induced parameter correlation.

10.17.11 PREDUNC Uncertainty Formulation

As documented in descriptions of PREDUNC1, PREDUNC4 and PREDUNC5, these

programs provide two different options for computation of predictive uncertainty and of

quantities which depend on this. One of these options is better used where parameter numbers

Linear Error and Uncertainty – Part I 142

are small while the other is more efficient where observation numbers are small.

GENLINPRED chooses the “efficient if low parameter numbers” option if the number of

adjustable parameters in the PEST control file is less than the number of adjustable

observations, and chooses the “efficient if low observation numbers” option otherwise.

Nevertheless where both observation and parameter numbers are high, the run times

associated with PREDUNC-suite programs, and hence with GENLINPRED, may be high.

Furthermore, there may be some occasions where use of one of these equations (particularly

the low observation number option) can induce numerical errors due to the large number of

matrix operations involved. Contact me if GENLINPRED computes obviously erroneous

quantities such as negative uncertainties and negative parameter contributions to predictive

uncertainty and I will alter GENLINPRED’s internal settings to alter its choice of equation.

10.17.12 Flexibility

As discussed above, GENLINPRED performs a variety of analyses, with the user having

many choices over the analyses that are actually undertaken on any given run. Should further

choices be required, or should numerical error arise because of inappropriate choice of the

PREDUNC uncertainty equation, you should run the programs that GENLINPRED runs

yourself (that is, members of the PREDVAR and PREDUNC suites), in order to undertake

the various types of analysis provided individually by each of the members of these utility

suites. (Note that there is nothing to be gained by running SCALEPAR prior to running a

PREDUNC-suite program.)

Linear Error and Uncertainty – Part II 143

11. Linear Error and Uncertainty – Part II

11.1 Introduction

11.1.1 General

The utility programs that are documented in this chapter are older than those documented in

the previous chapter. Many have not been used for a while, and they have not been upgraded

over time as other utilities, and PEST itself, have been updated. Nevertheless they all still

work, and some users may find them helpful. They focus on parameter and predictive error

rather than uncertainty. They rely on information forthcoming from a PEST run in which a

model was actually calibrated. Their analyses are therefore somewhat less general in nature

than those presented in the previous chapter.

11.1.2 Concepts

Post-Calibration Parameter and Predictive Error

Let k represent parameters employed by a model. Let k represent the parameter set achieved

through model calibration. From equation (5.5.10) of Doherty (2015) the covariance matrix

of post-calibration parameter error is calculated as

C(k - k) = (I - R)C(k)(I - R)t + GC()Gt (11.1.1)

where

k represents “true” model parameters (which are unknown);

k represents calibrated model parameters;

C(k) represents the prior parameter covariance matrix, this describing the innate

variability of real-world parameters;

C() represents the covariance matrix of measurement/structural noise, mostly

assumed to be diagonal;

R is the so-called “resolution matrix”; and

G is the matrix through which estimated parameter values (i.e. the elements of

k) are calculated from measurements (which are denoted as h in Doherty,

2015); G is referred to herein as the “parameter solution matrix”, or more

simply as the “G matrix”.

R is related to G through the equation

 R = GZ (11.1.2)

where Z specifies the relationship between model parameters and model outputs used in the

calibration process (see equation 10.3.6).

Let s be a model prediction whose sensitivities to model parameters are encapsulated in the

vector y. For a linear model, the “true” value of a model prediction is given by

 s = ytk (11.1.3a)

while its counterpart as calculated by the calibrated model is

 s = ytk (11.1.3b)

Linear Error and Uncertainty – Part II 144

Model predictive error is then obtained as

 s – s = yt(k - k) = -yt(I – R)k + ytG (11.1.4)

while model predictive error variance (i.e. the “variance of potential wrongness” of a

prediction made by a calibrated model) is given by

 2
s-s = yt(I – R)C(k)(I – R)ty + ytGC(ε)Gty (11.1.5)

Note that while derivation of these equations rests on an assumption of model linearity, they

are nevertheless approximately correct when applied to many nonlinear models. With some

modifications, they can also be used as a basis for nonlinear analysis; PEST’s null space

Monte Carlo methodology rests on equation (11.1.1).

Calculation of the R and G Matrices

Formulas for R and G featured in the above equations depend on the method used by PEST

to solve the inverse problem. For an overdetermined system, for which the regularisation

opportunities offered by truncated singular value decomposition and Tikhonov schemes are

not required, the resolution matrix R is simply I, the identity matrix. However in many real

world cases, barely overdetermined problems are rescued from numerical instability through

PEST’s use of a high-valued Marquardt lambda (which is a de-facto Tikhonov regularisation

device). Even where mathematical regularisation is formally introduced to a real world

problem, it is often insufficient to guarantee unequivocal numerical stability of solution of

that problem; hence PEST will often respond by raising the value of the Marquardt lambda,

this allow progress in solution of an inverse problem to be made when it may otherwise

founder.

The role of the Marquardt lambda in calculation of the R and G matrices is recognised in the

utility software described in the present chapter. It must be noted, however, that the

Marquardt lambda is not a very good regularisation device; in many cases it can lead to

inverse problem solutions which are not of minimised error variance, at the same time as it

can lead to distortion of the resolution matrix. Hence, whether using one of the specialist

regularisation devices offered by PEST to assist in solution of an inverse problem, or whether

using manual regularisation to promulgate inverse-problem well-posedness, attempts should

be made to keep the Marquardt lambda low.

Formulas used for calculation of R and G are now provided. Variables appearing in these

formulas are as follows.

Z This is the Jacobian matrix, which is a linearization of the relationship between

model parameters and model outputs used in the calibration process. Each row

of the Jacobian matrix provides derivatives of a particular model outcome for

which there is a complementary field measurement with respect to all

adjustable parameters. If a parameter is log-transformed, pertinent elements of

Z pertain to the log of that parameter. Note that for SVD-assisted inversion the

Z matrix refers to base parameters, not super parameters in the equations

below.

X This is the super-parameter Jacobian matrix whose elements are derivatives of

model outcomes with respect to super parameters estimated through SVD-

assisted inversion.

 The PEST-calculated Marquardt lambda.

Linear Error and Uncertainty – Part II 145

T The matrix of Tikhonov regularisation constraints. These constraints are

assumed to be of the form Tk = 0.

S The relative regularisation weight matrix (calculated from user-supplied

regularisation weights and/or user-supplied regularisation covariance

matrices).

2
 The PEST-calculated regularisation weight factor.

h The set of observations which constitute the calibration dataset. featured in

equations 11.1.1, 11.1.4 and 11.1.5 is the “noise” or “measurement error”

associated with these observations.

Q The observation weight matrix (calculated from user-supplied weights and

measurement covariance matrices).

V The matrix whose columns are orthogonal unit eigenvectors of ZtQZ (and

hence of Q1/2Z) as calculated through singular value decomposition

undertaken either during every iteration of the parameter estimation process

(when this is achieved through truncated singular value decomposition), or at

the beginning of the inversion process for determination of super parameters

(if using SVD-assisted parameter estimation).

E A diagonal matrix whose elements are the eigenvalues of ZtQZ (arranged in

decreasing order) determined through singular value decomposition. The

singular values of Q1/2Z are the square roots of these.

V1 The first k columns of V, where k is the singular value truncation limit, or the

number of super parameters employed in SVD-assisted parameter estimation.

E1 A diagonal matrix whose elements are the first k eigenvalues of ZtQZ.

The utility software described below through which R and G can be calculated employs the Z

(or X in the case of SVD-assisted inversion) matrix corresponding to the best parameter set

achieved through the parameter estimation process. This is stored in file case.jco where case

is the filename base of the PEST control file. Like case.rsd (see below) and case.par (the

parameter value file), case.jco is updated by PEST whenever an improved parameter set is

obtained. The Z matrix used by SVD-assist, however, is not updated through the parameter

estimation process. The utility software documented below provides the user with the option

of using the Z matrix computed during the pre-SVD-assist base parameter sensitivity run, or

of using a new Z matrix computed using optimised parameters; if possible, it is better to use

the latter.

Formulas through which R and G are calculated for different regularisation methodologies

used to solve the inverse problem are now presented. (Note that the use of LSQR in solution

of the inverse problem is not accommodated by the utility programs discussed in this

chapter.)

Overdetermined Parameter Estimation (with no Regularisation)

 R = (ZtQZ + I)-1ZtQZ (11.1.6a)

 G = (ZtQZ + I)-1ZtQ (11.1.6b)

Linear Error and Uncertainty – Part II 146

Tikhonov Regularisation

 R = (ZtQZ + 2TtST + I)-1ZtQZ (11.1.7a)

 G = (ZtQZ + 2TtST + I)-1ZtQ (11.1.7b)

Singular Value Decomposition with Zero Marquardt Lambda

 R = V1V1
t (11.1.8a)

 G = V1E1
-1V1

tZtQ (11.1.8b)

SVD-Assist

 R = V1(X
tQX + 2TtST + I)-1XtQZ (11.1.9a)

 G = V1(X
tQX + 2TtST + I)-1XtQ (11.1.9b)

The following should be noted.

1. PEST allows various combinations of different regularisation schemes to be used in

estimating parameter values. For example a non-zero Marquardt lambda can be used

with truncated SVD, truncated SVD can be used as a matrix equation solution scheme

in SVD-assisted parameter estimation, SVD-assist can be implemented with or

without Tikhonov regularisation, etc. All of these (and other) permutations can be

accommodated in the software described in this chapter.

2. Where some parameters are log-transformed, the pertinent elements of the R and G

matrices calculated through the above equations pertain to the logs of these

parameters.

3. Where SVD-assisted parameter estimation is undertaken, the R and G matrices

pertain to base parameters (or their logs), as used by the model – not the super

parameters used by PEST in the SVD-assisted inversion process.

11.1.3 Some Special Considerations

Regularisation Relationships

As mentioned above, where Tikhonov regularisation is employed it is assumed to be of the

type

 Tk = 0 (11.1.10)

In PEST, regularisation can be linear (supplied through prior information equations), or

nonlinear (supplied as observations). In both cases these are identified as regularisation

relationships through being assigned to an observation group whose name begins with

“regul”. However PEST also allows regularisation relationships of the following type to be

supplied

 Tk = j (11.1.11)

Calculation of the resolution matrix, as implemented in the utility software described below,

cannot accommodate relationships of the type expressed by equation 11.1.11. In most cases,

equation 11.1.11 can be transformed to equation 11.1.10 by appropriate parameter re-

definition.

Linear Error and Uncertainty – Part II 147

Initial Parameter Values

When using truncated singular value decomposition or SVD-assisted inversion, the integrity

of the predictive error variance analysis process requires that initial parameter estimates

(provided in the “parameter data” section of the PEST control file) correspond to most likely

parameters according to a user’s concept of parameter likelihood based on the current

modelling context and the characteristics of the modelled area. That is, they constitute

“minimum error variance” estimates of parameter values based on expert knowledge alone.

The Z Matrix in SVD-Assisted Inversion

As mentioned above, the Z matrix appearing in equation 11.1.9a provides the sensitivities of

model outputs for which there are corresponding field measurements to base parameters. In

SVD-assisted inversion these can far outnumber super parameters; computation of the Z

matrix can therefore be costly. Nevertheless, as described in part I of this manual, this matrix

must be calculated (based on initial parameter values) prior to undertaking SVD-assisted

inversion, and so should be available for calculation of the resolution matrix upon completion

of the SVD-assisted parameter estimation process. A better matrix to use in equation 11.1.9a

however is a Z matrix calculated on the basis of optimised parameter values. Thus, after an

SVD-assisted PEST run is complete, the PARREP utility can be used to build a new base

PEST control file using optimised base parameter values. NOPTMAX can be set to -1 or -2

in this new file so that when PEST is run, it terminates execution as soon as the Jacobian

matrix is filled. The resulting JCO file will then hold the Z matrix of base parameter

sensitivities, calculated using optimised parameter values.

11.1.4 PEST Requirements

The IRES Variable

As part of its normal suite of output files, PEST writes a “resolution data file” named case.rsd

where case is the filename base of the PEST control file. If desired, writing of this file can be

enabled or suppressed using the IRES variable featured on the last line of the “control data”

section of the PEST control file. If IRES is omitted, its value is assumed to be one if PEST is

run in “regularisation” mode and/or if PEST’s singular value decomposition or SVD-assist

functionality is activated, thus ensuring that file case.rsd is written. However if IRES is set to

zero, writing of case.rsd is suppressed. (It is automatically set to zero if PEST is run in

“predictive analysis” mode.)

The Resolution Data File

The resolution data file case.rsd is a binary file whose contents cannot be read by the user.

Instead it is used by the RESPROC utility described below for calculation of the R and G

matrices of equations 11.1.6 to 11.1.9.

Upon commencement of execution, PEST deletes an existing resolution data file having the

same filename base as that of the current PEST control file if such a file is found. This

eliminates the possibility that an old file will be mistaken for a new one if PEST did not run

long enough to produce this file, or if IRES was inadvertently set to zero.

PEST updates the resolution data file many times during the course of the parameter

estimation process such that data contained within it always pertains to the best parameters

achieved so far during that process; it is thus overwritten whenever the estimated parameter

set is improved.

Linear Error and Uncertainty – Part II 148

11.1.5 Program Versions

At the time of writing only 32 bit versions of the utility programs documented in the present

chapter are available. Hence they may not work for inversion problems which involve high

numbers of parameters and high numbers of observations. Contact me for a 64 bit version of

any of these utilities if you need them.

11.2 RESPROC

11.2.1 General

RESPROC stands for “resolution data postprocessor”. It is designed to be used after

completion of a PEST run. Normally PEST will have been run in “regularisation” mode, or

with SVDMODE set to 1, will have undertaken SVD-assisted inversion, or will have

implemented all of these aspects of its inversion functionality. However RESPROC can also

provide useful results after PEST has been run in “estimation” mode without the use of any

regularisation device (except the Marquardt lambda). In all cases a “resolution data file”

(named case.rsd where case is the filename base of the PEST control file) must have been

produced on that PEST run.

RESPROC’s task is to write a file containing both the R and G matrices pertaining to the

previous PEST run. These can then be used by utility programs documented below for

calculation of parameter and predictive error variances. In order to save disk space,

RESPROC writes the R and G matrices to binary files; however these matrices can be

rewritten in ASCII form if desired using the RESWRIT utility described below.

11.2.2 What RESPROC Does

RESPROC reads the following files, all associated with an existing PEST dataset

characterised by the case filename base:

1. a PEST control file (named case.pst);

2. a resolution data file (named case.rsd);

3. a Jacobian matrix file (named case.jco).

Note that at any stage of the parameter estimation process the contents of the latter two files

pertain to the best parameters achieved up to that stage of the process.

If the previous PEST run implemented SVD-assisted parameter estimation, the following

files are also read by RESPROC.

1. the base PEST control file in which base parameters are defined (named bcase.pst for

present purposes);

2. the base Jacobian matrix file in which base parameter sensitivities are recorded

(named bcase.jco);

3. optionally, an updated JCO file in which base sensitivities are recorded for optimised

base parameter values.

Where many parameters and observations are involved in the inversion process, RESPROC

may take a while to run, for the matrices that must be manipulated in the formulation of R

and G can be large. Fortunately, it need only be run once, for these matrices, once calculated,

can then be used for computation of the error variance of a variety of model predictions.

Linear Error and Uncertainty – Part II 149

As presently programmed there is a slight restriction on the use of RESPROC, which it is

hoped will not limit its usefulness too much. RESPROC insists that no covariance matrix in

lieu of observation weights be used for observation groups pertaining to measurements;

however it will accept the use of a covariance matrix for an observation group containing

regularisation information.

11.2.3 Running RESPROC

RESPROC is run using the command

resproc case outfile [/(n)L]

where

case is the filename base of the PEST control file pertaining to a completed

PEST run, and

outfile is the name of the RESPROC output file containing the R and G matrices.

(This file is referred to herein as a “binary resolution matrix file”.)

Optionally a switch can accompany command line arguments. This can be supplied “/L” or

“/nL”. If the “/L” switch is used, then formulas 11.1.6 to 11.1.9 are used in calculation of R

and G as shown. If the “/nL” switch is employed then the Marquardt lambda is set to zero for

the purpose of calculating R and G. If this switch is omitted, “/L” is assumed.

As it executes, RESPROC writes its current activities to the screen. As discussed above, these

activities involve manipulation of possibly large matrices. They also involve matrix inversion

and possibly singular value decomposition (which will need to be undertaken twice if the

previous inversion process was SVD-assisted and if truncated SVD was employed for

estimation of super parameters). Hence, as mentioned above, execution of RESPROC may

take a while. When it has completed calculation of R and G, RESPROC stores these matrices

in its output binary resolution matrix file, records this fact to the screen, and ceases execution.

11.2.4 SVD-Assisted Inversion

Where the previous PEST run implemented SVD-assisted inversion, RESPROC prompts the

user for some extra information as follows.

Select option for obtaining base parameter sensitivities:-

 enter "1" to use those in base Jacobian matrix file bcase.jco

 enter "2" to read from another JCO file

Enter your choice:

If your response to the above prompt is 2, RESPROC asks for the name of a JCO file. This

file must cite the same parameters and observations (including prior information) as the base

parameter PEST control file used in setup of the SVD-assisted run. This will be automatically

ensured if the following steps are taken for preparation and implementation of SVD-assisted

parameter estimation, and subsequent postprocessing.

1. A PEST case is set up involving base parameters and optional Tikhonov

regularisation constraints. Let us specify the name of the PEST control file for this

case as bcase.pst.

2. Base parameter sensitivities are calculated for this base case. These are stored in the

base Jacobian matrix file bcase.jco.

3. A super parameter dataset is constructed using SVDAPREP; let the new PEST control

file be named case.pst.

Linear Error and Uncertainty – Part II 150

4. PEST is run; after this run is complete, optimised base parameters reside in file

bcase.bpa.

5. PARREP is run to build a new base PEST control file, bcase1.pst, in which estimated

parameter values are employed as initial parameter values. The command is

parrep bcase.bpa bcase.pst bcase1.pst

6. NOPTMAX is set to -1 or -2 in bcase1.pst. Thus it calculates the Jacobian matrix (the

Z matrix of equation 11.1.9a), and then ceases execution. This matrix is stored in file

bcase1.jco.

7. When RESPROC is run, a 2 is supplied in response to the above prompt. bcase1.jco is

then supplied as the name of the alternative base Jacobian matrix file.

Limited experience suggests that use of a Z matrix calculated on the basis of optimised base

parameter values results in a better resolution matrix than use of the original Z matrix

contained in file bcase.jco which was used for definition of super parameters.

11.3 RESWRIT

The R and G matrices recorded by the RESPROC utility are not readable by the user. If it is

desired that these matrices be subject to inspection and/or plotting, they can be converted to

ASCII format using the RESWRIT utility.

RESWRIT is run using the command

reswrit resprocfile matfile1 matfile2

where

resprocfile is the name of a binary RESPROC output file,

matfile1 is a matrix file to which the resolution matrix will be written, and

matfile2 is a matrix file to which the G matrix will be written.

The matrix files written by RESPROC respect the formatting specifications outlined in

section 2.4 of this manual.

11.4 PARAMERR

11.4.1 General

PARAMERR constructs the parameter error covariance matrix C(k-k) of equation 11.1.1. It

stores the two terms on the right side of equation 11.1.1 in separate files. This saves you from

having to re-compute both of these terms if an input required by only one of them (for

example C(k) or C()) is altered. It also allows you to quantify the individual contribution to

overall predictive error variance made by “uncaptured system heterogeneity” on the one hand

(the first term), and measurement/structural error on the other hand (the second term). The

first diminishes as the level of fit between model outputs and field measurements increases,

while the second term grows as a higher level of model-to-measurement fits is attained; see

Doherty (2015) for further details.

11.4.2 Using PARAMERR

PARAMERR receives information from keyboard input supplied by the user in response to a

series of prompts. (It requires more information than can be easily supplied through

command line arguments.)

Linear Error and Uncertainty – Part II 151

Upon commencement of execution, PARAMERR prompts

Enter name of RESPROC output file:

in response to which the name of the binary file generated by RESPROC which holds the R

and G matrices should be provided. Next PARAMERR asks

Options are as follows:-

 to compute (I-R)C(k)(I-R)' - enter 1

 to compute GC(e)G' - enter 2

 to compute both - enter 3

Enter your choice:

As mentioned above, there will be occasions when only one of the two terms on the right side

of equation 11.1.1 requires computation. However if both are required, enter 3. If this is done,

PARAMERR’s next prompts is

Enter name of parameter uncertainty file:

Enter name for covariance matrix output file:

Enter name of observation uncertainty file:

Enter name for covariance matrix output file:

Alternatively, if your choice is 1, then only the first two prompts are issued while if your

response is 2 then only the third and fourth prompts are issued.

The parameter uncertainty file requested by the first of the above four prompts contains the

prior parameter covariance matrix C(k). The observation uncertainty file requested by the

third of the above four prompts contains the covariance matrix of measurement/structural

noise C(ε). These must be prepared by you in accordance with specifications set out in

section 2.5 of this manual. The covariance matrix output file whose name is supplied in

response to the second of the above four prompts comprises the first term on the right side of

equation 11.1.1, that is (I - R)C(k)(I - R)t. The covariance matrix output file whose name is

supplied in response to the fourth of the above four prompts comprises the second term on the

right of equation 11.1.1, that is GC()Gt. These are written in PEST matrix file format

following the protocol discussed in section 2.4 of this manual. Each of these matrices is

square with dimensions m × m where m is the number of adjustable parameters pertaining to

the current parameter estimation problem.

11.5 PREDERR

11.5.1 General

PREDERR is similar in many respects to PARAMERR. Like PARAMERR it reads a

parameter uncertainty file and an observation uncertainty file; see section 2.5 of this manual

for specifications of these files. However rather than calculating and storing the two

components of C(k–k), it calculates the error variance of a user-specified prediction.

Calculation of C(k–k) is bypassed, this enhancing the efficiency of calculation of predictive

error variance considerably. Hence unless calculation of C(k-k) is specifically required for a

certain application, use of PREDERR is preferred over use of PARAMERR followed by

matrix/vector manipulation utilities such as JROW2VEC and MATQUAD for calculation of

the error variance of a certain prediction.

(Actually, as stated at the beginning of this chapter, the utility programs documented in the

previous chapter, rather than those documented in the present chapter, are the preferred

options for computing predictive error variance, as well as predictive uncertainty.)

Linear Error and Uncertainty – Part II 152

11.5.2 Using PREDERR

Many of PREDERR’s prompts are similar to those of PARAMERR. However unlike

PARAMERR, PREDERR requires the name of a Jacobian matrix file, as well as the name of

a particular observation for which parameter sensitivities are recorded in this file. This

“observation” is actually treated as a prediction for the purpose of error variance analysis

undertaken by PREDERR using equation 11.1.5. The parameter sensitivities extracted from

the user-specified row of the Jacobian matrix constitute the y vector of this equation.

PREDERR’s screen display, including its prompts, are as follows; typical responses are

shown highlighted.

Enter name of RESPROC output file: modela.rpo

Enter name of parameter uncertainty file: param1.unc

Enter name of observation uncertainty file: observ1.unc

Enter name of Jacobian matrix file: model1.jco

Enter name of prediction featured in this file: ptime

- reading RESPROC output file modela.rpo...

- file modela.rpo read ok.

- reading Jacobian matrix file model1.jco...

- Jacobian matrix file model1.jco read ok.

- reading parameter uncertainty data...

- parameter uncertainty data read ok.

- calculating I-R contribution to predictive error variance...

- I-R term calculated ok.

- reading observation uncertainty data...

- reading PEST control file temp.pst...

- file temp.pst read ok.

- observation uncertainty data read ok.

- calculating G contribution to predictive error variance...

- G term calculated ok.

The following should be noted.

1. As is discussed extensively in this manual, the Jacobian matrix file will have been

written by PEST. It is a binary file with the name case.jco where case is the filename

base of the corresponding PEST control file.

2. The cited Jacobian matrix file must contain an observation named as the “prediction”

in the pertinent PREDERR prompt. Many more observations than this can be cited in

the Jacobian matrix file; all others are ignored.

3. Each parameter cited in the RESPROC output file must also be cited in the Jacobian

matrix file. If more parameters than this are cited in the Jacobian matrix file, they are

ignored. If fewer parameters are cited, PREDERR ceases execution with an

appropriate error message. Parameters need not be arranged in the same order in the

Jacobian matrix file as they are in the RESPROC output file (and hence in the PEST

control file on which the RESPROC output file is based).

PREDERR quickly calculates the contribution to predictive error variance made by both

Linear Error and Uncertainty – Part II 153

terms of equation 11.1.5 (which it refers to as the “I-R term” and the “G term”). It writes the

outcomes of its calculations to the screen, an example of which is depicted below.

*********** COMPONENTS OF PREDICTIVE ERROR VARIANCE ***********

 I-R component of predictive error variance = 2881711.

 G component of predictive error variance = 5342.439

 Total predictive error variance = 2887054.

 Predictive error standard deviation = 1699.133

 **

Figure 11.1 Screen output of PREDERR.

11.6 PREDERR1

Operation of PREDERR1 is very similar to that of PREDERR, the only difference being that

PREDERR1 does not prompt for the name of a RESPROC output file. Instead it prompts

individually for the names of files which hold the resolution matrix (i.e. the R matrix) on the

one hand and the solution matrix (i.e. the G matrix) on the other. These files must be in

matrix file format as described in section 2.4 of this manual. If they were written by the

PARAMERR utility then they will, indeed, adhere to this format.

Note the following.

1. Row names provide in the R and G matrix files must be identical to each other.

2. The resolution matrix must have identical row and column names. These names must

be the same as parameter names involved in the current inverse problem.

3. Column names cited in the G matrix must pertain to observations employed in the

current inverse problem.

11.7 PREDERR2

PREDERR2 is a modification of PREDERR1. Unlike PREDERR1, which calculates error

variance for only one prediction whose sensitivities are contained within a Jacobian matrix

file, PREDERR2 can calculate variances for multiple predictions featured in this file. Like

PREDERR1 it prompts for a resolution matrix file, a solution matrix file, a parameter

uncertainty file, an observation uncertainty file and a Jacobian matrix file. However it also

prompts for the name of a “prediction list file”. This must contain a list of predictions, one to

a line, for which error variances are to be calculated; each such prediction should be featured

in the Jacobian matrix file.

PREDERR2 also prompts for the name of a “prediction error variance output file”. This is the

file that it writes. An example appears in figure 11.2.

Prediction Variance_1 Variance_2 Total Standard_Dev

 ar1 0.4282991 4.7418460E-02 0.4757175 0.6897228

 ar2 0.3441107 6.0151659E-02 0.4042623 0.6358163

 ar3 0.2486108 8.1392663E-02 0.3300034 0.5744593

 ar4 0.1724225 0.1177954 0.2902179 0.5387187

 ar5 0.1363500 0.1767298 0.3130798 0.5595354

 ar6 0.1115423 0.2602005 0.3717428 0.6097071

Figure 11.2 Part of a PREDERR2 output file.

The “variance_1” and “variance_2” terms appearing in the column headers of figure 11.2 are

the I-R and G terms of the predictive error variance equation, i.e. equation 11.1.5. Thus these

Linear Error and Uncertainty – Part II 154

terms describe the contributions to predictive error variance arising from “uncaptured

heterogeneity” and measurement noise respectively. The contents of the “total” column are

the sum of these two terms; the square roots of these totals comprise the “standard_dev”

column.

11.8 PREDERR3

PREDERR3 is almost identical to PREDERR2. However instead of reading the R and G

matrices from separate files, it reads both of these from an unformatted RESPROC output

file.

11.9 REGERR

11.9.1 General

REGERR evaluates the covariance matrix of regularisation-induced model output error. For

present purposes this is defined as

 τ = Z(I – R)k (11.9.1)

so that

C(τ) = Z(I – R)C(k)(I – R)tZt (11.9.2)

In this equation C(k) is, as usual, the pre-calibration parameter covariance matrix, R is the

resolution matrix for the current inverse problem, and Z is the Jacobian matrix. REGERR

obtains R from a RESPROC output file and Z from a Jacobian matrix file (i.e. a JCO file).

Presumably these will both pertain to the same PEST input dataset. However REGERR only

tests that the number of parameters cited in the RESPROC output file and the number of

parameters cited in the Jacobian matrix file are the same. The number of observations can

differ between these two files. Thus the Jacobian matrix file can pertain to model outputs that

differ from those employed in the calibration process if desired; the covariance matrix of

regularisation-induced predictive error can thereby be calculated. The latter is very similar to

the covariance matrix of predictive error; however it lacks the contribution to this error from

measurement noise.

11.9.2 Running REGERR

REGERR is run simply by typing its name at the screen prompt; it then prompts the user

specifically for its input data requirements. Prompts, and typical replies, are illustrated below.

 Enter name of RESPROC output file: pestcase.rpo

 Enter name of parameter uncertainty file: param.unc

 Enter name of Jacobian matrix file: pestcase.jco

 Enter name for output covariance matrix file: cov.mat

 - reading RESPROC output file pestcase.rpo...

 - file pestcase.rpo read ok.

 - reading Jacobian matrix file pestcase.jco...

 - Jacobian matrix file pestcase.jco read ok.

 - reading parameter uncertainty data...

 - parameter uncertainty data read ok.

Linear Error and Uncertainty – Part II 155

 - calculating regularisation-induced output error covariance matrix...

 - file cov.mat written ok.

The format of a parameter uncertainty file is discussed in section 2.5 of this manual. The

covariance matrix file written by REGERR employs the matrix file protocol discussed in

section 2.4 of this manual.

Nonlinear Error and Uncertainty 156

12. Nonlinear Error and Uncertainty

12.1 Introduction

Programs described in this chapter assist in the implementation of nonlinear error and

uncertainty analysis. Some of them explore uncertainty (or error variance as a surrogate)

through generation of random parameter sets. This is facilitated using the RANDPAR utility.

By first sampling a prior covariance matrix, and by then running the model many times using

these samples, the prior uncertainty of a prediction can be established. Alternatively,

posterior uncertainty can be explored by sampling a linear approximation to the posterior

parameter covariance matrix (produced, for example, using the PREDUNC7 utility described

in a previous chapter). Another option is to modify samples of the prior parameter

distribution in order to ensure respect for calibration constraints using subspace methods; see

the PNULPAR utility. Thus-obtained samples of a linear approximation to the posterior

parameter distribution can then be adjusted to adhere more strongly to calibration constraints

using PEST’s null space Monte Carlo methodology described in section 10.6.3 of part I of

this manual.

If a prediction is made by a model using many different parameter sets, the values computed

for the prediction can be processed in order to formulate a prediction value histogram. This

histogram can be considered to be an approximation to the predictive probability density

function. The RDMULRES, MULPARTAB and COMFILNME utilities can assist in this

type of data collation.

Calibration-constrained direct predictive maximisation/minimisation provides an alternative

to Monte Carlo exploration of post-calibration predictive uncertainty. This is implemented by

PEST’s predictive analyser; see part I of this manual. Where parameter numbers are few, and

where an inverse problem is well-posed, PEST’s predictive analyser can implement this

procedure in a relatively efficient manner. Unfortunately, however, this methodology

becomes less efficient in highly-parameterized contexts. Nevertheless assistance in file setup

for implementation of this procedure in the highly parameterised context can be gained

through use of the REGPRED utility.

As is also described in part I of this manual, direct hypothesis testing of predictive

possibilities can be undertaken by running PEST in “pareto” mode. A prediction is deemed to

be unlikely when it is demonstrably incompatible with either or both of expert knowledge and

the historical behaviour of the system under investigation. The compatibility (or otherwise) of

a parameter set with expert knowledge (as encapsulated in a covariance matrix) can be tested

using the ASSESPAR utility.

Utility programs described in the present chapter are complemented to some extent by those

discussed in the following chapter; the latter provide the means to undertake Latin hypercube

sampling of a parameter probability density function. Some of the utilities described in the

present chapter can be used in conjunction with those described in the next, particularly for

postprocessing of model runs that are collectively undertaken on the basis of Latin hypercube

samples of a pre- or post-calibration parameter probability density function.

Nonlinear Error and Uncertainty 157

12.2 RANDPAR

12.2.1 General

RANDPAR generates parameter value realisations using a random number generator. The

parameters for which it must generate realisations are read from an existing PEST control

file. RANDPAR-generated random numbers are inserted into a series of PEST parameter

value files (see section 2.2 of this manual for specifications of this type of file) which

complement the original PEST control file. The TEMPCHEK utility can then be used to

insert these parameter sets into model input files. Alternatively, the PARREP utility can be

employed to insert them into a series of PEST control files; if PEST is then run with

NOPTMAX set to 0 in each of these files, the objective function corresponding to each set of

parameter values can be calculated.

You can choose between two probability distributions for random number generation. The

first option is a uniform distribution. In this case the upper and lower end of the parameter

range is taken as the upper and lower bounds of respective parameters as recorded in the

PEST control file. If a parameter is log-transformed, then the log of the parameter is assumed

to possess a uniform distribution rather than the parameter itself. No correlation is permitted

between parameter values if a uniform distribution is specified.

Where a normal distribution is specified, parameter variances/covariances must be supplied

through a parameter uncertainty file (see section 2.5 of this manual for specifications of this

file type). If a covariance matrix with non-zero off-diagonal elements is cited in this file, then

correlation can exist between (some or all) parameters. It is important to note that if some

parameters are log-transformed in the PEST control file read by RANDPAR, then it is

assumed that uncertainties and correlations supplied in the parameter uncertainty file pertain

to the logs of the respective parameters rather than to the native parameters.

Random values are not generated for parameters which are fixed in the PEST control file read

by RANDPAR; values supplied by RANDPAR for these parameters are the same as in the

PEST control file. Nor are random values generated for tied parameters; instead, the values

assigned to tied parameters are such that the ratios of initial values between tied parameters

and those to which they are linked as supplied in the original PEST control file are preserved.

Parameter realisations can be filtered such that those that do not respect certain user-supplied

ordering relationships as expressed in a “parameter ordering file” are rejected.

12.2.2 Using RANDPAR

RANDPAR data inputs are supplied through user responses to prompts, rather than through

the command line. RANDPAR commences execution by prompting for the name of the

PEST control file which it must read.

Enter name of existing PEST control file:

in response to which the name of an existing PEST control file should be supplied. Next it

asks

Use (log)normal or (log)uniform distrib for param generation? [n/u]:

Respond with “n” or “u” as appropriate. Note that the choice of lognormal/normal or

loguniform/uniform distribution is made on the basis of the parameter transformation status

as recorded in the PEST control file. Note also that random numbers are not generated for

fixed or tied parameters. As stated above, the former retain their fixed value in all

Nonlinear Error and Uncertainty 158

realisations; the latter are assigned values that preserve the initial value ratios as defined in

the PEST control file.

Suppose that you respond to the above prompt with “u”. Then if any parameters are tied,

RANDPAR asks

Respect parameter ranges (tied parameters)? [y/n]:

This question is necessary because in preserving the ratios between tied and parent parameter

values, the former may transgress their bounds as the latter are assigned random values

between those bounds. If the answer to the above prompt is “n”, then the fact that tied

parameters may transgress their bounds is ignored. If it is “y”, then tied parameters are

clipped at their bounds, thereby destroying the tied parameter – parent parameter ratio

defined in the PEST control file.

If a normal distribution is requested, RANDPAR needs to acquire more information than it

does for generation of parameter sets according to a uniform distribution. It asks

Compute means as existing param values or range midpoints? [e/m]:

As is apparent from the above prompt, there are two choices here. In generating random

numbers which belong to a normal distribution a mean value is required. RANDPAR can

accept the initial parameter value as supplied in the PEST control file as its mean value.

Alternatively it can compute the mean as midway between the lower and upper bound of each

parameter as supplied in the PEST control file (or midway between the logs of the lower and

upper bounds if a parameter is log-transformed). An “e” in response to this prompt selects the

former option while an “m” selects the latter option.

Next (for a normal distribution only) RANDPAR asks

Respect parameter ranges? [y/n]:

Or, if any parameters are tied

Respect parameter ranges (parent parameters)? [y/n]:

If the response to the above prompt is “y”, then if any parameter realisation lies below its

lower bound or above its upper bound as recorded in the PEST control file, RANDPAR will

assign the parameter a value equal its lower or upper bound respectively. Alternatively, if the

answer is “n”, bounds are ignored in the generation of parameter values.

If any parameters are tied, RANDPAR next prompts (as it does for the uniform distribution

option)

Respect parameter ranges (tied parameters)? [y/n]:

The response to this question has the same effect as it does where parameters are assigned a

uniform distribution, as discussed above.

If a normal distribution is specified for the generation of random realisations, the name of a

parameter uncertainty file is next acquired. The format of this file is discussed in section 2.5

of this manual. Within this file uncertainties can be supplied on a parameter-by-parameter

basis; alternatively one or a number of parameter covariance matrices can be supplied.

RANDPAR next asks (for both normal and uniform distributions)

Enter name of parameter ordering file (<Enter> if none):

An example of a parameter ordering file follows.

Nonlinear Error and Uncertainty 159

parameter ordering file

h2 > h1

ro2 > ro1

ro10 > ro2

Figure 12.1 A parameter ordering file.

Each line of a parameter ordering file must cite the names of two parameters; these

parameters can be adjustable, tied or fixed in the PEST control file. Parameter names must be

separated by a “>” or a “<” character. Suppose that one or more of the ordering relationships

expressed in a parameter ordering file are not respected by a RANDPAR-generated random

parameter set. Then RANDPAR will abandon that realisation, and will continue to generate

further realisations until a realisation is finally obtained for which all relationships expressed

in the parameter ordering file are respected. However if, after 1000 attempts, such a

parameter set is not achieved, RANDPAR will cease execution with an appropriate error

message. The user is then advised to set parameter ordering relationships less restrictively (or

alter the variables governing the probability functions on which basis parameter realisations

are generated), and then re-run RANDPAR.

RANDPAR’s next prompt (irrespective of parameter distribution type) is

Enter integer random number seed (<Enter> if default):

Supply a positive integer, or simply press the <Enter> key. Random number sequences are

identical for the same random number seed; to generate different sets of parameter values,

use different seeds.

Finally RANDPAR asks

Enter filename base for parameter value files:

How many of these files do you wish to generate?

Suppose that you supply a filename base of “base”. Then parameter value files written by

RANDPAR are named base1.par, base2.par, base3.par ….baseN.par, where N is the number

supplied in response to the second of the above prompts.

12.3 RANDPAR1

Use of RANDPAR1 is identical to that of RANDPAR. It uses a different methodology for

generation of random correlated parameter fields which may be more efficient where

parameter numbers are large.

12.4 PNULPAR

12.4.1 General

PNULPAR can be used in conjunction with RANDPAR to undertake calibration-constrained

Monte-Carlo analysis. In general, RANDPAR-generated parameter fields do not respect

calibration constraints; PNULPAR can modify these parameter fields so that they do.

PNULPAR reads a set of parameter value files generated by RANDPAR. The sets of random

parameters contained within these files may have been generated on the basis of a PEST

control file in which initial parameter values are expected parameter values from an expert

knowledge point of view. Alternatively, the PEST control file on which RANDPAR

parameter set generation was based may have housed calibrated parameter values. (In the

Nonlinear Error and Uncertainty 160

latter case the PARREP utility may have been used to replace pre-calibration initial

parameter values with calibrated parameter values in the PEST control file.)

Regardless of which of the above alternatives was employed for RANDPAR-based random

parameter set generation, use of PNULPAR requires that a PEST control file exists in which

initial parameter values are calibrated parameter values. This file is referred to herein as a

“post-calibration PEST control file”; it may or may not be the same PEST control file as that

used by RANDPAR for random parameter set generation. A corresponding JCO file must

exist for the post-calibration PEST control file. This may have been produced by running

PEST on the basis of the post-calibration PEST control file with NOPTMAX set to -1 or -2 in

that file. It could also have been created from another JCO file using the JCO2JCO utility.

PNULPAR reads the set of parameter value files produced by RANDPAR. It writes a new set

of parameter value files in which parameter values are modified from those occurring in the

RANDPAR-generated files. In generating this new set of parameter value files PNULPAR

undertakes the following operations.

1. It undertakes singular value decomposition of Q1/2J where Q is the observation

weight matrix and J is the Jacobian matrix pertaining to the post-calibration PEST

control file. It asks the user for the dimensionality of the calibration solution space.

This is the number of dimensions spanned by those columns of the V matrix

forthcoming from singular value decomposition of Q1/2J whose corresponding

singular values are significantly non-zero. Recall that singular value decomposition of

Q1/2J is described by the following formula.

Q1/2J = USVt (12.3.1)

As described by Doherty (2015), the matrix V can be partitioned as [V1 V2] where V1

is an orthonormal matrix whose columns span the calibration solution space, and V2 is

an orthonormal matrix whose columns span the calibration null space. The

dimensionality of the calibration solution and null spaces can be estimated with the

help of utilities such as SUPCALC.

2. Suppose that elements of the vector k comprise the set of parameter values contained

within a RANDPAR-generated parameter value file. Let k describe the set of

parameters contained (as initial parameter values) within the post-calibration PEST

control file read by PNULPAR; as stated above, it is assumed that the vector k was

calculated during a previous calibration process, and thus comprises the minimum

error variance estimate of the real (but unknown) parameter set k. PNULPAR next

computes k-k taking parameter transformation status into account.

3. Components of parameter differences encapsulated in k-k that possess a non-zero

projection onto the calibration solution space are then removed by computing a set of

“projected parameter differences” kd using the equation

kd = V2V2
t(k-k) (12.3.2)

4. A new set of parameter values is then produced by adding kd to k. These values are

written to a new parameter value file.

With the exception of singular value decomposition of the Q1/2J matrix (which is only

undertaken once), PNULPAR undertakes each of the above operations for every existing

RANDPAR-generated parameter value file that it encounters, writing a new parameter value

file in each case as an outcome of these calculations.

Nonlinear Error and Uncertainty 161

PNULPAR preserves the ratios of tied parameters to parent parameters (unless bounds are

encountered – see below). In fact if the ratio of any tied parameter to its parent parameter in

the post-calibration PEST control file read by PNULPAR is different from the ratio of these

same parameters in any RANDPAR-generated parameter value file, PNULPAR will cease

execution with an appropriate error message. (This should cause no problems in normal

RANDPAR operation, as RANDPAR preserves the ratio of tied to parent parameters as it

generates random values for the latter.)

PNULPAR handles differences in fixed parameter values slightly differently. If a fixed

parameter has a different value in a RANDPAR-generated parameter value file from that

which it has in the post-calibration PEST control file, the value in the parameter value file

prevails. This strategy may be beneficial in certain instances of groundwater model

calibration where, for example, the PPSAMP utility from the Groundwater Data Utility suite

may be used instead of RANDPAR for generation of random parameter values. However

differences in the values of fixed parameters should never occur if RANDPAR is used to

generate random parameter values as it respects the values of fixed parameters, and does not

generate random values for them.

12.4.2 Using PNULPAR

PNULPAR commences execution with the prompt

Enter name of PEST control file:

Supply the name of a post-calibration PEST control file whose initial parameter values are in

fact calibrated parameter values calculated during a previous PEST run. (The PARREP utility

may have been used to insert these into an existing PEST control file containing non-

calibrated parameter values.) A JCO file corresponding to this post-calibration PEST control

file must also exist. In many cases of PNULPAR usage, this same PEST control file will have

formed the basis for RANDPAR random parameter set generation.

PNULPAR next prompts

Does PEST control file contain calibrated parameter values? [y/n]:

If you answer “n” to this question, PNULPAR will cease execution with some salient advice.

Otherwise it prompts

Enter number of dimensions of calibration solution space:

The dimensions of the null space are m minus this number, where m is the number of

adjustable parameters cited in the PEST control file. As stated above, SUPCALC can offer

advice on this matter. Alternatively, if you would like to perform calculations on the Q1/2J

matrix yourself in order to determine an appropriate answer to the above question,

PNULPAR can facilitate this process by storing the Q1/2J matrix in PEST matrix file format.

It prompts

Would you like to store Q(1/2)X matrix in matrix file format? [y/n]:

and if your answer to this question is “y”,

Enter file for storage of matrix:

(Note that the “X” matrix referred to by PNULPAR is actually the J matrix used in present

documentation.) Next PNULPAR asks

Enter filename base of existing parameter value files:

Suppose that your answer to the above question is “basename”. Then PNULPAR will look

Nonlinear Error and Uncertainty 162

for files basename1.par, basename2.par etc. When it encounters no more files in this

sequence, it assumes that it has found them all. For each such existing parameter value file it

writes a new parameter value file based on null-space-projected parameter differences as

described above. The filename base of these new files must be supplied in response to the

prompt

Enter filename base for new parameter value files:

An extension of “.par” is again assumed. The numerical suffix in each case is the same as

that of the corresponding, existing, RANDPAR-produced, parameter value file.

Having been supplied with all of its input data requirements, PNULPAR undertakes the

computations outlined above, outlining its progress to the screen. Then it ceases execution.

Note that PNULPAR will not accept a PEST control file in which PESTMODE is set to

“prediction”, “regularisation” or “pareto”. So if you wish to employ PNULPAR after

undertaking regularised inversion (as is often the case), alter PESTMODE to “estimation” in

the governing PEST control file and remove all regularisation observations and prior

information equations from that file. (Alternatively, use the SUBREG1 utility to accomplish

the same thing automatically.) The reason for PNULPAR’s refusal to read a PEST control

file in which PESTMODE is set to “regularisation” is to avoid the potential for confusion and

error; when undertaking singular value decomposition of the Q1/2J matrix to define

calibration solution and null spaces, no regularisation information should be included in the J

matrix.

12.4.3 What to do Next

Parameter values recorded in parameter value files generated by PNULPAR can be

PARREPed into a PEST control file. NOPTMAX can be set to zero in this file and the

objective function computed in each case. If the model is linear, this objective function

should be similar to that achieved during the previous calibration exercise.

Where a model is nonlinear, the use of PNULPAR-generated parameters will probably not

result in a calibrated model. In many cases, however, parameter values can be adjusted back

into calibration with very little effort, this often requiring only one PEST iteration. (If

desired, set NOPTMAX to 1 in the governing PEST control file to ensure that only one

iteration actually takes place.) Furthermore, this process can be made even more inexpensive

by employing sensitivities residing in an existing JCO file (for example, the same JCO file as

that read by PNULPAR). This can be achieved by starting PEST with the “/i” switch and

providing the name of the pertinent JCO file when prompted accordingly.

When undertaking a single-iteration PEST run under these conditions, the following may

help.

1. Set the BROYDEN update parameter JACUPDATE to 999. Thus on the second and

further attempts to upgrade parameter values during this single iteration, PEST will

have improved the Jacobian matrix on whose basis these upgrades are computed, this

resulting (hopefully) in a lower objective function.

2. Set the PHIRATSUF control variable very low (for example 0.001) and RLAMFAC

to -4. Thus PEST will be forced to test a number of different Marquardt lambdas

before the end of the iteration.

Hopefully, with the help of these strategies, an objective function can then be found which is

as low as it can possibly be based on current sensitivities.

Nonlinear Error and Uncertainty 163

If the calibration null space is relatively large, then use of SVD-assist for calibration

adjustment of each PNULPAR-generated parameter set can be achieved with a high level of

model run efficiency, even if more than one iteration is required to reduce the objective

function to a level at which the model is deemed to be “calibrated”. See section 10.6.3 of part

I of this manual for details.

Whichever of the above methods is chosen to enforce calibration constraints on PNULPAR-

modified parameter sets, the higher that you inform PNULPAR is the dimensionality of the

calibration solution space, the less work will be required to enforce these constraints. This is

because the higher that PNULPAR believes the dimensions of the calibration solution space

to be, the greater is the contribution made by the parameter field calculated during the

previous calibration process to each PNULPAR-generated parameter field. The user-supplied

solution space dimensionality therefore provides a “lever” through which you can increase

the efficiency of attainment of parameter fields which respect calibration constraints (as

embodied in respect for an objective function that is deemed to “calibrate” the model). The

cost of such a speed-up strategy is, of course, some reduction in the diversity of the

calibration-adjusted random parameter sets thus obtained.

12.5 RDMULRES

12.5.1 General

RDMULRES stands for “read multiple results”. It is used to read identical data from many

different model or PEST output files, the names of these files being distinguished from each

other by an indicial integer. RDMULRES has many uses, two of which are now briefly

discussed.

Monte Carlo Analysis

Monte Carlo analysis of model predictive uncertainty can be undertaken by running a model

many different times using different sets of parameters on each occasion. Parameter values

may have been generated by RANDPAR and may have been modified by PNULPAR.

Alternatively they may have been generated by another program altogether, for example a

geostatistically-based parameter field generator such as the Stanford Geostatistical Modeling

Software package SGEMS.

Suppose that RANDPAR (and possibly PNULPAR) was used to generate a suite of

parameter value files named parval1.par, parval2.par, etc. Suppose that the model reads its

parameters from a single input file named model.in, and that a template for this file is named

model.tpl. Suppose further that the model output file to which results of interest are recorded

is named model.out. Then a sequence of model output files named model1.out, model2.out,

etc. containing model results calculated on the basis of parameter sets contained in

parval1.par, parval2.par, etc. can be obtained using the batch file shown in Figure 12.2 if

working on a PC. (A similar script file can be readily written for use on a UNIX platform.)

for /L %%i in (1,1,100) do (

tempchek parval%%i.par model.in model.tpl

model.exe

copy model.out model%%i.out)

Figure 12.2 A batch file in which a sequence of model runs is undertaken.

The above batch file runs the model executable program (in this case named model.exe) one

Nonlinear Error and Uncertainty 164

hundred times. In the sequence “(1,1,100)” the first integer is the starting value, the second is

the step size and the final integer is the finishing value. For each model run the model output

file is linked to the parameter set on whose basis it was recorded by integer index

(represented by the %%i variable). Note that other options could also be used for the

commissioning of many model runs. For example the PARREP utility could be used to insert

parameter values into a PEST control file. Then PEST could be run. If NOPTMAX is set to 0

in the PEST control file, PEST will run the model once before ceasing execution. This may

be a more convenient methodology to use where a model has many input files requiring many

template files and/or if an objective function value is required.

A Sequence of PEST Runs

PEST can be used to calibrate a model many different times using many different parameter

sets as starting values. This can be useful in undertaking null space Monte Carlo analysis,

where each of a sequence of PNULPAR-generated parameter sets must be adjusted to

achieve an objective function that is low enough for the model to be considered as

“calibrated”. Suppose that parameter sets to use as initial values in subsequent PEST runs

reside in parameter value files named parval1par, parval2.par, etc. Suppose also that a

suitable PEST control file is named pestcase.pst and that a copy of this file named

pestcase.pst.keep has been made. Suppose also that parameter adjustment is actually carried

out on super parameters (see section 10.6.3 of part I of this manual), and that

pestcase_svda.pst is the PEST control file that is employed for this purpose (for which

pestcase.pst is the corresponding base parameter PEST control file). Upon each occasion of

cessation of pestcase_svda.pst execution, optimised base parameter values reside in file

pestcase.bpa. However the run record file is named pestcase_svda.rec.

The following batch file can be used to undertake multiple PEST runs on the basis of starting

base parameter values housed in files parval1.par, parval2.par, etc.

rem ###

rem Delete an existing record file.

rem ###

del /P record.dat

echo > record.dat

pause

rem ###

rem Do all the PEST runs.

rem ###

for /L %%i in (1,1,100) do (

parrep parval%%i.par pestcase.pst.keep pestcase.pst

pest pestcase_svda

find /I "optimised mea" pestcase_svda.rec >> record.dat

copy pestcase_svda.rec pestcase_svda.rec.%%i

copy pestcase.bpa pestcase.bpa.%%i)

Figure 12.3 A batch file used for conducting a sequence of SVD-assisted parameter

estimation runs.

After running the batch file depicted in figure 12.3, the sequence of resulting run record files

will be named pestcase_svda.rec.1, pestcase_svda.rec.2, etc. Respective optimised parameter

value files will be named pestcase.bpa.1, pestcase.bpa.2 etc. Note that a “global record file”

Nonlinear Error and Uncertainty 165

named record.dat is also kept. After each PEST run, the value of the optimised measurement

objective function achieved during that run is appended to this file. This provides a

continuously-updated record of the success or otherwise of the sequence of PEST runs.

12.5.2 The RDMULRES Input File

RDMULRES requires a control file, an example of which is shown in figure 12.4.

An example RDMULRES input control file.

* observations

initobj

finalobj

* instruction file

obj.ins

* model output file

case_svda*.rec

* integer list

1

4 - 10

12

15

16-100

* rdmulres output file

rdmulres.rec

Figure 12.4 An example RDMULRES control file.

The RDMULRES input control file is subdivided into a number of sections, each of which

begins with a section header. Section headers are as shown in the above example; in each

case their name is preceded by the “*” character followed by a space.

The “observations” section must contain a list of names for the numbers that must be read

from model (or PEST) output files. These must be provided one to a line. As is the normal

PEST protocol, these names must be 20 characters or less in length (and are case insensitive);

names must be unique. Up to 100 such names can be provided. This limit is set in order to

keep the RDMULRES output file (see below) from being too wide.

The “instruction file” section of the RDMULRES control file must contain a single entry, this

being the name of an instruction file. This instruction file must cite all observations named in

the “observations” section of the RDMULRES input file (and no more). Instruction files must

follow the normal PEST protocol; see chapter 2 of part I of this manual. An instruction file

suitable for reading the initial and optimised measurement objective function values from a

PEST run record file is illustrated in figure 12.5.

pif $

$INITIAL CONDITIONS:$

$measurement$ $=$!initobj!

$OPTIMISATION RESULTS$

$Optimised measurement$ $=$!finalobj!

Figure 12.5 An instruction file which reads a PEST run record file.

The model output file which the instruction file is designed to read must be listed as the sole

filename cited in the “model output file” section which immediately follows the “instruction

file” section of the RDMULRES control file. RDMULRES requires that this filename contain

at least one “*” character. In fact, many such output files are read by the same instruction file;

Nonlinear Error and Uncertainty 166

the name of each is obtained by replacing the “*” character with an appropriate integer on

each occasion.

The integers to employ in formulation of model output filenames in this fashion are listed in

the “integer list” section of the RDMULRES control file. Either one or two integers can be

listed on each line of this section. If two are listed, the second must be larger than the first,

and must be separated from the first integer by a “-” (i.e. dash) character. (Negative numbers

are not allowed.) In this case the “*” character is progressively replaced by all integers

between and including the two nominated integers.

The final section of the RDMULRES control file is the “RDMULRES output file” section.

Numbers read from model output files are recorded in tabular fashion in this file. See below.

If any line within a RDMULRES control file contains no characters, or begins with the “#”

character, it is ignored.

12.5.3 Running RDMULRES

RDMULRES is run by typing the command

rdmulres infile

at the screen prompt, where infile is the name of its control file. If any errors are detected in

this file, RDMULRES ceases execution with an appropriate error message. If not, it reads all

requested model output files, recording to the screen its progress in this endeavour. If any

errors are encountered in reading any such files, it ceases execution with an appropriate error

message. However if a requested file is not present, it records this fact to the screen (and to its

output file) and proceeds to the reading of the next cited file.

An example of a RDMULRES output file is shown in figure 12.6. Observation names head

all columns except the first; the first column contains integer index values used in forming

the model output filename from which respective numbers in other columns are read.

index initobj finalobj

 1 9546.1300 415.1000

 2 1715.0300 196.3000

 3 File case_svda.rec.3 not found.

 4 545.0300 10.95000

Figure 12.6 Part of a RDMULRES output file.

A RDMULRES output file is easily imported into a spreadsheet or graphing program for

further processing.

12.6 MULPARTAB

12.6.1 General

MULPARTAB stands for “multiple parameter table”. It can be used in the postprocessing of

multiple PEST runs undertaken, for example, as part of null space Monte Carlo analysis. In

such an analysis, a model calibration process is repeated many different times using the same

sets of parameters, but with different starting values or base parameter values on each

occasion (see section 10.6.3 of part I of this manual). The outcomes of such an analysis are a

suite of run record files, and a suite of corresponding parameter value files. In most cases

these files will have identical names except for the presence of an indicial integer at some

location within each name.

Nonlinear Error and Uncertainty 167

Run record files can be processed using the RDMULRES utility. Such processing can reveal

which calibration exercises resulted in parameter sets that gave rise to an objective function

which can be considered low enough to call the model “calibrated”. Those that succeed in

this regard can then be assimilated into a single table using the MULPARTAB utility. This

table can be imported into spreadsheet and/or graphing software for further processing and/or

display.

12.6.2 Using MULPARTAB

MULPARTAB is run using the command

mulpartab parfile listfile outfile

where

parfile is a generic parameter value filename,

listfile contains a list of integer indices, and

outfile is the name of a tabular output file.

The generic parameter value filename must contain at least one asterisk (i.e. “*” character).

In forming the names of actual parameter value filenames, this asterisk is replaced by an

integer in each case. The list of integers to employ in forming parameter value filenames is

supplied in the integer list file (the second filename provided on the MULPARTAB

command line). Thus if the first MULPARTAB command line argument is supplied as

parval*.par, then MULPARTAB will look for files named parval1.par, parval2.par, etc., if

the integers 1, 2 etc. are supplied in the integer list file.

As the name suggests, an integer list file must contain a list of integers. An example of such a

file is provided in figure 12.7.

An integer list file

1

2-4

5

7-20

Figure 12.7 An integer list file.

Lines beginning with “*” or “#” are ignored in an integer list file; so too are blank lines.

Integers on other lines can be supplied individually, or as the beginning and end members of

a sequence separated by a “-” (dash) character. Negative integers are not allowed.

A MULPARTAB output file is shown in figure 12.8. As is apparent, the file is comprised of

multiple columns. The first of these columns contains parameter names. Columns containing

parameter values as read from parameter value files follow this first column. The header for

each of these latter columns is the integer index which is included in the filename from which

parameter values recorded in the respective column were read.

Nonlinear Error and Uncertainty 168

 1 4 6

 ro1 0.9988774 1.348253 1.089392

 ro2 1.040405 1.884527 1.277791

 ro3 1.256830 3.430308 1.930116

 ro4 1.771721 7.359193 3.583956

 ro5 2.611562 17.36130 6.978424

 ro6 3.000000 27.00000 9.000000

 ro7 2.139646 8.553685 4.517614

 ro8 1.265521 2.049192 1.677921

 ro9 0.9782547 1.074042 1.032021

 ro10 0.9753630 0.9830849 0.9765695

 h1 0.2500000 0.2500000 0.2500000

 h2 0.5000000 0.5000000 0.5000000

 h3 1.000000 1.000000 1.000000

 h4 2.000000 2.000000 2.000000

 h5 4.000000 4.000000 4.000000

 h6 8.000000 8.000000 8.000000

 h7 16.00000 16.00000 16.00000

 h8 32.00000 32.00000 32.00000

 h9 64.00000 64.00000 64.00000

Figure 12.8 A MULPARTAB output file.

The following should be noted.

1. As documented in the PEST manual, the first line of a parameter value file must

contain the word “single” or “double” followed by the word “point” or “nopoint”. If

these are absent from a parameter value file which MULPARTAB is asked to read, it

will terminate execution with an error message.

2. SCALE and OFFSET values are also provided in a parameter value file.

MULPARTAB multiplies parameter values by their SCALE and adds their OFFSET

before recording these values to its output file.

3. All parameter value files read by MULPARTAB must cite the same parameters.

However parameters do not need to be listed in the same order in each file.

4. If an expected parameter value file is absent, MULPARTAB will notify you of this

fact, and then proceed to read the next parameter value file. Values listed for missing

parameters are replaced with the “---“ string in the respective column of the

MULPARTAB output file.

5. If a parameter value file is, in fact, found, and if an error is encountered in reading this

file, MULPARTAB will cease execution after recording an appropriate error message

to the screen.

12.7 COMFILNME

COMFILNME stands for “compress file names”. This simple utility can sometimes be useful

in winnowing unwanted output files after many related model or PEST runs have been

carried out, prior to undertaking another analysis step on the basis of the reduced file

collection.

Suppose, for example, that many PEST runs have been undertaken as part of a null space

Monte Carlo exercise, and that this has resulted in a sequence of parameter value files named

pestcase1.bpa, pestcase 2.bpa, pestcase 3.bpa, etc. Suppose that corresponding run record

files are named pestcase1.rec, pestcase2.rec, pestcase3.rec, etc. Use of RDMULRES on the

latter set of files may reveal that a suitably low objective function may not have been

Nonlinear Error and Uncertainty 169

achieved on all of these runs. (This may have occurred if, for example, the NOPTMAX

variable for these runs was set to 1 so that PEST was allowed to undertake just one iteration

in which super parameter derivatives are available “for free”.)

Suppose now that a prediction is to be made using the model, and that this prediction is to be

made using many different parameters sets which calibrate that model, but from which those

which do not calibrate the model must be excluded. Hence non-compliant parameter value

files need to be removed from the set of files generated during the previous set of PEST runs.

This could be achieved by simply deleting these files. However there are certain advantages

to retaining a sequential numbering system for parameter value files in future processing of

this nature. COMFILNME allows such deletions to take place, with higher index filenames

being assigned lower indices to “fill in deletion gaps”.

COMFILNME is run using the command

comflenme datfile listfile

 where

datfile is a generic data or text file name, and

listfile contains a list of integer indices.

The filename supplied as the first COMFILNME command line argument must contain at

least one asterisk (“*”) character. In forming actual filenames this character is replaced by a

sequence of integers. This sequence is listed in the integer list file whose name is supplied as

the second argument to COMFILNME. The format for an integer list file is provided in

documentation to MULPARTAB; see figure 12.7.

When run in the above manner, COMFILNME reads each of the nominated data files – that

is, each of the files whose name is formed by replacing the “*” character in datfile by an

integer from the list file. It then generates a sequence of files in which the “*” character is

replaced by “1”, “2”, “3”, etc. in sequence, with no gaps. In doing this, previous files are

overwritten.

The following should be noted.

• Files represented by datfile must be ASCII (i.e. text) files, and be no more than 3000

characters in width.

• Integers must be supplied in the integer list file in ascending order.

• Suppose that a total of N integers are directly cited or implied (in expressions of the

type n1 – n2) in the integer list file. At the end of a COMFILNME run, members of

the datfile sequence with integer indices beyond N will still remain in the user’s

directory. It is the user’s responsibility to delete these.

• It is a simple matter to relate new file names to old file names. New file indices are

simply “1”, “2”, “3”, etc., with these indices assigned to files sequentially in order of

their representation in the integer list file supplied to COMFILNME as its second

command line argument.

12.8 COMFILNME1

COMFILNME1 does the same thing as COMFILNME except for the fact that it does not

overwrite existing files. Instead it demands that a new filename sequence be created. It is run

using the command

Nonlinear Error and Uncertainty 170

comflenme datfile listfile newdatfile

 where

datfile is a generic data or text file name,

listfile contains a list of integer indices, and

newdatfile is a generic data or text file name different from datfile.

12.9 REGPRED

12.9.1 General

The purpose of REGPRED is to write a PEST input dataset in which “regularised nonlinear

predictive uncertainty analysis” is carried out. REGPRED is an older utility; however it may

be useful to some despite the fact that solution of a constrained maximisation/minimisation

problem in the highly parameterised context is often a numerically expensive undertaking.

Calibration-constrained Monte Carlo methods normally provide better options for post-

calibration nonlinear uncertainty analysis where parameter numbers are high and model run

times are long.

Use of REGPRED is based on the premise that model calibration has been accomplished

through regularised inversion. As is explained by Doherty (2015), the regularised inversion

process can be conceived of as subdividing parameter space into two distinct subspaces – the

calibration solution space and the calibration null space. Parameter combinations within the

former subspace are informed by the calibration dataset; those within the latter subspace are

not. The potential errors associated with estimates of parameter combinations associated with

the former subspace are a function of measurement noise; this is statistically characterised by

the covariance matrix C(ε). The potential errors associated with estimates of the latter

parameter combinations are a function of the “innate variability” of real-world parameters;

this is statistically characterised by the C(k) covariance matrix. Both of these matrices are

discussed by Doherty (2015) (and referred to extensively in this manual).

REGPRED writes a PEST input dataset in which PEST is asked to run in “predictive

analysis” mode. When run in this mode, PEST maximises or minimises a selected model

prediction while maintaining the objective function at or below a user-specified value. In the

REGPRED-generated PEST control file, the objective function is defined in such a way that

it encompasses both of the constraints discussed above. That is, it constrains parameter

combinations lying within the calibration null space to respect the fact that they must be

realistic (at a certain probability level), at the same time as it ensures that the model does not

“become uncalibrated” by employing parameter sets that result in a mismatch between model

outputs and field measurements that is not justified by the noise content of those

measurements.

12.9.2 Theory

This subsection echoes some of the theory presented in section 8.4.4 of Doherty (2015).

However it is presented herein in a way that is relevant to functionality embodied in the

REGPRED utility.

Null Space Constraints

Let k represent parameters employed by a model. Let k represent the parameter set achieved

Nonlinear Error and Uncertainty 171

through model calibration. From equation (5.5.10) of Doherty (2015) the covariance matrix

of post-calibration parameter error is calculated as

C(k - k) = (I - R)C(k)(I - R)t + GC()Gt (12.9.1)

where

k represents true model parameters;

k represents calibrated model parameters;

C(k) represents the prior parameter covariance matrix, this describing the innate

variability of real-world parameters;

C() represents the covariance matrix of measurement noise, often assumed to be

diagonal;

R is the so-called “resolution matrix”; and

G is the matrix through which estimated parameter values (i.e. the elements of

k) are calculated from measurements comprising the calibration dataset

(which are denoted by h in Doherty, 2015); G is referred to herein as the

“parameter solution matrix”, or more simply as the “G matrix”.

Meanwhile the actual (and unknowable) errors in the calibrated parameter set k are given by

 k – k = -(I – R)k + Gε (12.9.2)

Where regularised inversion is achieved through singular value decomposition R, I-R and G

are calculated as

R = V1V
t
1 (12.9.3)

I-R = V2V2
t (12.9.4)

and

 G = V1S
-1

1U1
t (12.9.5)

where the U, S and V matrices are defined through singular value decomposition of the

linearized model matrix Z (calculated as the Jacobian matrix) through

 J = USVt (12.9.6)

(Normally singular value decomposition is actually undertaken on the weighted Jacobian

matrix Q1/2J where, ideally, the weight matrix Q is proportional to C-1(ε). C(ε) in equation

12.9.1 then becomes the identity matrix I.)

The columns of V1 and V2 in equations 12.9.3 and 12.9.4 span the calibration solution and

null spaces respectively.

To explore the error range of a prediction, the constrained maximisation/minimisation

process to be described shortly imposes constraints on k-k as k is varied in order to maximise

or minimise that prediction. It is assumed that a set of calibrated parameters k already exists.

The extent to which deviations from this set are tolerable at a certain confidence level is

defined by C(k-k) of equation 12.9.1. Where such deviations are along directions spanned by

the calibration null space, tolerance of movement of k is governed by the first term of

equation 12.9.1; the governing probability distribution in this case is C(k) (i.e. expert

knowledge). To the extent to which changes in parameter values are incurred along directions

spanned by the solution space, the second term of 12.9.1 exerts constraints; for this term the

Nonlinear Error and Uncertainty 172

governing probability distribution is C(), that is, the stochastic description of measurement

noise (of which so-called structural noise arising from model defects is probably a significant

contributor – but this is a matter for another time).

REGPRED asks the user to nominate the number of dimensions comprising the calibration

solution space. This is the same as the number of columns in V1 of equation 12.9.3. The

SUPCALC utility can provide some assistance in making this determination. It does not have

to be exact (and in fact can rarely be exact). REGPRED actually undertakes singular value

decomposition of the resolution matrix R read from a file produced by the RESWRIT utility.

In doing so, it calculates the matrices D, E and F such that

 R=DEFt
 (12.9.7)

For the set of parameter values k employed in the predictive analysis

maximisation/minimisation process which it sets up, REGPRED computes

 g = D2
t(k - k) (12.9.8)

where D2 is comprised of the last m-k columns of D, k being the number of dimensions in the

solution space as provided by the user, and m being the total number of parameters featured

in the inversion process. D2 approximately spans the calibration null space. The g vector has

m-k elements.

From (12.9.2)

 g = D2
t(k - k) = -D2

t(I – R)k + D2
tG (12.9.9)

The second term on the right side of equation 12.9.9 is assumed to be zero; it is in fact

exactly zero where regularisation in undertaken using singular value decomposition. Hence

the covariance matrix of g is given by

 C(g)= D2
tC(k - k)D2 = D2

t(I – R)C(k)(I – R)tD2 (12.9.10)

In the predictive analysis PEST control file written by REGPRED, all elements of the g

matrix are read as observations (the calculation of g through equation 12.9.8 is implemented

through a modification of the model to be described below). They are assigned an “observed

value” of zero and collectively assigned to an observation group of their own. This group is

then assigned the covariance matrix C(g) which is computed by REGPRED using equation

12.9.10 and written to a covariance matrix file ready for the use of PEST. Because the

elements of g thus comprise part of the observation dataset, deviations of g from zero as

computed on the basis of a given parameter set contribute to the objective function. Thus in

constraining the objective function during the maximisation/minimisation process

implemented by PEST’s predictive analyser, parameter movement within the calibration null

space is also constrained.

As an alternative to the above procedure, instead of reading a resolution matrix, REGPRED

prompts the user for the contents of a singular value decomposition file. Such a file (written

by PEST when singular value decomposition is employed as a solution mechanism for the

inverse problem) contains the V matrix of equation 12.9.6, provided the EIGWRITE variable

in the “singular value decomposition” section of the pertinent PEST control file was set to 1.

REGPRED extracts V2 from this matrix (i.e. the set of eigenvectors spanning the calibration

null space) and uses V2
t in place of D2

t and D2
t (I – R) in the above procedure. Where

regularised inversion was implemented using singular value decomposition, and thus (I - R)

is equal to V2V2
t, all of these are equivalent.

Nonlinear Error and Uncertainty 173

Solution Space Constraints

Error in the estimation of those combinations of parameters that lie within the calibration

solution space arises solely from measurement (and structural) noise, the stochastic properties

of which are supposedly described by the C(ε) covariance matrix appearing in equation

12.9.1.

Suppose that the estimated parameter set k when supplied to the model gives rise to model

outputs o. As parameters are altered through the prediction maximisation/minimisation

process, a set of parameters k+δk may be calculated. These may, in turn, result in model

outputs o+δo. Now if δo is “unlikely” at a certain significance level as assessed in terms of

measurement noise, then o+δo will be statistically different from o at this same significance

level. Thus, also at this same significance level, the alterations δk to the calibrated parameter

set k will be statistically unlikely. As a consequence it is then unlikely that k+δk can be

considered as an alternative to k at the same significance level; hence δk must be constrained

to prevent this.

This can be viewed in another way. Suppose that measurement noise for the current

calibration dataset is a stochastic realisation based on the covariance matrix C(ε). Let this

realisation be denoted as ε1. Suppose also that “true” system behaviour is encapsulated in the

vector o so that the measurement dataset h is expressed as o+ε1. Implied in the calibration

process, and the assumption of truly random measurement noise, is the assumption that a

model can perfectly replicate true system behaviour if it is provided with the correct

parameter set. Suppose that this parameter set, after projection onto the calibration solution

space, is k. Now if any parameter set k+δk gives rise to a set of model outputs o+δo to which

the above measurement noise ε1 is added, the resulting model outputs will be h+δo. If δo is a

statistically unlikely random variable as assessed using the covariance matrix C(ε), then h+δo

is significantly different from h and the parameter difference δk thus introduces discernable

differences to the calibration dataset k, notwithstanding the noise content of this data. k+δk

can thus not be considered as a parameter set which “calibrates” the model at a certain

significance level because it results in a statistically unlikely difference in model outputs, at

that same significance level.

Following this logic, when implementing maximisation/minimisation of a user-specified

prediction, constraints are not implemented directly on model-to-measurement misfit. Rather

they are imposed on the change in model outputs induced through the

maximisation/minimisation process. If this change is considered unlikely at a certain

significance level as assessed in terms of the covariance matrix C(ε) of measurement noise,

then so too are the parameters required to achieve this, at the same significance level.

Imposition of all Constraints

With the two sets of constraints now identified, the manner of their imposition can be

defined.

As will be discussed below, REGPRED assumes that you have built a PEST control file in

which initial parameter values are optimised parameter values, and in which initial

observation values are model outputs calculated using these optimised parameter values. Any

regularisation information present within this file is ignored. However the presence of

regularisation in the preceding parameter estimation process is “felt” through the values of

the optimised parameters, and through use of the corresponding resolution matrix in defining

g of equation 12.9.8. It is assumed that you have already calculated this resolution matrix.

Nonlinear Error and Uncertainty 174

Observations within the existing PEST control file that are not regularisation observations are

transferred to the new PEST control file that is written by REGPRED. However, as

discussed, REGPRED assumes that their values are now perfectly matched to the initial

parameter values supplied in this file (this can be achieved using the OBSREP utility); thus

all residuals corresponding to all observations are initially zero. REGPRED assigns weights

to these observations which are the inverse of the uncertainties of the associated

measurements, measurement uncertainty being read from an observation uncertainty file; see

section 2.5 of this manual for specifications of this file type. (It should be noted here that

observation weights employed in the predictive analysis process can differ from those

employed in the parameter estimation process. REGPREG, however, does not allow a

covariance matrix to be used to characterise the uncertainties of field measurements.)

The observation dataset written to the new PEST control file is supplemented by the elements

of g; the “observed value” or each element of g is zero. These new observations are assigned

to an observation group of their own, for which the C(g) covariance matrix of equation

12.9.10 is employed for specification of uncertainty. As defined above, g is nonzero only

where parameters depart from their initial values in combinations that lie within the

calibration null space.

An objective function is thus formed comprised of modified measurements on the one hand

and parameter differences projected onto the calibration null space on the other hand. The

objective function is zero at the commencement of the predictive analysis process and will

only become non-zero as parameters depart from their previously estimated values. If such

departures take place in combinations that lie within the calibration solution space, model

outputs will be affected. If they take place in combinations that lie within the calibration null

space, the elements of g will be affected. All observations are assigned weights (or a

covariance matrix in the case of g) which are in accord with their statistical distributions. If

the noise associated with measurements is Gaussian, and if C(k) is multiGaussian, the square

root of the objective function thus measures, in normalised observation space, the distance of

departure of the collective model outputs and g dataset from its optimum value of 0 (for

which the objective function is zero). The square root of the objective function is thus a

normalized normal variate and can be employed as a means of setting a significance level on

these departures (see section 8.3 of Doherty (2015) and documentation of the ASSESPAR

program for further details). Thus, for example, if the objective function is raised to 9 for a

certain parameter set, then the distance, in normalised observation space, of the collective set

of “observations” (including the g component of these observations) from their optimum

value of zero is 3 standard deviations. Thus at this point the “observations” are statistically

different from their optimised counterparts at the 99.7% significance level. Given the

definition of these observations, this means that there is a very low likelihood that the

corresponding parameter set satisfies the stochastic requirements of C(k), and that model

output deviations calculated on the basis of the corresponding parameter set satisfy the

stochastic requirements of C(ε); thus any prediction made on the basis of that parameter set is

equally unlikely.

12.9.3 Preparing for a REGPRED Run

Obtaining the Resolution Matrix

Prior to running REGPRED, a regularised inversion exercise must have been carried out.

Regularisation could have been achieved using singular value decomposition alone (in which

case PEST was run in “estimation” mode), and/or using Tikhonov constraints (in which case

Nonlinear Error and Uncertainty 175

PEST was run in “regularisation” mode”), and/or using SVD-assist (in either mode). It is

assumed that the RESPROC utility has been run after this, and that RESWRIT has been run

to produce a resolution matrix, stored in a file of its own using PEST matrix file format (see

section 2.4 of this manual). Note that if regularised inversion is carried out using SVD-assist,

a second set of parameter sensitivities may have been calculated based on optimised

parameters in order to provide more accuracy in computation of the resolution matrix. See

documentation of RESPROC for more details.

Building an “Optimised PEST Control File”

The next task, prior to running REGPRED, is to build a PEST control file in which initial

parameter values are optimal, and in which “observations” are in fact the set of model outputs

corresponding to these optimised parameters. The former can be achieved using the PARREP

utility (and may have been done already to calculate sensitivities on the basis of optimised

parameters). The second of the above tasks can be carried out using the OBSREP utility.

After having run both of these programs an “optimised PEST control file” will have been

produced. If NOPTMAX is set to 0 in this file and PEST is run in order to carry out just one

model run, the (measurement) objective function should be zero.

There is no need to remove regularisation observations and/or regularisation prior

information from this file, for REGPRED will take care of this. However the following

should be noted.

1. If the optimised PEST control file does not instruct PEST to run in “regularisation”

mode (as inherited from the files from which it was built), then the name of no

observation group should begin with the string “regul”.

2. It is possible that, during the regularised inversion process, one or more

“observations” were “carried along” (with weights of zero) talking no part in the

parameter estimation process, but were in fact model predictions of interest. This

strategy allows calculation of derivatives of these predictions with respect to all model

parameters. If this is the case, these “observations” may have been assigned to an

observation group of their own. Unless there is only one such “observation” these

observations should not be assigned to an observation group named “predict”, as this

observation group has special significance when conducting predictive uncertainty

analysis. If, however, there is only one observation assigned to the observation group

“predict”, REGPRED will treat this as the prediction whose task it is for the

predictive analysis process to maximise/minimise when it builds the predictive

analysis PEST control file.

12.9.4 Running REGPRED

REGPRED’s Dialogue

REGPRED commences execution with the prompt

Enter name of existing PEST control file:

Provide the name of an existing PEST control file containing optimised parameter and

observation values; if you omit the “.pst” extension, REGPRED will automatically add this

for you. Note that if parameter estimation was carried out using SVD-assist, this should not

be a super-parameter PEST control file. Rather it should be a base parameter PEST control

file (containing optimised parameter and observation values as discussed above).

Nonlinear Error and Uncertainty 176

After you have provided the name of this file, and after REGPRED verifies that this file

exists, it prompts

Does it contain optimised parameter and observation values? [y/n]:

If you answer “n” REGPRED’s reaction will be swift and decisive:

Then use PARREP and OBSREP to build such a PEST control file.

whereupon it will immediately cease execution.

REGPRED’s next prompt is

Use resolution or SVD matrix for null space projection? [r/s]:

If the response to the above prompt is “r”, REGPRED prompts

Enter name of corresponding resolution matrix file:

As mentioned above, this resolution matrix file should have been produced by running

RESPROC followed by RESWRIT after the PEST regularised inversion run through which

estimated parameter values (and optimised model outputs) were obtained.

REGPRED next asks

Enter dimensions of solution space:

This question may sometimes be difficult to answer. The SUPCALC utility can help.

If, on the other hand, you had instructed REGPRED to read an SVD matrix instead of a

resolution matrix, it will prompt

Enter name of SVD matrix file:

This must be a file with an extension of “.svd” produced during a previous PEST run in

which PEST was instructed to use singular value decomposition as a solution device for the

inverse problem. If the EIGWRITE variable was set to 1 on that run, the V matrix comprised

of eigenvectors of Q1/2J is recorded during every iteration in this file. REGPRED next asks

Get SVD for which iteration number? <Enter if 1>:

If the singular value decomposition run was undertaken for the purposes of model calibration,

enter the number of the last iteration undertaken. However if PEST was only run for one

iteration, purely for the sake of obtaining this matrix, then a matrix will be produced only for

iteration number 1. See below for a way in which this can be easily achieved based on

existing sensitivities even if singular value decomposition had not been used as a solution

device for the inverse problem. Note also that, ideally, the RLAMBDA1 control variable

should be set to zero if PEST is run purely for the sake of obtaining this file, for then the

contents of this file will not reflect the value of the Marquardt lambda.

REGPRED’s next prompt is

Enter dimensions of solution space:

See above.

Next, whether REGPRED reads a resolution matrix file or a SVD file, it prompts for the

name of a parameter uncertainty file and for the name of an observation uncertainty file.

Enter name of parameter uncertainty file:

Enter name of observation uncertainty file:

See section 2.5 of this manual for specifications of an uncertainty file. In the present context

the purpose of the above files is to supply the C(k) and C(ε) matrices described above. Note

Nonlinear Error and Uncertainty 177

that if parameters are log-transformed through the parameter estimation process, then

pertinent elements of C(k) must relate to the logs of these parameters. Note also that if the

observation uncertainty file cites a PEST control file (because the weights in this file are the

inverse of measurement uncertainties), it must not be the same PEST control file as that

whose name was supplied to REGPRED following the first of its prompts. However it must

provide uncertainty information for all observations and prior information equations cited in

this PEST control file, except for those which belong to regularisation groups.

REGPRED next prompts for the name of the file that it must write.

Enter name for new predictive analysis PEST control file:

This new PEST control file will exclude any regularisation observations and/or prior

information cited in the original PEST control file. In this new PEST control file, PEST will

be instructed to run in “predictive analysis” mode. It will also include a “predictive analysis”

section containing control variables for the predictive analysis process. One of these variables

is NPREDMAXMIN, which informs PEST whether the prediction of interest is to be

maximised or minimised. In order to know this, REGPRED prompts

Maximise or minimise prediction? [a/i]:

Then it asks

Enter value for PDO (<Enter> if 9.0):

As is explained in chapter 8 of part I of this manual, PD0 is the objective function constraint

imposed through the predictive maximisation/minimisation process. A value of 9.0 is

equivalent to three standard deviations (because it is the square of 3) and hence to a two-sided

confidence level of about 99.7% for normally distributed variables.

If the PEST control file whose name is supplied to REGPRED contains an observation group

named “predict”, and if that observation group contains a single observation, REGPRED next

prompts

Treat single member "obs" of observation group "predict"

 as "the prediction" in new PEST control file? [y/n]:

where “obs” is replaced by the observation actually identified in the PEST control file. If the

answer to this question is “y”, REGPRED then asks

Incorporate predictive noise in pred. anal. process [y/n]:

See chapter 8 of part I of this manual. As explained in that chapter, the existence of

“predictive noise” can be incorporated into the predictive maximisation/minimisation process

undertaken by PEST. If this is done, the PREDNOISE variable in the “predictive analysis”

section of the PEST control file must be set to 1, and a non-zero weight must be supplied to

the prediction comprising the single member of the observation group “predict”. This weight

must be the inverse of the standard deviation of predictive noise.

The Modified Model

The model run by PEST as part of the predictive analysis process must compute g of equation

12.9.7 on the basis of current parameter values. REGPRED modifies the model to be able to

do this. On the assumption that the original model is a batch or script file (REGPRED will

cease execution with an error message if the extension of the model filename is not “.bat”),

REGPRED adds commands to the beginning of this file as it writes a new model batch file

named regpredbat.bat which the new PEST control file will employ to run the model.

Nonlinear Error and Uncertainty 178

A template file named par###.tpl is added to the PEST input dataset, its corresponding model

input file being named par###.mat. This contains the vector of parameter values k; note that

only adjustable parameters are written to this file. The model then runs the VECLOG utility

to take the logs of log-transformed parameters, producing a file named parlog###.mat. The

transformation matrix file employed by VECLOG (which is written by REGPRED) is named

partran###.mat.

A difference is then taken between current (transformed) parameter values k and optimised

parameter values k. The latter are stored in file refpar###.mat which is written by

REGPRED; note that the values of log-transformed parameters are log-transformed before

storage in this file. Vector differencing is undertaken by the MATDIFF utility, the k-k vector

is written to a file named pardiff###.mat.

The MATPROD utility is used to compute g using equation 12.9.9. D2
t
 (or V2

t if the singular

value decomposition option is employed) is stored in file proj###.mat by REGPRED. g itself

is written to file projdiff###.mat by MATPROD. This file is then read by a new instruction

file (written by REGPRED) named proj###.ins.

The elements of g are assigned to observations named projdiff1, projdiff2, etc. in the new

PEST control file written by REGPRED. These in turn are assigned to the observation group

projdiff to which the covariance matrix C(g) (computed using equation 12.9.10) is assigned in

the “observation groups” section of the new PEST control file written by REGPRED.

It is important to ensure that the VECLOG, MATDIFF and MATPROD executables reside in

a directory cited in the PATH environment variable (or reside in the current working

directory). If running Parallel PEST or BEOPEST, it is important to ensure that these

executables are transferred to slave machines.

12.9.5 Some Notes

The following aspects of the input dataset written by REGPRED should be carefully noted.

1. If, in the original PEST control file whose name is supplied to REGPRED, there is an

observation group named “predict”, and if it contains more than one member,

REGPRED will cease execution with an appropriate error message. Alternatively, if

there is such a group and it contains only one member, REGPRED will prompt (as

discussed above) for permission to treat this one member as the prediction whose task

it is for PEST to maximise/minimise in the forthcoming predictive analysis process. If

you do not want this, REGPRED will ask you to assign that observation to another

observation group. If there is no observation group named “predict” in the original

PEST control file REGPRED will create one. It is then your task to add an actual

prediction to this PEST control file. A new instruction file (or an alteration made to an

existing one) will also be required in order to provide PEST with the means to read

this new prediction from the model output dataset. REGPRED issues a warning to this

effect before finishing execution.

2. As discussed above, observation and prior information weights are not transferred

from the original PEST control file to the new one. Rather observation weights are

assigned on the basis of observation uncertainties as supplied to REGPRED through

an observation uncertainty file. However if any observation or prior information

equation is assigned a weight of zero in the original PEST control file, it will also be

assigned a weight of zero in the new PEST control file as this is taken as an indication

that the user is not interested in this observation.

Nonlinear Error and Uncertainty 179

3. All regularisation observations and prior information equations are eliminated from

the new PEST control file written by REGPRED. On many occasions of PEST usage

regularisation constraints are limited solely to prior information. The elimination of

these prior information equations from the new PEST control file has no adverse

consequences. However where observations, rather than prior information equations,

are eliminated from the PEST control file because they belong to a regularisation

group, pertinent instruction files comprising the PEST input dataset need to be deleted

or modified. It is your responsibility to undertake this task. (REGPRED reminds you

of this before ceasing execution).

4. If a “singular value decomposition” section exists in the original PEST control file, it

is removed.

5. Irrespective of the NOPTMAX (current number of iterations) setting in the original

PEST control file, a NOPTMAX setting of 50 is provided to the new PEST control

file. (This can prevent you from being severely disappointed if, on returning to your

computer the morning after setting up PEST to run all night, you find that PEST has

run the model only once in order to calculate the objective function, or that PEST ran

for only one iteration in order to calculate parameter sensitivities because you forgot

to alter the NOPTMAX setting.)

6. Predictive analysis control variables written to the “predictive analysis” section of the

new PEST control file by REGPRED are conservative. A line search is instigated, the

control variables for this line search being such as to sample the line densely enough

to detect the existence of a possible fall in the objective function followed by a rise

before intersection of the PD0 contour. Also, convergence criteria are tight. If these

settings are not suitable, you should alter them yourself.

When PEST is run on the basis of the new PEST control file (it may be necessary to add the

prediction to this file first as discussed above) the initial objective function should be zero.

There may be an occasion or two when PEST will cease execution after the first iteration,

saying that the “phi gradient is zero”. If this is the case, perturb the initial value of one of the

parameters by a slight amount and re-commence PEST execution.

12.9.6 Using the SVD Matrix Option

If you wish to provide REGPRED with an SVD file instead of a resolution data file and you

don’t already have one, then follow these steps. It is assumed that you have a PEST control

file in which optimised parameter values are initial values, and that you have run PEST to

produce a corresponding JCO file.

1. Set NUMLAM to 1 and RLAMBDA1 to zero in the PEST control file.

2. Remove all regularisation observations and prior information from this file; this can

be facilitated using the SUBREG1 utility.

3. Add a “singular value decomposition” section to this file. Be sure to set EIGWRITE

to 1.

4. Set NOPTMAX to 1.

5. Use the JCO2JCO utility to create a JCO file corresponding to this new PEST control

file.

6. Start PEST on the basis of the new PEST control file using the “/i” switch. When

prompted for the name of a JCO file, supply the name of the JCO file that was just

Nonlinear Error and Uncertainty 180

written by JCO2JCO. PEST will then undertake three model runs – one to compute

the objective function, one to test an upgrade vector, and one on the basis of “best fit

parameters”. However no model runs will be required for calculation of the Jacobian

matrix, as this is read from the existing JCO file.

12.10 ASSESSPAR

12.10.1 General

The ASSESSPAR utility can be used to assist in model-based hypothesis-testing.

Suppose that a model has been calibrated. Suppose that it is then re-calibrated with an extra

“observation” included in the calibration process, this being the value of a prediction of

interest. (This is effectively done when using PEST in “pareto” mode.) If parameter values

that emerge from this second calibration process are “unreasonable”, then the prediction can

be deemed to be unlikely.

The integrity of model-based hypothesis-testing conducted in this way rests upon the model’s

ability to allow predictive values to be computed if, indeed, these values are compatible with

an expert-knowledge-based assessment of hydraulic properties. In the groundwater modelling

context, this will normally require that calibration be undertaken using highly-parameterized

inversion, so that predictive possibilities are not artificially precluded by a parameterization

scheme that is incapable of representing geologically realistic heterogeneity. Both the first

and second calibration exercises discussed above will therefore probably employ Tikhonov

regularisation in which preferred values are assigned to parameters through regularisation

prior information. A PEST control file will probably therefore exist in which “expected

parameter values” from a pre-calibration (or pre-re-calibration) point of view are represented

as initial values within this file. Assessment of parameter sets which emerge from the

hypothesis-testing calibration process is then based on differences between calibrated

parameter values and these prior expected parameter values. ASSESSPAR allows this

comparison to be made on a statistical basis.

ASSESSPAR computes two variates, one a chi-square variate and one a normal variate.

(Here it is assumed that prior parameter probabilities are multiGaussian in nature.)

Optionally, a prediction-specific normal variate can be computed based on sensitivities of a

prediction of interest to model parameters. If this is to be done, the model calibration dataset

will need to include this prediction so that the sensitivity of this prediction to model

parameters is available from a JCO file.

If desired, other statistics can be calculated on the basis of information recorded in the

ASSESSPAR output file. This file tabulates the values of “eigenparameters”; the standard

deviation of each of these is 1.0, while each is statistically independent of other

eigenparameters. If a Gaussian prior parameter distribution is assumed, parameter (and hence

predictive) confidence intervals are readily calculated from the values of these

eigenparameters.

12.10.2 Theory

The theory presented in this sub-section is taken from sections 8.3 and 8.5 of Doherty (2015).

It is repeated here in a way that allows operation of the ASSESSPAR utility to be better

understood.

Let k denote a parameter set. Actually, let it denote the differences between an actual

Nonlinear Error and Uncertainty 181

parameter set and a “base” parameter set whose values are prior expected parameter values.

Thus the expected value of the k parameter vector is the vector 0.

Let the covariance matrix of k be denoted as C(k). Because C(k) must be a symmetric,

positive-definite matrix, it can be written (through singular value decomposition) as

 C(k) = EFEt (12.10.1)

where F is a diagonal matrix with positive diagonal elements.

Let the “eigenparameter set” m be defined through the following transformation (which is the

same as the Kahunen-Loève transformation discussed by Doherty, 2015).

 m = F-1/2Etk (12.10.2)

It is easily verified that the covariance matrix of m, i.e. C(m), is the identity matrix I. Hence,

by definition, the scalar variable mtm has a chi-square distribution with m degrees of

freedom, where m is the number of elements of k and hence of m. Basic matrix manipulation

demonstrates that

 mtm = ktEF-1/2F-1/2Etk = ktEF-1Etk = ktC-1(k)k (12.10.3)

Hence ktC-1(k)k also has a chi-square distribution. Tables of probabilities associated with

chi-square values are readily available; calculators are also available on the internet. Note that

as the number of degrees of freedom increases, the chi-square distribution approaches a

normal distribution with mean m and variance 2m. This relationship can be used to assess

parameter credibility in highly parameterized cases as standard tables do not usually extend

beyond m values of about 100.

Let t be a scalar that is calculated from m (defined as above) through use of a vector j as

 t = jtm (12.10.4)

Through the basic propagation of variance relationship, the variance of t is given by:

 σ2
t = jtC(m)j = jtj (12.10.5)

If follows that if j is a unit vector then the variance (and hence standard deviation) of j is 1.0.

If C(m) pertains to a normal distribution, then this provides us with a normal variate through

which parameter credibility can be assessed. Useful options for j may include vectors for

which all elements except that pertaining to a parameter of interest are zero while that

pertaining to the parameter of interest is 1; this allows the credibility of the value of an

individual parameter to be assessed.

For predictive credibility assessment a more useful unit vector may be

 j = v = w/(wtw)1/2 (12.10.6)

where w encompasses sensitivities of a prediction of interest to elements of the

eigenparameter set m.

Suppose that the sensitivity of a prediction s to the real parameter set k is given by the vector

y. Then

s = ytk (12.10.7)

If w is calculated as

 w = F1/2Ety (12.10.8)

then

Nonlinear Error and Uncertainty 182

 wtm = ytEF1/2F-1/2Etk = ytk = s (12.10.9)

the second last equality following from orthonormality of E. Because v is a unit vector, it

follows that the scalar

 s΄ = vtm = wtm/(wtw)1/2 = ytk/(wtw)1/2 (12.10.10)

has a standard deviation of 1. From (12.10.8) it follows that

 wtw = ytEF1/2F1/2Ety = ytC(k)y (12.10.11)

Hence

 s΄ = ytk/[ytC(k)y]1/2 (12.10.12)

has a standard deviation of 1. If C(k) pertains to a multi-Gaussian distribution, then s΄ is a

standard normal variate. Its value is then easily employed for assessing parameter confidence

in contexts such as that described above where parameter values are “calibrated” to ensure

the occurrence of a prediction s. In doing so, predictive confidence is also assessed.

Calibration to ensure the occurrence of a prediction can be achieved through a single

calibration exercise in which the prediction is included in the calibration dataset; alternatively

it can be achieved through using PEST in “pareto” mode.

12.10.3 Using ASSESSPAR

ASSESSPAR is run using the command

assesspar parfile pestfile uncfile outfile [senfile]

where

parfile is a parameter value file,

pestfile is a PEST control file containing prior expected parameter values,

uncfile is a parameter uncertainty file,

outfile is the eigenparameter output file, and

senfile is an optional predictive sensitivity file.

ASSESSPAR assumes that expected parameter values are housed as initial values in the user-

nominated PEST control file. The transformation status of parameters is also read from this

file. As is normal practice, parameter sensitivities and uncertainties pertaining to parameters

must pertain to the logs of parameters where parameters are denoted as log-transformed in the

PEST control file.

If a predictive sensitivity file is not supplied, then the normal variate s΄ of equation (12.10.12)

is not calculated. Only the chi-square variable ktC-1(k)k is calculated in this case. Inversion

of the C(k) matrix is undertaken using SVD. This may take a while where the matrix is large;

the 64bit version of ASSESSPAR may then be required.

Whether or not a predictive sensitivity vector is supplied, the output file written by

ASSESSPAR lists all eigenparameters. If numerical singular value decomposition of C(k) is

undertaken (which occurs if C(k) has any off-diagonal elements), these are listed in order of

decreasing singular value. Otherwise they are listed in the same order as parameters in the

PEST control file as there is then a one-to-one relationship between actual parameters and

eigenparameters. Eigenparameters are the elements of the vector m of equation (12.10.2).

Where C(k) pertains to a Gaussian distribution, then each of these are standard normal

variates whose credibility is thereby easily assessed.

The values of the chi-square variable and (when the predictive sensitivity file is supplied) the

Nonlinear Error and Uncertainty 183

values of the prediction-specific normal variate are each written to the screen and recorded in

the ASSESSPAR output file. Note that the degrees of freedom associated with the chi-square

distribution is the number of adjustable parameters contained in the PEST control file. This

is also listed to the screen and to the ASSESSPAR output file.

Note also that a predictive sensitivity file is easily obtained from a PEST Jacobian matrix file

using the JROW2VEC utility.

Latin Hypercube Sampling 184

13. Latin Hypercube Sampling
I would like to thank Sandia National Laboratories for funding the writing of the software

documented in the present chapter. On a personal basis, thanks also go to Scott James, Bill

Arnold (from SNL) and Paul Reimus (from LANL).

13.1 Introduction

13.1.1 General

This chapter documents three utility programs which allow data interchange between PEST

and the LHS program developed by Sandia National Laboratories. Use of these programs can

facilitate calibration-constrained uncertainty analysis through combining the sampling

efficiencies of the Latin hypercube scheme with the ability of PEST to modify randomly-

generated parameter sets in order to allow model outputs to match field data.

A WINDOWS-compiled version of the LHS program named runlhs.exe is provided with

PEST. It is run by typing its name at the screen prompt, followed by the name of its input file.

Preparation of its input file can be undertaken using a standard text editor, or by translation

from a PEST input dataset. The LHS software manual is also provided with PEST. It

describes the algorithmic details of LHS, and provides specifications for its input file.

The full reference for the LHS software manual is as follows.

Swiler, L.P. and Wyss, G.D., 2004. A User’s Guide to Sandia’s Latin Hypercube Sampling

Software: LHS UNIX Library/Standalone Version. Sandia National Laboratories, Report

SAND2004-2439.

13.1.2 Using PEST with LHS

While the utility programs described in the present chapter facilitate use of PEST with LHS,

you will nevertheless be required to undertake a certain amount of PEST setup yourself when

using these two packages together. Hopefully, however, the task of passing parameter values

between them is made easier through use of these programs.

Two possible strategies for joint use of PEST and LHS are now discussed. Other possibilities

are left to the user’s imagination.

Calibration-Constrained Random Parameter Fields – Method 1

The aim of all calibration-constrained random parameter field generation is to sample the

posterior probability distribution of a parameter set. Strategies such as Markov chain Monte

Carlo can achieve this; however they may not be useable in contexts where model run times

are large. Hence approximate and more model-run-efficient methods may need to be used

instead. One such method is the null space Monte Carlo (NSMC) method available through

the PEST suite. Ideally, it should be possible to realise further efficiencies through combining

this with the Latin hypercube sampling methodology.

A possible strategy for combining NSMC and LHS is as follows.

1. Calibrate a model.

2. Construct a PEST input dataset in which calibrated parameters feature as initial

parameter values.

Latin Hypercube Sampling 185

3. Run PEST to obtain a Jacobian matrix based on calibrated parameter values.

4. Generate parameter samples based on the prior probability distribution and prior

parameter values using LHS.

5. Use the PNULPAR utility to obtain a secondary set of samples that, through

differencing with the calibrated parameter set and null space projection, should

“almost calibrate” the model, while retaining null space randomness.

6. Undertake a series of re-calibration operations using SVD-assist as per the NSMC

methodology. Recall from section 10.6.3 of part I of this manual that NSMC achieves

computational efficiency through

a. differencing a random parameter field with a calibrated parameter field and

removal of any solution space parameter components of this difference which

compromise goodness of fit between model outputs and field data (achieved

using PNULPAR, as stated above);

b. use of a limited number of super parameters for parameter adjustment;

c. re-use of a global set of super parameter sensitivities for the initial re-

calibration iteration as applied to all random, null-space-projected parameter

sets.

If desired, Tikhonov constraints could be introduced to the suite of PEST runs required to

lower the calibration objective function to a suitably low level. These could constrain

parameter sets to deviate minimally from their initial LHS-sampled and null space projected

values in achieving the desired objective function.

Calibration-Constrained Random Parameter Fields – Method 2

In the above methodology, the LHS method is employed for sampling of the prior parameter

probability distribution. Calibration constraints are then applied to these samples through

removal of solution space components that compromise goodness of model-to-measurement

fit, while retaining null space components which (by definition if the model is linear) do not

affect that fit. An alternative strategy is to sample the posterior parameter probability

distribution (or an approximation to it) using the LHS sampling methodology. A possible

strategy is as follows.

1. Calibrate a model.

2. Construct a PEST input dataset in which calibrated parameters feature as initial

parameter values.

3. Run PEST to obtain a Jacobian matrix based on calibrated parameter values.

4. Use the PEST PREDUNC7 utility to obtain a linear approximation to the posterior

parameter covariance matrix.

5. Use the PEST MATSVD utility to obtain eigencomponents of this covariance matrix.

6. Using these eigencomponents, define a set of independent parameters of unity

variance (see below).

7. Sample these independent parameters using LHS and then back-transform these

samples to obtain samples of native parameter values (see below).

Latin Hypercube Sampling 186

8. (Perhaps) use PNULPAR to effect further removal of unwanted solution space

components from the above-generated random parameter sets.

9. Using the NSMC method as described above, alter these parameter fields such that

they respect calibration constraints.

10. Alternatively, if the dimensions of the null space are not very large, adjust each of

these parameter fields in order to lower the objective function by running PEST with

the “/i” switch. The first (and possibly only) iteration required to lower the objective

function to a suitable level is then obtained “for free”, using the same, already-

computed, Jacobian matrix calculated using the calibrated parameter set.

Transformation of parameters to achieve statistical independence is now briefly described.

Suppose that the parameter set k has a covariance matrix C(k). Undertake singular value

decomposition of this covariance matrix to obtain matrices E and F such that

 C(k) = EFEt (13.1.1)

In equation (13.1.1) F is a diagonal matrix containing the eigenvalues of C(k) arranged from

highest to lowest while E is an orthonormal matrix, i.e. a matrix whose columns are

orthogonal unit vectors. Using standard propagation of covariance relationships it is easily

shown that the vector m defined through transformation of k as

 m = F-1/2Etk (13.1.2)

is comprised of elements mi that are statistically independent and that have unit standard

deviation. If the mi are individually sampled using LHS, an equivalent set of k parameters can

be calculated from thus-sampled m vectors through the relationship

 k = EF1/2m (13.1.3)

In implementing equations 13.1.2 and 13.1.3, the expected values of parameters should be

subtracted from the actual parameter values before transformation, and then added back after

transformation.

13.2 PHISTATS

Although it was written to expedite use of the Sandia LHS program with PEST, use of

PHISTATS is broader than this. It can be used on its own, or as part of any batch file that

undertakes repeated PEST runs. It provides a mechanism for an up-to-date reporting of the

status of those runs, and of their ability to lower (or not) the objective function.

PHISTATS is run using the command

phistats recfile N

where recfile is the name of a PEST run record file, and N is any integer supplied by the user.

If run inside a loop recorded in a batch file, N will probably be the index of the loop control

variable which, under normal operation, will be incremented after each pass through the loop.

When executed in the above manner, PHISTATS reads the nominated run record file. Note

that an extension of “.rec” is presumed; if this is omitted it will be added to the user-supplied

filename automatically. PHISTATS then writes the following information to the screen.

• initial objective function;

• initial contributions to the objective function by all observation groups;

Latin Hypercube Sampling 187

• initial measurement and regularisation objective functions (if PEST is run in

“regularisation” mode);

• initial predictive and predictive error terms (if PEST is run in “predictive analysis”

mode).

• all of the above statistics as recorded at completion of PEST execution.

Note that PHISTATS will cease execution with an error message if it is asked to read a run

record file that documents the outcomes of a PEST run in which PEST is run in “pareto”

mode.

Not also that the integer N supplied on the command line does not affect PHISTATS’s

reading of the run record file, or which file it reads. This index is, however, reported to the

screen together with the objective function information that it provides. The user is therefore

informed of the current loop index.

13.3 LHS2PEST

13.3.1 General

LHS2PEST provides a linkage between PEST and the LHS program written by Sandia

National Laboratories. It facilitates the undertaking of multiple PEST runs, each based on a

different set of Latin hypercube parameter value samples generated by LHS.

PEST runs can be undertaken for a number of purposes. If the NOPTMAX control variable is

set to 0, then PEST will simply run the model once, calculate the objective function and

different components thereof, calculate and record some statistics, and then cease execution.

If NOPTMAX is set to -1 or -2, PEST will calculate the Jacobian matrix, this comprising

sensitivities of members of the observation dataset to the different parameters. If NOPTMAX

is set to a positive number, then PEST will undertake parameter estimation; for each

parameter estimation run, initial parameter values can thus be Latin hypercube samples of the

various parameters.

For NOPTMAX not set to zero, the following should be noted.

• If a model is linear with respect to its parameters, sensitivities recorded in the

Jacobian matrix are independent of parameter values.

• If undertaking repeated parameter estimation based on different LHS-generated initial

parameter values, and this process does not employ the SVD-assist methodology (do

not confuse this with singular value decomposition as a solution device for the inverse

problem), consider running PEST with the “/i” switch so that it can re-use the same

Jacobian matrix on its first iteration for each of these parameter estimation exercises.

Presumably this matrix will have been calculated using a representative set of

parameter values - ideally prior expected parameter values. (Note that in the batch file

written by LHS2PEST - see below - the command to run PEST is not accompanied by

this switch; you must add it to the pertinent command yourself.)

• Through use of the ADDREG1 utility, Tikhonov constraints can be implemented

which promulgate maximum adherence of adjusted parameter values to initial

parameter values; maximum respect for LHS samples as parameters are adjusted to

satisfy calibration constraints is thereby maintained.

Latin Hypercube Sampling 188

Use of LHS2PEST is predicated on the assumption that a PEST input dataset and

corresponding LHS input dataset exist. It is also assumed that the same parameters have the

same names in both of these datasets. (As will be discussed, either of the files comprising

these dataset can possess other parameters as well.) Adherence to this protocol will require

that parameter name lengths be restricted to 12 characters or less in the LHS input dataset, as

this is the character length limit for a parameter name employed by PEST.

It is further assumed that LHS has been run, and that an LHS output file with parameter

sample values has thus been recorded. LHS2PEST reads these samples, and builds a set of

PEST parameter values files, each recording the values associated with one sample set.

(Parameter value files are described in section 2.2 of this manual.) These files can be used in

similar ways to those written by the RANDPAR utility. In particular, through sequential use

of the PARREP utility, parameter sets contained in these files can be used as initial values in

a sequence of PEST control files. PEST can then use these control files to undertake

sequential runs for any of the reasons discussed above.

The tasks performed by LHS2PEST depend on the command that is used to run it. The

commands, and the tasks that correspond to these commands, are now described.

13.3.2 LHS2PEST - Level 1

The simplest way to run LHS2PEST is to invoke the command

lhs2pest lhsoutfile parfilebase

where

lhsoutfile is the name of an LHS output file that includes parameter sample

values, and

parfilebase is the filename base of a set of PEST parameter values files.

If run using the above command, LHS2PEST does the following.

• It reads the names of parameters which are featured in the LHS output file. If any of

these names are greater than 12 characters in length, LHS2PEST reports this as an

error and then ceases execution.

• It reads the Latin hypercube samples associated with these parameters.

• For each Latin hypercube sample set, it writes a single PEST parameter value file

which contains the values of these samples.

Suppose that parfilebase is supplied as “random”. Then the parameter value files written by

PEST are named random1.par, random2.par, etc. LHS2PEST writes as many of these files as

there are sample sets in the LHS output file. Sequence numbers are preserved in writing these

files. Hence, in the above example, file randomN.par contains values pertaining to the N’th

Latin hypercube sample generated by LHS.

The following protocols are adopted in writing these parameter value files.

• All parameters are given a SCALE of 1 and an OFFSET of 0.

• The PRECIS and DPOINT control variables are given values of “single” and “point”

respectively.

13.3.3 LHS2PEST - Level 2

When run using the command

Latin Hypercube Sampling 189

lhs2pest lhsoutfile parfilebase pestfile

where pestfile is the name of a PEST control file, LHS2PEST reconciles parameters

represented within a PEST control file with those represented in the LHS output file. In

particular, it informs the user if any parameters cited in the LHS output file are not cited in

the PEST control file; it also informs the user if any parameters cited in the PEST control file

are not cited in the LHS output file.

When recording parameter value files LHS2PEST adopts the following protocols when run in

the above way.

• The only parameters which are recorded in these files are those which are featured in

the PEST control file. Hence a parameter that is cited in the LHS output file but is not

cited in the PEST control file is not recorded in the parameter value files written by

LHS2PEST.

• Where a parameter is cited in the PEST control file, but not featured in the LHS

output file, it is provided with the same value in all parameter value files, this being

its initial value as recorded in the PEST control file.

• All parameters which feature in both PEST control and LHS output files are given

Latin hypercube sample values as recorded in the LHS output file. Note that this

occurs regardless of whether they are adjustable, fixed or tied in the PEST control file.

Provide them with alternative names in the latter file if you do not want this to

happen.

• If an LHS-generated sample for a particular parameter has a value which exceeds the

upper bound for that parameter as recorded on the PEST control file, or is lower than

that parameter’s lower bound, then you will be notified of this. At the same time the

sampled parameter value is clipped to respect these bounds.

• If a parameter is featured in the PEST control file, but not in the LHS output file, and

if that parameter is tied to a parameter whose value is informed by the LHS output

file, the value of the tied parameter is adjusted in accordance with the LHS-supplied

value for its parent parameter. If, in doing this, its upper or lower bound is

transgressed, it is adjusted back to its upper or lower bound and a warning is issued.

• The SCALE and OFFSET value provided to each parameter in LHS-recorded

parameter value files is that with which it is provided in the PEST control file.

• Values for PEST control variables PRECIS and DPOINT recorded in the headers to

parameter value files are equivalent to those used in the PEST control file read by

LHS2PEST.

Parameter value files written by LHS2PEST when run in level 2 mode are thus perfectly

compatible with the PEST control file cited on the LHS2PEST command line.

13.3.4 LHS2PEST - Level 3

To activate LHS2PEST level 3 functionality, it must be run using the following command.

lhs2pest lhsoutfile parfilebase pestfile batchfile

In this case LHS2PEST does everything that level 2 functionality requires. However it also

writes a batch file through which PEST can be run repeatedly based on the parameter value

file sequence that LHS2PEST also generates. An example batch file is shown below.

Latin Hypercube Sampling 190

@echo off

rem ##

rem Delete an existing record file.

rem ##

del /P record.dat

echo > record.dat

rem ##

rem Do all the PEST runs.

rem ##

for /L %%i in (1,1,100) do (

parrep random%%i.par temp1.pst t###.pst

del t###.rec

pest t###.pst

copy t###.res t###%%i.res

phistats t###.rec %%i >> record.dat

)

Figure 13.1 A batch file written by LHS2PEST.

The batch file written by LHS2PEST runs PEST repeatedly through a processing loop. This

loop is traversed as many times are there are Latin hypercube samples provided in the LHS

output file. On each occasion on which PEST is run, the PARREP utility is first run in order

to write a new PEST control file which is identical to the PEST control file nominated on the

LHS2PEST command line except for the fact that its initial parameter values are those

provided by the respective parameter value file, and hence constitute LHS-generated Latin

hypercube parameter sample values. This PEST control file is named t###.pst. After each

PEST run, the PEST residuals file (named t###.res) is copied to file t###N.res) where N is

the run index. Hence you can inspect the details of model-to-measurement fit calculated on

the basis of all Latin hypercube parameter sets. If you do not want these files saved, comment

out or delete the respective line from the batch file. Alternatively, request that other PEST

files be saved by adding other commands of a similar type within the processing loop

provided in the batch file.

Each PEST run is followed by a PHISTATS run. This provides you with the opportunity to

inspect a file named record.dat (rename this file in the batch file if you wish) at any loop

count, and at the end of the loop altogether when all PEST runs have been completed. This

file lists the sequence of objective functions that have been calculated on the basis of the

different Latin hypercube sample sets that have been used until the time of inspection. At the

start of the loop an existing file of this name (i.e. record.dat) is deleted. The batch file

prompts for permission to delete this file before it actually does this.

When run in level 3 mode, LHS2PEST writes the following message to the screen just before

it terminates execution.

Note:-

The value for NOPTMAX for all PEST runs initiated through the batch file

will be 0.

If this is not your intention, alter NOPTMAX to an appropriate value in the

PEST control file supplied in the command line.

Figure 13.2 Warning written to screen by LHS2PEST on cessation of level 3 execution.

Latin Hypercube Sampling 191

See the discussion of the NOPTMAX variable earlier in this section (and in part I of this

manual). NOPTMAX is an integer; it is the first variable on the 9th line of the PEST control

file.

13.4 PEST2LHS

13.4.1 General

PEST2LHS builds an input file for the LHS program using information contained within a

PEST control file, possibly supplemented by a PEST-compatible parameter uncertainty file

(see section 2.5 of this manual for specifications of this file type). The LHS program can then

be run to generate a suite of Latin hypercube samples of parameters featured in the original

PEST control file. These samples can then be used by PEST for calculation of objective

functions, or for more complex tasks such as model calibration based on these samples as

initial values. (Creation of a PEST input dataset based on LHS-generated samples can be

accomplished using the LHS2PEST program described above.)

The LHS input file written by PEST2LHS is simple. Of the many options that LHS provides

for its input dataset, PEST2LHS supports only a few. The user is advised to alter the

PEST2LHS-generated LHS input file him/herself to request options not supported by

PEST2LHS if these are required. Because it supports only a few LHS options and employs

many defaults, use of PEST2LHS is relatively easy. Adoption of simplicity in its design

specifications, accompanied by a recommendation for the user to directly edit the LHS input

file written by PEST2LHS him/herself to gain access to more complex LHS functionality, is

based on the premise that provision of a complex input dataset to PEST2LHS would be just

as difficult (if not more difficult) than supplying a complex input dataset to LHS directly

through editing of the latter’s input file.

13.4.2 Parameter Probability Distributions

PEST-suite programs which require characterization of parameter uncertainty can receive

such characterization through a “parameter uncertainty file”. As is documented in section 2.5

of this manual, this file can provide standard deviations for individual parameters; it can also

reference other files which provide covariance matrices for groups of parameters.

PEST2LHS, too, can read a parameter uncertainty file (and covariance matrix files cited

therein) in order to obtain specifications for the uncertainties of parameters cited within a

PEST control file, these being required for specification of probability distributions on the

LHS input file which it writes. However its design is such that if it employs variances and

covariances read from a parameter uncertainty file, it simultaneously assumes that all

adjustable parameters cited in the PEST control file which it reads are described by either a

normal distribution (if they are untransformed) or a log-normal distribution (if they are log-

transformed).

If a parameter is log-transformed then the uncertainty information pertaining to that

parameter provided in a parameter uncertainty file must pertain to the log to base 10 of that

parameter. As stated above, such information will constitute either the standard deviation of

the parameter, or its variance and covariances with other parameters supplied through a

covariance matrix file cited in the parameter uncertainty file. To maintain compatibility with

other PEST-suite programs, the assumption of base-10 logarithms in the parameter

uncertainty file is maintained; PEST2LHS makes the conversion to natural logarithms when

writing an LHS input dataset.

Latin Hypercube Sampling 192

If a parameter is cited as untransformed in a PEST control file (i.e. if it has a PARTRANS

value of “none” in the “parameter data” section of that control file), then the uncertainty

information contained in a parameter uncertainty file, or in any covariance matrices cited in

that file, must pertain to the native parameter.

As an alternative to obtaining parameter uncertainty information from a parameter

uncertainty file, PEST2LHS can calculate parameter uncertainty statistics itself from

parameter bounds provided in the PEST control file. If PEST2LHS is asked to do this, it does

not then need to read a parameter uncertainty file at all. Furthermore, if this option for

parameter uncertainty characterization is taken, the user can choose between the uniform,

triangular and normal probability distributions for expressing that uncertainty. These

distributions are assigned on a parameter group by parameter group basis. (Recall that

parameter groups are named in the “parameter groups” section of a PEST control file and that

individual parameters are assigned to these groups within the “parameter data” section of that

file.)

Regardless of whether parameter uncertainties are supplied through an uncertainty file, or are

calculated from parameter bounds, PEST2LHS provides you with two options for denoting

the parameter value at which the probability distribution is at its peak. The first option is to

calculate this parameter value as the midpoint of the interval spanned by a parameter’s lower

and upper bounds (or the midpoint of the interval spanned by the natural logs of a

parameter’s lower and upper bounds if the parameter is log-transformed in the PEST control

file). The second is to use a parameter’s initial value as provided in the PEST control file (or

its natural log if the parameter is log-transformed) as the parameter value of peak probability.

(Note that this is not applicable to the uniform probability distribution as this distribution has

no maximum.)

Where PEST2LHS specifies that a parameter is normally or log-normally distributed when

recording its probability distribution specifications on an LHS input file, this distribution is

actually specified as a bounded distribution. The bounds that are applied to this distribution

are the same as those placed on parameter values in the PEST control file. This ensures that

Latin hypercube samples do not transgress these bounds. Where a uniform or triangular

probability distribution is employed, respect for parameter bounds is built into the probability

distribution specifications themselves.

PEST2LHS assigns probability distributions only to adjustable parameters (i.e. to parameters

that are neither fixed nor tied to a parent parameter in the PEST control file which it reads).

Tied and fixed parameters are therefore not featured in the LHS input file written by

PEST2LHS.

13.4.3 PEST2LHS Usage Details

In contrast to many programs of the PEST suite, PEST2LHS does not receive its usage

information through command line arguments. This is because it requires more information

than can conveniently be provided through a limited number of such arguments. Hence it

prompts the user for the information which it needs.

PEST2LHS commences execution with the prompt

Enter name of PEST control file:

On having received the name of this file, PEST2LHS checks for its existence, and then reads

it. Having done this, it issues the following prompt.

There are two options for specifying parameter probability distributions:

Latin Hypercube Sampling 193

 For (log)normal distributions and an uncertainty file - enter 1

 For user-specified distributions with bounds-derived descriptors - enter 2

Enter your choice:

As stated above, PEST2LHS supports two options for specifying parameter uncertainties.

The first option is for all of these to be provided through a traditional PEST uncertainty file.

The second is for probability distributions to be provided on a parameter group by parameter

group basis. As PEST2LHS behaviour is somewhat specific to the selected option, its two

different modes of parameter uncertainty specification are now discussed separately.

User-Specified Distributions

Regardless of which option is selected in response to the above prompt, PEST2LHS’s next

prompt is

For maximum value of non-uniform distributions:-

 If halfway between (log) bounds - enter 1

 If parameter initial value from PEST control file - enter 2

 Enter your choice:

Complete specification of the triangular and normal distributions requires that a parameter

value of maximum probability be specified. In the case of the normal distribution,

PEST2LHS can calculate this maximum probability value in either of the two ways specified

in the above prompt. In the first case, the peak of the distribution is calculated to correspond

to the mean of the parameter’s lower and upper bounds as recorded in the PEST control file.

In the second case it is associated with a parameter value equal to the initial value for the

pertinent parameter as read from the PEST control file. Note that this second option can lead

to a non-symmetrical probability distribution.

Where a parameter is log-transformed (which for PEST2LHS is decreed as being

incompatible with selection of a triangular distribution as the log-triangular distribution

option is not supported by LHS) the parameter abscissa calculated by PEST2LHS for the

peak value of what LHS refers to as the “underlying distribution” depends on which of the

above options is selected. If the second option is selected, then the value of peak probability

will be the natural log of the parameter’s initial value. If the first option is selected, then the

value of highest probability will be the average of the natural logs of a parameter’s lower and

upper bounds, these being specified in the PEST control file.

PEST2LHS next writes the following text to the screen.

Parameter probability distributions must now be provided. This must be done

on a group-by-group basis.

Select uniform/triangular/normal distributions as [u/t/n].

Note that triangular is not allowed if some group members are log-

transformed.

Then, for each parameter group featured in the PEST control file, PEST2LHS asks

Enter distribution for parameter group "param_group" [u/t/n]:

Enter “u”, “t” or “n” as appropriate. PEST2LHS constructs parameter probability

distributions in the following way.

• If a uniform distribution is requested, the distribution extends between the parameter’s

lower and upper bounds as declared in the PEST control file. It the parameter is log-

Latin Hypercube Sampling 194

transformed, PEST2LHS informs LHS that the parameter’s distribution is log-

uniform. Otherwise it is uniform.

• If a parameter group is endowed with a triangular distribution PEST2LHS first checks

whether any member of that group is log-transformed. If any parameter within the

group is, in fact, log-transformed, then PEST2LHS informs the user of this and

repeats the above prompt. If no group member is log-transformed, then each

parameter within the group is endowed with a triangular probability distribution

whose bounding zero probability points are the lower and upper parameter bounds (as

specified in the PEST control file), and whose peak probability point is either the

midpoint of the bounds interval, or the parameter’s initial value, as already discussed.

• If the “normal” option is selected in response to the above prompt, then each

parameter within the group is awarded either a normal distribution (if it is

untransformed) or a log-normal distribution (if the parameter is log-transformed in the

PEST control file). If a parameter is untransformed and if in response to a previous

prompt the parameter value of maximum probability is selected as the midpoint of the

lower-to-upper bounds interval, then the standard deviation of the normal distribution

is calculated as a sixth of the distance between the parameter’s upper and lower

bounds; the bounds are thus decreed to span a probability range of 99.7%. However

these are made to span 100% of its probability range by declaring to LHS that the

normal distribution is bounded, with the bounds supplied to LHS coinciding with

parameter bounds provided in the PEST control file.

• If the normal option is selected and a parameter is log-transformed, the abscissa

corresponding to the maximum value of the “underlying normal distribution” required

by LHS is calculated as the midpoint of the distance between the natural logs of the

parameter’s bounds (i.e. the average of its natural logged lower and upper bounds), or

is calculated as the natural log of the parameter’s initial value; see above. If, in

response to the pertinent previous prompt, the parameter value of maximum

probability is selected as the midpoint of the lower-to-upper parameter bounds

interval, then the standard deviation of the “underlying normal distribution” is

calculated as a sixth of the difference between the natural logs of the parameter’s

lower and upper bounds. A bounded log-normal distribution is then specified to LHS,

with bounds coinciding with the natural logs of the parameter’s lower and upper

bounds.

• If, in either of the transformed or untransformed normal distribution cases, the

parameter value of maximum likelihood is specified as the parameter’s initial value

(or its log), the standard deviation ascribed to the (log)normal distribution associated

with that parameter is equated to a third of the distance between the (log of) the

parameter’s initial value and (the log of) its lower or upper bound, whichever is

further away. The bounded (log)normal distribution whose specifications are supplied

to LHS may thus be asymmetric.

Uncertainty File

We begin this subsection by repeating a previous PEST2LHS prompt.

There are two options for specifying parameter probability distributions:

 For (log)normal distributions and an uncertainty file - enter 1

 For user-specified distributions with bounds-derived descriptors - enter 2

Enter your choice:

Latin Hypercube Sampling 195

As stated above, the PEST2LHS internal algorithm is such that use of a parameter uncertainty

file implies selection of a (log)normal distribution for all parameters. The choice between a

normal and a log-normal distribution is made on the basis of the transformation status of each

parameter as specified in the PEST control file. On all occasions the (log)normal distribution

is bounded, the bounds being those supplied as upper and lower parameter bounds in the

PEST control file.

Following the above prompt, PEST2LHS’s next prompt is (regardless of which of the above

options is selected)

For maximum value of non-uniform distributions:-

 If halfway between (log) bounds - enter 1

 If parameter initial value from PEST control file - enter 2

Enter your choice:

The mean of the (log)normal distribution as it applies to each parameter is calculated on the

basis of the response to this prompt. If the first of the above options is selected, and if a

parameter is untransformed, PEST2LHS calculates the mean of the parameter’s distribution

as the mean of its upper and lower parameter bounds. If a parameter is log-transformed, the

mean of the LHS “underlying normal distribution” (i.e. the distribution pertaining to the

natural log of the parameter) is calculated as the mean of the natural logs of the parameter’s

upper and lower bounds.

If the second of the above options is chosen, the mean assigned to the parameter’s normal

distribution is the parameter’s initial value if the parameter is untransformed. Alternatively, if

the parameter is log-transformed, the mean of the “underlying normal distribution” is

calculated as the natural log of the parameter’s initial value as specified in the PEST control

file.

PEST2LHS next asks

Enter name of parameter uncertainty file:

The format of this file is described section 2.5 of this manual. As therein described, each

parameter can be assigned a standard deviation; alternatively, groups of parameters can be

assigned a covariance matrix. Where a parameter is untransformed, these apply to native

parameters. Where a parameter is log-transformed they apply to the logged (to base 10)

parameters.

Where a parameter uncertainty file is provided, PEST2LHS uses standard deviations from

that file to assign standard deviations to parameter probability distributions that it provides to

LHS. Where a parameter is untransformed, its standard deviation is directly transferred to the

LHS input file. Where a parameter is log-transformed, PEST2LHS transfers the standard

deviation from the uncertainty file to the LHS input file as the standard deviation of that

parameter’s “underlying normal probability distribution”. However in doing so, account is

taken of the fact that the parameter uncertainty file assumes log transformation to base 10 of

parameters whereas LHS uses natural logs. Note also that when a parameter features in a

covariance matrix cited in the parameter value file, its (log)standard deviation is calculated as

the square root of its variance as cited in that file.

Where a covariance matrix is provided for groups of parameters, PEST2LHS evaluates

correlations between individual parameter pairs so that these can be recorded on the LHS

input file; these correlations can thereby be taken into account in generating Latin hypercube

sample sets. Where parameters are log-transformed, PEST2LHS calculates correlations

pertaining to native parameters from the information provided in a pertinent covariance

Latin Hypercube Sampling 196

matrix, notwithstanding the fact that this information pertains to logged (to base 10)

parameters. This satisfies LHS input requirements with respect to the CORR keyword.

Correlations supplied to LHS are calculated from native variances/covariances using the

usual formula for calculation of correlation coefficients. That is

22

ji

ij

ij

 = (13.4.1)

Where necessary, variances and covariances of untransformed parameters are calculated from

those of their log-transformed counterparts using the formula

() () ()1

2/
−=

+++ ijjiji eeij

 (13.4.2)

where νi and νj are means of the normal distribution pertaining to the logs of parameters i and

j, and δi, δj and δij are the log parameter covariance matrix elements pertaining to these

parameters. Means are calculated in the manner described above (i.e. as logged parameter

range midpoints, or as logs of initial parameter values, according to the user’s selection).

In the unlikely event that a covariance matrix is supplied for a group of parameters of which

some are log-transformed and some are not, PEST2LHS simply uses covariances from the

composite group covariance matrix in order to compute correlation coefficients for parameter

pairs. These correlation coefficients are then written directly to the LHS input file.

LHS Input Files

Regardless of the methodology selected for specification of parameter probabilities,

PEST2LHS’s final prompts are

Enter filename base for LHS files:

How many parameter sample sets must be generated?

Enter random number seed (a big integer):

Suppose that you respond to the first of the above responses with the name “file”. PEST2LHS

will then write an LHS input file named file.dat. In that file it will specify that the LHS

sample data output file (this being associated with the LHS keyword LHSOUT) is named

file.lsp and that the LHS-generated message file (this being associated with the LHS keyword

LHSMSG) is named file.msg.

The other two prompts are self-explanatory.

Miscellaneous Utilities 197

14. Miscellaneous Utilities

14.1 Introduction

This chapter documents a number of utilities that do not fall into any of the categories defined

by the previous chapters of this manual.

PARREDUCE suggests an optimal parameter reduction strategy in contexts where model run

times are high and parameter parsimony is the only regularisation option. CALMAINTAIN

derives a new parameter set where certain parameters in an existing parameter set have had

their values altered; ideally, the new parameter set compensates for the altered values of the

original parameter set in a way that maintains the model in a calibrated state. PESTLIN, and

its partner program GENLIN, construct a linear model from a nonlinear model. This model

can then be used as a fast-running surrogate for the original model where this is required for

numerically intensive tasks such as optimisation. DERCOMB facilitates PEST usage where a

model can calculate its own derivatives. It amalgamates derivatives computed by two

different models into a single file which can then be read by PEST.

14.2 PARREDUCE

14.2.1 General

“PARREDUCE” stands for “parameter reduction”. This utility can be used to ascertain the

cost, in terms of model-to-measurement misfit, of a reduction in the number of parameters

employed by a model. Better still, it can be used to compare the effectiveness of different

parameter reduction strategies, where “effectiveness” is based on the assumption that those

parameter reduction strategies are better which incur simplification-induced misfit the least.

Use of PARREDUCE assumes that parameter reduction can occur in one of three ways:

• Through removal of parameters from a PEST control file;

• Through fixing parameters within a PEST control file (which is the same as removing

them); and/or

• Through tying certain parameters to other parameters, so that the parent parameters

are estimated with their child parameters “riding on their backs”. (This is effectively

the same as parameter amalgamation.)

Reduction in the number of parameters employed by a model has the obvious advantage that

the time required for PEST to calibrate the model is thereby reduced. However savings in

computational burden come at a cost; in particular, when the number of parameters employed

by a model is reduced, the objective function achieved through the calibration process may

increase. Generally, the extent to which this occurs will only be known after PEST has been

run to calibrate the simplified model. It is possible that PEST can achieve just as good a fit

with a simplified parameter set as with a complex parameter set by adjusting simplified

parameter values appropriately. However if the simplified parameter set does not span the

calibration solution space of the complex model, model-to-measurement fit will be

compromised.

The PARREDUCE utility can be used not just for optimisation of model simplification; it can

also be used to examine how best to add parameters to a model. A modeller may commence

the complexifying processing by adding many parameters to a model – more than he/she

Miscellaneous Utilities 198

ultimately wishes to add. He/she can then test different ways of amalgamating the

supplementary parameters in ways that reflect expert knowledge of, for example, underlying

geological variability, before deciding on an ultimate parameter complexification strategy

that achieves most reduction in the objective function with the least number of additional

parameters. Parameter simplification thus takes place as the second step of an overall

parameter complexification process.

PARREDUCE provides information on the relative cost of different simplification strategies.

It does this by providing an indication of the expected increase in the objective function

incurred by use of fewer model parameters. It must be pointed out however, that the numbers

which it calculates are indicative only. No account is taken of the contribution made by

measurement noise to the objective function. Nor is account taken of simplification that has

already been undertaken in building the original, pre-simplified model. Furthermore

calculations undertaken by PARREDUCE rely on a linearity assumption. Sensitivities on

which linear analysis is based are calculated using the parameter set currently employed by

the model.

14.2.2 Theory

The theory presented in this subsection summarises that presented in section 7.5 of Doherty

(2015).

Let the action of a complex model on its parameters be described by the matrix Z. Use of a

matrix as a substitute for the model implies that the relationship between model parameters

and model outputs is linear. Let k be the parameter set employed by a “complex” model.

Under calibration conditions

 h = Zk + ε (14.2.1)

where

h is the vector of measurements comprising the calibration dataset; and

ε is the vector of noise associated with elements of this dataset.

Measurement noise is now assumed to be zero so that attention can be focussed on the

outcomes of parameter simplification. Let the vector p comprise a simplified parameter set.

Let model outputs o corresponding to measurements h be computed by the simplified model

using the matrix X. Thus

 o = Xp (14.2.2)

Note that the Z and X matrices used by PARREDUCE are, in fact, weighted sensitivity

matrices; observation weights are provided through a PEST control file.

Let the relationship between Z and X be described by a matrix relationship of the form

 X = ZL (14.2.3)

Often L is a kind of “selection matrix”. Thus, for example, if the parameter scheme employed

by the simplified model is comprised of zones of piecewise constancy, and the complex

model allows for the existence of a greater number of these zones defined through

subdivision of the broad scale zonation scheme embodied in X, then the value assigned to

each element of k is equal to that of the element of p that characterizes the broad scale zone

in which the k element lies. The L matrix is thus comprised of appropriately-positioned 1’s

and 0’s.

Miscellaneous Utilities 199

Use of PARREDUCE does not require that the matrix L be explicitly defined. However its

use assumes that two PEST control files exist, one embodying a complex parameter set and

the other containing a simpler parameter set defined in ways discussed above (i.e. parameter

omission, tying and fixing). For these types of parameter simplification, X is easily calculated

from Z. Calculations undertaken by PARREDUCE are in fact exactly the same as those

undertaken by JCO2JCO when it is presented with two PEST control files, one of which is a

simplification of the other. In both cases the Z matrix occupies the JCO file corresponding to

the complex PEST control file.

Let the covariance matrix of the prior probability distribution of k be denoted as C(k). This

therefore describes the “innate variability” of parameters k, this being the encapsulation of

expert knowledge applied to k. PARREDUCE can be asked to assume that C(k) is the

identity matrix I. Alternatively it can be asked to assume that C(k) is a diagonal matrix in

which each parameter is statistically independent of all other parameters, and in which the

standard deviation of each parameter is calculated to be a quarter of the difference between

upper and lower parameter bounds provided in the PEST control file. If a parameter is log-

transformed the covariance matrix applies to the log of each parameter; parameter bounds are

therefore logged before differencing in this case. The diagonal elements of C(k) are

parameter variances, these being squares of parameter standard deviations.

Residuals incurred by parameter simplification are expressed as

 r = Zk – Xp (14.2.4)

If a model is not calibrated at all (and Xp is effectively 0), then the covariance matrix of

residuals, denoted here as Cu(r), is readily calculated as

 Cu(r) = ZC(k)Zt (14.2.5)

In this formula, “u” signifies “uncalibrated”. Now suppose that the model Z is calibrated. Let

it be assumed that this is done using truncated singular value decomposition; note that if the

inverse problem is not ill-posed then this is the same as using the Gauss-Marquardt-

Levenberg methodology of model calibration. A parameter set k is thereby computed as

 k = Vz1S
-1

z1U
t
z1h (14.2.6)

Here the “z” subscript indicates that singular value decomposition is performed on the Z

matrix. Meanwhile the “1” subscript indicates partitioning of pertinent matrices, and

restriction of their contents to the solution subspace of parameter space, i.e. the subspace that

is retained after singular value truncation. See Doherty (2015) for details. Post-calibration

residuals are then calculated as

 rz = Zk – Zk (14.2.7)

Non-zero-valued residuals calculated through equation (14.2.7) can occur as an outcome of

the existence of small non-zero singular values to the right of the singular value truncation

point. These comprise the Sz2 matrix not represented in equation (14.2.6). As Doherty (2015)

explains, retainment of these singular values in the inversion process would result in

amplification of measurement noise; hence the subspace of parameter space that is associated

with these residuals is relegated to the null space to forestall this occurrence.

With a little matrix manipulation, equation (14.2.7) becomes

 rz = Uz2Sz2V
t
z2k (14.2.8)

The covariance matrix of Z-calibration residuals can then be calculated as

Miscellaneous Utilities 200

 Cz(r) = Uz2Sz2V
t
z2C(k)Vz2Sz2U

t
z2 (14.2.9)

If

 Cz(k) = I (14.2.10)

this becomes

 Cz(r) = Uz2S
2

z2U
t
z2 (14.2.11)

The diagonal elements of Cz(r) provide the variances of Z-calibration residuals

corresponding to the observations h. The square roots of these variances provide their post-

calibration standard deviations.

It is important to note that calculation of Cz(r) in the manner described above is based on two

assumptions. These are as follows.

• Measurement noise is zero;

• The model Z is “perfect” in the sense that it is able to fit the data perfectly; that is,

“structural noise” makes no contribution to r.

Cz(r) can thus be very small. For the types of analyses that PARREDUCE is asked to perform

this is fine. Its purpose is to provide a means of comparison of residuals that emerge from

calibration of the Z model with those that emerge from calibration of various simplified X

models.

Where an X model is calibrated in place of the Z model, equation (14.2.7) is replaced by

equation (14.2.4); that is

 rx = Zk – Xp (14.2.12)

where p is calculated as

 p = Vx1Sx1
-1Ut

x1h (14.2.13)

Here the subscript “x” indicates that singular value decomposition is undertaken on X rather

than on Z. Substitution of equation 14.2.13 and equation 14.2.1 (with ε assumed to be 0) into

equation 14.2.12 yields

 rx = Zk – XVx1S
-1

x1U
t
x1Zk (14.2.14)

which (after a little matrix manipulation) becomes

 rx = (I – Ux1U
t
x1)Zk = Ux2U

t
x2Zk (14.2.15)

The covariance matrix of residuals emerging from calibration of a simplified model is then

calculated as

 Cx(r) = Ux2U
t
x2ZC(k)ZtUx2U

t
x2 (14.2.16)

which, if C(k) is equal to I, becomes

 Cx(r) = Ux2U
t
x2ZZtUx2U

t
x2 (14.2.17)

Once again, the diagonal elements of Cx(r) represent the variances of individual elements of

r; the square roots of these represent their standard deviations.

Different simplification strategies can be compared through comparing Cx(r) matrices

calculated using equation (14.2.16) for different X matrices. A simple summary statistic is the

sum of elements along the diagonal of Cx(r). This is denoted as Φx as it is an objective

function. Thus

Miscellaneous Utilities 201

Φx = tr(Cx(r)) (14.2.18)

where tr() is the matrix trace operator. Φx can be thought of as the contribution made to the

overall calibration objective function by parameter simplification. If this number is low (or

even zero), it indicates that the simplified model retains enough adjustable parameters to

guarantee a fit with field data that is very little worse than that which would prevail through

calibration of the original Z model. This does not mean that simplification is therefore

“ideal”. It is possible that the simplified parameters play roles that compensate for model

defects in achieving this level of fit. Nevertheless it does indicate that enough parameters

exist for a good fit between model outputs and field data to be attained, and that these

parameters therefore span the solution space of the Z model.

In the subsurface reservoir modelling context, different simplification strategies (embodied in

different X matrices) may result from alternative representations of the presence, locations

and geometries of zones of piecewise constancy reflecting rock types of contrasting, but

relatively homogeneous, hydraulic properties. Lower values for Φx arising from some of

these tested dispositions may indicate better representation of subsurface features in the

model domain.

14.2.3 Using PARREDUCE

PARREDUCE is run using the command

parreduce pestfile1 pestfile2 eigthresh outfile [/b]

where

pestfile1 is a PEST control file for which a JCO file exists,

pestfile2 is a PEST control file in which some parameters are tied and/or fixed,

eigthresh is an eigenvalue truncation threshold,

outfile is the name of the PARREDUCE output file, and

/b activates optional parameter bounds scaling.

Use of PARREDUCE assumes that you have constructed a PEST control file embodying

complex parameterization, and that you have run PEST to obtain a corresponding JCO file

(for example by setting NOPTMAX to -2 in the PEST control file and then running PEST).

You must then construct another PEST control file in which all observations are the same as

in the original PEST control file, but in which some parameters are tied to other parameters,

some parameters are fixed, and/or some parameters are omitted altogether. This constitutes

the second PEST control file which must be cited in the PARREDUCE command line above.

No JCO file need accompany this second PEST control file.

The EIGTHRESH variable must be set between 0.0 and 1.0. This is the ratio of squared

singular values of the weighted Z matrix (i.e. Q1/2Z) which determines where singular value

truncation occurs. (The ratio is taken of each squared singular value to the largest squared

singular value.) As is explained by Doherty (2015), this value should be set at a level that

minimizes post-calibration predictive error variance. The latter falls as EIGTHRESH is

reduced below 1.0, for the inclusion of extra singular values expands the solution space

(spanned by the vectors which comprise the columns of V1) and shrinks the null space

(spanned by the vectors which comprise the columns of V2). Beyond a certain value of this

truncation threshold however, post-calibration predictive error variance starts to rise due to

amplification of measurement noise. EIGTHRESH should never be set lower than about

5E-7, as this is the level at which amplification of numerical noise seriously degrades

predictive performance of a calibrated model. (EIGTHRESH is the same variable that

Miscellaneous Utilities 202

appears in the “singular value decomposition” section of a PEST control file.)

If the optional “/b” switch appears in the PARREDUCE command line, then PARREDUCE

estimates C(k) by assuming that the differences between parameter upper and lower bounds

define four standard deviations for each parameter, and that no correlation exists between

parameters. Alternatively, if the “/b” switch is omitted, C(k) is assumed to be the identity

matrix I. This may be suitable for comparing different simplification strategies where all

parameters are log-transformed, and where all sensitivities with respect to these parameters

are thereby effectively normalized by their values.

A PARREDUCE output file for a small problem is provided below. The first column

provides the names of observations used in the inversion process. The second column

provides the square roots of the diagonal elements of Cu(r) calculated using equation (14.2.5).

The third column provides the square roots of the diagonal elements of Cz(r) calculated using

equation (14.2.9), while the last column contains the square roots of the diagonal elements of

Cx(r) calculated using equation (14.2.16). The traces of the pertinent C(r) matrices are shown

at the bottom of each column.

Residual standard deviations (no measurement noise assumed)

Observation No_calibration Calibration_with_Z Calibration_with_X

 ar1 0.7916715 5.1651679E-02 0.1171594

 ar2 0.7531351 4.6104210E-02 0.1354490

 ar3 0.7147344 4.6648685E-02 5.9892814E-02

 ar4 0.6894756 2.4442489E-02 6.2925528E-02

 ar5 0.6692790 4.8524822E-02 7.2914701E-02

 ar6 0.6568247 4.2261614E-02 3.2690919E-02

 ar7 0.6470027 3.2050366E-02 3.4495961E-02

 ar8 0.6399243 5.3340646E-02 4.8791286E-02

 ar9 0.6358643 3.1437273E-02 9.4707001E-02

 ar10 0.6321911 4.1518229E-02 0.1373004

 ar11 0.6304041 5.1209897E-02 9.2412584E-02

 ar12 0.6291723 2.0590739E-02 6.4143446E-02

 ar13 0.6287475 5.1769681E-02 0.1718363

 ar14 0.6325852 3.4882597E-02 7.6345205E-02

 ar15 0.6576022 2.2096805E-02 8.9699859E-02

 ar16 0.7414070 4.2101009E-02 0.1366652

 ar17 0.8908967 2.1390807E-02 6.5164786E-02

 ar18 1.040221 7.5365578E-03 3.0688386E-02

 ar19 1.140819 3.0784107E-02 0.1014441

 sum_of_squares 6.869226 5.8772489E-05 2.5599931E-03

Figure 14.1 A PARREDUCE output file.

14.3 CALMAINTAIN

14.3.1 General

Suppose that you have calibrated a model, and that you have built a PEST control file in

which initial parameter values are calibrated parameter values. Suppose also that you have set

NOPTMAX to -2 in this file and run PEST in order to obtain a JCO file in which finite-

difference derivatives are calculated based on the calibrated parameter set.

Suppose now that you wish to alter the values of a number of parameters from those in this

PEST control file, and would like to adjust the values of other parameters to compensate for

this so that the model remains calibrated. The purpose of CALMAINTAIN is to perform

these compensatory parameter value alterations. The success achieved by CALMAINTAIN

in computing a set of parameters which maintain the model in a calibrated state despite user-

adjustment of the values of other parameters will depend on a number of factors. These

include the following.

Miscellaneous Utilities 203

• The linearity of model outputs with respect to parameters (as is explained below,

CALMAINTAIN uses linear theory to compute a new set of parameters);

• The degree to which the model was de-calibrated by adjusting the values of some of

its parameters in the first place;

• The extent to which the existence or otherwise of a null space makes parameter

compensation possible.

14.3.2 Theory

Let the action of a (linearized) model Z on its parameters k under calibration conditions be

described by the equation

 h = Zk + ε (14.3.1)

where ε is a vector of measurement noise. If the parameter set k is partitioned into two sets of

parameters k1 and k2, and if measurement noise is neglected, this equation becomes

=

2

1

21
k

k
ZZh = Z1k1 + Z2k2 (14.3.2)

If parameters k2 are altered by δk2, the model will remain in a calibrated state if a set of

alterations δk1 to k1 can be found such that

 Z1δk1 = -Z2δk2 (14.3.3)

This can only occur if

 0
k

k
ZZ =

2

1

21
δ

δ
 (14.3.4)

That is, if the matrix Z has a null space. If it does not have a null space, or if equation 14.3.3

cannot be solved because one or a number of elements of δk2 lies entirely within the solution

space, then δk1 should be chosen such that the right side of equation 14.3.4 is minimized. If

this is done, then the model maintains respect for the calibration dataset as much as possible

following user-alterations to k2.

CALMAINTAIN solves equation 14.3.3 in the exact sense if it can, and in the least squares

sense if it cannot. Thus it finds a δk1 to compensate for a user-imposed δk2.

Note that the starting equation for CALMAINTAIN’s calculations is actually not equation

14.3.1 at all; instead it uses the following equation, where Q is the weight matrix.

 Q1/2h = Q1/2Zk + Q1/2ε (14.3.5)

14.3.3 Using CALMAINTAIN

CALMAINTAIN prompts the user for its input data as this is more convenient than supplying

these data on the command line. Its first prompt is

Enter name of PEST control file:

CALMAINTAIN opens the PEST control file. At the same time it ensures that a

corresponding JCO file exists. (The contents of this file become the Z matrix of the above

equations). Next it asks

Enter name of parameter adjustment file:

An example of a parameter adjustment file follows.

Miscellaneous Utilities 204

Example of a parameter adjustment file

k_ppt30 0.8

k_ppt31 2.6

k_ppt32 0.8

Here is another comment

k_ppt33 1.0

k_ppt34 0.8

k_ppt35 0.8

k_ppt36 0.5

k_ppt37 1.8

Figure 14.2 Example of a parameter adjustment file.

Each line of a parameter adjustment file must have two entries. The first entry is the name of

a parameter. The second entry is the new value of that parameter. Blank lines are ignored.

Comment lines (which begin with the “#” character) are also ignored.

CALMAINTAIN will object if you attempt to adjust the value of a fixed or tied parameter.

However it is acceptable to adjust the value of a parent parameter to which other parameters

are tied; the child parameters are automatically adjusted if this is the case.

CALMAINTAIN next asks for the name of the parameter value file that it must write. The

prompt is

Enter name for output parameter value file:

It then asks the following three questions.

Use SVD or LSQR to solve equation? [l/s]:

Truncate at how many singular values:

Adopt what fraction of upgrade vector:

As is apparent from the first of the above questions, you have the choice of using either

LSQR or singular value decomposition to solve equation 14.3.3. LSQR is faster than singular

value decomposition where parameter numbers are high, but can sometimes be less precise.

The second of the above prompts allows you to limit the propensity for numerical noise to

contaminate the solution of equation 14.3.3. The best response to this question varies with

context. Based on limited experience at the time of writing, it is suggested that a value equal

to the number of adjusted parameters featured in the parameter adjustment file may work

well. “Damping” of parameter compensation can also be used to limit contamination of the

solution to equation 14.3.3 by numerical noise; therefore a value of between 0.0 and 1.0 is a

suitable answer to the third of the above questions (normally closer to 1.0 than 0.0.). Some

trial and error may be necessary to find the best response to the second and third of the above

questions in any particular modelling context.

Once all of the above questions have been answered, CALMAINTAIN performs the

calculations indicated above, and then writes the requested parameter value file. The values

assigned to parameters in this file are the user-adjusted values (for those parameters which

are cited in the parameter adjustment file), together with values for other parameters which

are altered in such a way as to maintain the model in as much of a calibrated state as possible.

If desired, the PARREP utility can be used to insert parameter values recorded in this file into

a PEST control file. If NOPTMAX is set to zero in this file, PEST can be used to run the

model and calculate an objective function. In this way adherence to calibration constraints

can be tested.

Miscellaneous Utilities 205

14.4 GENLIN

14.4.1 General

“GENLIN” stands for “general linear model”. The main purpose of GENLIN is to

complement PESTLIN functionality (see below) through which a nonlinear model can be

replaced by its linearised equivalent for purposes such as predictive uncertainty analysis and

other kinds of optimisation. However GENLIN can also be employed on a stand-alone basis

without the use of PEST at all.

GENLIN calculates its outputs h from its inputs k using the equation

h = h0 + M(k – k0) (14.4.1)

where M is a matrix, and h, h0, k and k0 are vectors. For the sake of conformity with PEST

terminology (and in conformity with use of GENLIN as an adjunct to PESTLIN), the k

vector will normally contain parameter values while the h vector will contain the model-

generated counterparts to field measurements, or simply “observations” in PEST parlance. k0

and h0 are parameter and observation offsets.

The matrix M is a “sensitivity matrix”, or Jacobian matrix of a linearised model. It must have

as many rows as there are elements of h and as many columns as there are elements of k.

GENLIN allows parameters to be log-transformed. In this case, columns of the M matrix

corresponding to log-transformed parameters must contain sensitivities with respect to the

logs of respective parameters. Under these circumstances, GENLIN outputs are calculated as

h = h0 + M[log(k) – log(k0)] (14.4.2)

where the log is taken to base 10.

14.4.2 GENLIN Input File

GENLIN requires an input file in which specifications for the linear model are supplied. An

example of a GENLIN input file is shown below. Such a file is easily prepared with a text

editor.

Miscellaneous Utilities 206

* dimensions

5 19

* parameters

ro1 log 4.0 2.0

ro2 log 4.0 2.0

ro3 log 4.0 2.0

h1 none 2.0 0.0

h2 none 2.0 0.0

* observations

ar1 2.0

ar2 2.0

ar3 2.0

ar4 2.0

ar5 2.0

ar6 2.0

ar7 2.0

ar8 2.0

ar9 2.0

ar10 2.0

ar11 2.0

ar12 2.0

ar13 7.0

ar14 7.0

ar15 7.0

ar16 7.0

ar17 7.0

ar18 7.0

ar19 7.0

* sensitivities

ves1.jco

Figure 14.3 A GENLIN input file.

A GENLIN input file must contain four sections in the order shown above. Each section must

be named as shown, with the name preceded by the “*” character and a space. The contents

of each of these sections are now described.

Dimensions Section

The line following the “dimensions” section header must contain two integers, these being

the number of “parameters” and number of “observations” comprising the linear model. Once

GENLIN has read these dimensions it can allocate array storage for the data to follow.

Parameters Section

There must be as many lines in this section of the GENLIN input file as the number of

parameters specified in the “dimensions” section of the file. Each such line must contain four

entries. The first is a parameter name (twelve characters or less in length), the second is its

transformation state (“log” or “none”), the third is its current value (k in the above

equations), while the fourth is its “offset value” (k0 in the above equations).

The following should be noted.

• In contrast to a PEST control file, parameters cannot be tied or fixed in a GENLIN

input file; they can only be log-transformed or untransformed.

• Actual parameter and offset values, and not their log-transformed counterparts, must

be supplied irrespective of the transformation status of individual parameters. Where a

parameter is designated as log-transformed, GENLIN takes care of logarithmic

Miscellaneous Utilities 207

transformation itself.

Observations Section

This section must contain as many lines as the number of observations specified in the

“dimensions” section of the GENLIN input file. Each such line must contain two entries. The

first is the observation name (twenty characters of less in length), while the second is the

observation offset value (h0 in the above equations).

Sensitivities Section

The “sensitivities” section of the GENLIN input file must contain just one line, this being the

name of a file containing the sensitivity of each linear model output with respect to each

parameter (i.e. the elements of the matrix M in the above equations). If the filename

extension is “.jco”, GENLIN assumes that this matrix is stored in a PEST binary Jacobian

matrix file (i.e. a JCO file). If not, ASCII storage in matrix file format is assumed; the format

of this kind of file is discussed in section 2.4 of this manual. Note that the JCO2MAT utility

can be used to convert a JCO file to a matrix file.

It is important that the sensitivity file matches the specifications for the linear model as set

out in the GENLIN input file. That is, the number of rows in the sensitivity matrix must be

the same as the number of observations in the GENLIN input file. Similarly, the number of

columns in the sensitivity matrix must be the same as the number of parameters in the

GENLIN input file. Ideally, the names should match as well, though this is not essential – see

below. Whether or not this is the case, the ordering of parameters and observations must be

the same in both of these files.

It is also important to note that, as discussed above, if a parameter is cited as log-transformed

in a GENLIN input file, the sensitivity of all observations to that parameter provided in the

sensitivity file must pertain to the log of that parameter. Fortunately this is easily

accomplished if PEST is employed to calculate parameter sensitivities.

14.4.3 Running GENLIN

GENLIN is run using the command

GENLIN infile outfile [derivfile] [/c]

where

infile is a GENLIN input file,

outfile is a GENLIN output file,

derivfile is an optional derivatives output file, and

/c is an optional name-checking switch.

GENLIN writes its output file in matrix file format as a one-column matrix (i.e. as a vector).

Rows of this matrix retain the same names as observations supplied in the GENLIN input file

while the single column is provided with the arbitrary name col1.

Optionally, GENLIN can check that parameter names provided in the GENLIN input file

match those provided in a JCO file, or column names provided in an ASCII sensitivity matrix

file. It can also check that observation names provided in the GENLIN input file match those

provided in a JCO file, or row names provided in an ASCII sensitivity matrix file. It can also

check that parameter and observation ordering is the same in both cases. This checking

functionality is activated using the optional “/c” switch on the command line. GENLIN does

Miscellaneous Utilities 208

not perform much checking in addition to this. In its normal role it will be run repeatedly by

PEST as part of some kind of optimisation process. In this context it is not necessary that

extensive, and possibly time-consuming, checks of all aspects of input data integrity be

checked on every occasion that GENLIN is run.

Another GENLIN option is the writing of a “derivatives file”. This file is useful when

GENLIN is employed in conjunction with PEST, providing it with “model-generated

derivatives” as an alternative to finite-difference derivatives, thereby saving PEST the need to

carry out many GENLIN runs in the course of its execution. See chapter 12 of part I of this

manual for documentation of PEST’s external derivatives functionality. Note that, in

accordance with PEST’s requirements, derivatives written to this file pertain to native

parameters rather than to log-transformed parameters; hence where parameters are log-

transformed the entries of this file will differ from those of the GENLIN input sensitivity file.

14.5 PESTLIN

14.5.1 General

Use of PESTLIN assumes that a complete PEST input dataset exists for parameter estimation

(regularised or otherwise), or predictive uncertainty analysis. It also assumes that a Jacobian

matrix file exists for this dataset, together with a run record file in which parameter values

pertinent to this Jacobian matrix are recorded. On the basis of this Jacobian matrix PESTLIN

writes a GENLIN (see above) input dataset, encapsulating a linearised form of the model. It

also writes a new PEST control file so that (regularised) inversion or predictive uncertainty

analysis can be undertaken on the basis of the linearised model. Because this linearised model

will generally run much faster than the real model, concepts can be tested and/or approximate

solutions to these types of problems can be obtained, very quickly indeed.

In most cases the easiest way to build a linearised equivalent of a PEST input dataset

(including a linearised equivalent of the model) is as follows.

1. As stated above, build an entire PEST input dataset based on the real model. Ensure

that this dataset is correct and consistent using the PESTCHEK utility.

2. Set NOPTMAX to -1 in the pertinent PEST control file.

3. Run PEST. PEST will undertake enough model runs to calculate the Jacobian matrix.

Then it will cease execution, recording initial parameter values, together with

uncertainty statistics (if these are calculable), on its run record file.

4. Run PESTLIN.

Alternatively, PESTLIN can be run at the end of an entire parameter estimation process. In

this case the Jacobian matrix file will contain sensitivities with respect to optimised

parameter values (or, if a minor improvement in parameter estimates occurred on the last

iteration, with respect to near-optimised parameter values). Meanwhile the run record file will

record optimised parameter values, together with model-generated counterparts to

measurements comprising the calibration dataset calculated on the basis of these optimised

parameter values (unless PEST is run using SVD-assist, in which case the PARREP utility

should be employed to construct such a run record file by first constructing a new PEST

control file on the basis of optimised parameters and then running PEST in the manner

described above).

Miscellaneous Utilities 209

14.5.2 Using PESTLIN

PESTLIN is run using the command

pestlin pestincase pestoutcase linbasename [/d]

where

pestincase is the filename base of a PEST input dataset,

pestoutcase is the filename base of a PEST output dataset,

linbasename is the filename base of a GENLIN linear model dataset, and

/d (optionally) activates PEST external derivatives functionality.

PESTLIN undertakes the following tasks.

1. It reads the PEST control file whose name is obtained by adding the extension “.pst”

to pestincase supplied on the PESTLIN command line to obtain specifications of the

current parameter estimation problem.

2. It reads the corresponding Jacobian matrix file pestincase.jco in order to obtain

sensitivities of model outputs to all adjustable parameters.

3. It reads the corresponding run record file pestincase.rec in order to obtain the values

of adjustable parameters on which basis sensitivities were calculated (or, as described

above, numbers which are close to these values), as well as corresponding model

outputs. (These will become parameter and observation offsets in the GENLIN input

dataset written by PESTLIN.)

4. It writes a GENLIN input file named linbasename.in, where linbasename is supplied

on the PESTLIN command line. Through this file GENLIN is instructed to write an

output file named linbasename.out, and to read sensitivities of adjustable parameters

from the file pestincase.jco. If the “/d” switch is set on the PESTLIN command line,

GENLIN is also instructed to write a PEST-compatible external derivatives file

named linbasename.drv.

5. It writes an instruction file named linbasename.ins through which GENLIN-generated

observation values can be read.

6. It generates a template file named linbasename.tpl through which a GENLIN input

file can be written by PEST based on current parameter values.

7. It writes a PEST control file named pestoutcase.pst which formulates the same

parameter estimation problem as that formulated by the original PEST control file

pestincase.pst, but this time on the basis of a linearised model run using GENLIN.

PEST can then be run on the basis of pestoutcase.pst. If PESTLIN is run with the “/d” switch

on its command line, PEST execution should be very fast. Even if it is not, and PEST then

calculates linear model derivatives using finite differences, use of PEST on the linearised

model should still be much faster than use of PEST in conjunction with the original model

due to the fact that the former will probably have a vastly smaller run time than the latter.

Note that the GENLIN dataset constructed by PESTLIN does not make mention of fixed or

tied parameters. Existence of the latter, however, is automatically taken into account through

the fact that sensitivities of parent parameters are a function of the sensitivities of any

parameters that are tied to them; their optimised values are thus also a function of these

parameters. Note also that because tied and fixed parameters are missing from the PESTLIN-

Miscellaneous Utilities 210

constructed PEST input dataset, parameters recorded in pestoutcase.par parameter value files

lack these parameters. Fortunately, PARREP can still be employed to insert parameter values

found in pestoutcase.par parameter value files into the original PEST input dataset

encapsulated in pestincase.pst to create a new PEST control file. In creating the new PEST

control file, tied parameters are simply assumed to maintain the same ratio with their parent

parameters as their initial values do. The fact that tied parameters are missing from a

parameter value file does not affect their ability to be included in a new PEST control file

written by PARREP.

14.6 DERCOMB1

14.6.1 General

“DERCOMB” stands for “derivatives combination”. The “1” suffix was included in the name

of this utility in anticipation of the fact that it may not be the last utility written to perform a

similar role.

DERCOMB1 was written for use in calibration contexts where a model provides its own

derivatives. As explained in chapter 12 of part I of this manual, these are read from an

external derivatives file written by the model. This file can be of a compressed or

uncompressed type.

Where a model run by PEST is comprised of different executable programs, each of which

can compute derivatives of its own outputs with respect to some or all of the parameters

involved in the current PEST run, then the derivatives file written by each of them will be

incomplete. The role of DERCOMB1 is to build a complete derivatives file by combining

such partial derivatives files.

DERCOMB1 must be provided with the names of two derivatives files. The first of these

must be a standard PEST external derivatives file which is “complete” in the sense that its

dimension are NOBS×NPAR where NPAR and NOBS are the numbers of parameters and

observations respectively employed by PEST. Such a file may have been produced, for

example, by the ASENPROC Groundwater Data Utility program. Elements of the derivatives

matrix that ASENPROC cannot compute are supplied with a dummy value of -1.11E33, this

being PEST’s expected value for derivative matrix elements which have not been determined.

The second derivatives file must be in PEST matrix file format (see section 2.4 of this manual

for specifications of this file type). A derivatives file in matrix format is written, for example,

by the ZONE2VAR1 Groundwater Data Utility program. Like the first file, this file must also

contain derivatives of model outputs with respect to parameters as its elements. However,

unlike the first file, it is not necessary that all parameters and observations cited in the PEST

control file be cited in this file. Thus the matrix can have dimensions that are smaller than

NOBS×NPAR. The names of the observations and parameters to which the derivatives in this

file pertain are provided as matrix row and column names respectively. Each one of these

must correspond to an observation or parameter featured in the PEST control file for the

current problem.

DERCOMB1 reads the first derivatives file, and then the second derivatives file. It verifies

that the first has dimensions of NOBS×NPAR. (It does not check parameter and observation

names in this file, as this file does not need to provide these; it is simply assumed that

parameters and observations are represented in the same order in this file as they are

represented in the PEST control file which defines the current inverse problem.)

Miscellaneous Utilities 211

DERCOMB1 then reads the matrix file. Each derivative represented in the matrix file then

relaces the corresponding derivative represented in the external derivatives file. DERCOMB1

then writes a new external derivatives file with these modified derivatives.

14.6.2 Using DERCOMB1

DERCOMB1 is run using the command

DERCOMB1 pestfile matfile derfile1 derfile2

where

pestfile is the name of a PEST control file,

matfile is the name of matrix file,

derfile1 is the name of an existing external derivatives file, and

derfile2 is the name of a new external derivatives file.

As stated above, the existing PEST external derivatives file must contain a derivatives matrix

(represented in either full or compressed form) with dimensions of NOBS×NPAR, where

NOBS is the number of observations cited in the PEST control file and NPAR is the number

of parameters cited in this file. The matrix file must contain a matrix whose dimension are

equal to or less than these; however all observations and parameters cited as row and column

names in the matrix file must also be cited in the PEST control file (though not necessarily in

the same order). DERCOMB1 replaces derivatives read from the existing external derivatives

file with those read from the matrix file. It then writes a new external derivatives file with the

upgraded derivatives. If the original derivatives file is supplied in compressed format, then

the new derivatives file written by DERCOMB1 will also employ compressed format. (Note

that DERCOMB1 does not read or write binary derivatives files.)

DERCOMB1 will normally be run as part of a model batch or script file cited in the

“derivatives command line” section of a PEST control file. It will run after the model

component that writes the external derivatives file as well as the model component that writes

the matrix file of derivatives. Where there are many model executables and each of them

calculate some of the derivatives required by PEST, DERCOMB1 may be run multiple times

as part of the one model.

Matrix Manipulation Programs 212

15. Matrix Manipulation Programs

15.1 Introduction

This chapter documents a series of matrix manipulation programs.

Many of the PEST utility programs documented in this manual read and/or write files which

contain matrices. The format used for these files is documented in section 2.4 of this manual.

Often-used matrices include the following.

• The Jacobian matrix recorded by PEST;

• The JtQJ, or so-called “normal matrix”, used by PEST as a basis for solution of an

over-determined inverse problem;

• Observation covariance matrices supplied to PEST instead of observation weights;

• Parameter and measurement noise covariance matrices used in error and uncertainty

analysis; and

• Predictive sensitivity vectors (recall that a vector is simply a one-dimensional matrix)

used in predictive error and uncertainty analysis.

A number of programs documented in chapter 5 of this manual provide translation

capabilities between JCO and matrix files. They are

• JCO2MAT, which rewrites a Jacobian matrix housed in a JCO file in PEST matrix

file format;

• MAT2JCO, which rewrites a Jacobian matrix stored in PEST matrix file format as a

JCO file;

• JROW2VEC, which extracts a row from a JCO file, recording the contents of that

row as a vector (i.e. as a matrix with only one column);

• JROW2MAT, which extracts a row from a JCO file, recording the contents of that

row as a matrix (with only one row).

In contrast to other chapters of this manual, programs are described in alphabetical order in

the present chapter.

15.2 COV2COR

COV2COR calculates a correlation coefficient matrix from a covariance matrix. It reads the

former from a file which observes PEST matrix file format and writes the latter to a file

which observes the same format. The matrix in the former file must satisfy the following

requirements.

1. It must be square.

2. None of its diagonal elements must be zero or less.

3. Its row and column names must be identical.

COV2COR is run using the command

cov2cor covfile corfile

where

covfile is the name of the matrix file holding the covariance matrix, and

corfile is the name of the file to which the corresponding correlation coefficient

Matrix Manipulation Programs 213

matrix is written.

15.3 COVCOND

Suppose that an arbitrary vector x is partitioned into two separate parts x1 and x2. That is

 x =

2

1

x

x
 (15.3.1)

Let C(x), the covariance matrix of x, be correspondingly partitioned as

 C(x) =

2221

1211

CC

CC
 (15.3.2)

Suppose further that the elements of x2 become known. Then, if there is correlation between

at least some members of x2 and some members of x1 (resulting in non-null C12 and C21

submatrices), the conditioned C11 matrix C´11 is calculable as

 C´11 = C11 – C12C
-1

22C21 (15.3.3)

COVCOND computes C´11, that is, the conditional covariance matrix of a subset of random

variables, based on the premise that the complimentary subset becomes known. It is run using

the command

covcond covfile1 listfile covfile2

where

covfile1 contains a covariance matrix (i.e. C(x) in the above explanation),

listfile contains a list of random variables whose values are assumed known, and

covfile2 contains the conditional covariance matrix pertaining to the variables

whose values are not known (i.e. C´11 in the above explanation).

As is explained in section 2.4 of this manual, a PEST-compatible matrix file includes a list of

row and column names. For a covariance matrix file, row and column names are the same;

presumably, these are the names of random variables whose stochastic structure is described

by the covariance matrix. The listing file (this being the second COVCOND command line

argument) must contain a list comprised of the names of some of these variables, written one

to a line. No header, or other information, is required in this file.

15.4 MAT2SRF

MAT2SRF rewrites a matrix in SURFER grid file format. This can be a particularly useful

device for viewing a resolution matrix (see utilities such as RESPROC and RESWRIT

described elsewhere in this manual). A highly diagonally-dominant resolution matrix

indicates (as the name suggests) good “resolution” of parameters through the parameter

estimation process. A “blurry” resolution matrix which is only mildly diagonally-dominant

indicates an inability of the calibration process to capture parameterisation detail, this arising

from information deficits in the calibration dataset.

MAT2SRF is run using the command

mat2srf matfile gridfile [threshold]

where

matfile is the name of a matrix file,

Matrix Manipulation Programs 214

gridfile is the name of a SURFER grid file, and

threshold is a blanking threshold.

Upon commencement of execution MAT2SRF reads the matrix contained in the matrix file.

It then rewrites the matrix contained therein in SURFER grid file format to file gridfile. Note

that MAT2SRF automatically adds an extension of “.grd” to this filename unless it possesses

this extension already.

MAT2SRF provides the option of blanking matrix elements whose absolute values are above

a certain threshold. This threshold is optionally supplied as the last element of the MAT2SRF

command line. If it is omitted, no such blanking takes place unless a matrix element has an

absolute value greater than 1.70141e38, this being SURFER’s “natural” blanking threshold.

When a matrix is plotted (and shaded/contoured) in SURFER, rows and columns of this

matrix appear in the same order in the SURFER plot as they do in the numerical

representation of the matrix in the corresponding matrix file.

15.5 MATADD

MATADD adds one matrix to another. It is run using the command

mattadd matfile1 matfile2 matoutfile

where matfile1 and matfile2 are files containing the matrices to be added, while matoutfile

contains the file to which MATADD writes the summation of the two supplied matrices.

The following should be noted.

1. Two supplied matrices must have the same number of rows and columns if they are to

be added.

2. If row and column names differ in substance or in order between the two supplied

matrix files, MATADD transfers those provided in matfile1 to the summation matrix

recorded in file matoutfile. However it warns the user of the name-incompatibility

between the matrices contained in matfile1 and matfile2. MATADD does not

therefore re-order the rows and columns of one matrix in order to ensure

correspondence with that of the other matrix. If the number of rows and columns are

the same in each matrix file, the matrices are simply added, and a warning message is

written to the screen.

15.6 MATCOLEX

MATCOLEX stands for matrix columns extract. Using this utility, the first ncol columns are

extracted from a matrix and rewritten as a new matrix to a new matrix file. MATCOLEX is

run using the command

matcolex matfile ncol matoutfile

where matfile contains an arbitrary, rectangular m×n matrix. A new m×ncol matrix is written

to the matrix file matoutfile.

If ncol is supplied as negative, then the last ncol columns of a matrix are extracted; these

columns are written to the new matrix file in reverse order.

15.7 MATDIAG

MATDIAG extracts the diagonal of a matrix, writing it as a vector (i.e. as a one-column

Matrix Manipulation Programs 215

matrix). However certain conditions must be met for MATDIAG to do its job. These are as

follows.

1. The matrix must be square;

2. The row and column names of the matrix must be the same.

MATDIAG is run using the command

matdiag matfile matoutfile

where

matfile is the name of a file holding a square matrix, and

matoutfile is the name of the matrix file to which extracted diagonal elements of the

matrix are written.

MATDIAG provides the rows of the one-column matrix which it records to matoutfile with

the same names as the rows of original matrix. The single column of the new matrix is given

the name “col1”.

15.8 MATDIFF

MATDIFF is identical to MATADD except for the fact that it undertakes matrix differencing

instead of matrix addition.

15.9 MATINVP

MATINVP calculates the inverse of a positive definite matrix. It is run using the command

matinvp matfile matoutfile

where

matfile contains the matrix to be inverted, and

matoutfile contains the matrix to which the inverse is written.

If the matrix contained in matfile is not positive definite, MATINVP ceases execution with an

appropriate error message.

15.10 MATJOINC

MATJOINC reads two matrices which have the same number of columns, and for which

corresponding column names are the same in each matrix. It forms a new matrix by joining

these two matrices in the column direction. Thus suppose that the two existing matrices are

named A and B. MATJOINC combines these matrices into the single matrix C constructed as

=

B

A
C (15.10.1)

MATJOINC is run using the command

matjoinc matfile1 matfile2 matoutfile

where

matfile1 is the name of a matrix file holding the first matrix,

matfile2 is the name of a matrix file holding the second matrix, and

matoutfile is the new matrix file.

Matrix Manipulation Programs 216

The following should be noted.

1. MATJOINC will not join two existing matrices if any column name in the first

matrix differs from that of its corresponding column in the second matrix.

2. MATJOINC will not join two existing matrices if any row name in the first matrix

is the same as a row name in the second matrix (for then the resulting matrix

would have duplicate row names).

3. Row and column names from the existing matrices are transferred to the new

matrix.

4. If the resulting, combined, matrix is a diagonal matrix, MATJOINC writes the

joined matrix in diagonal matrix format (see section 2.4) for the sake of storage

efficiency.

15.11 MATJOIND

MATJOIND reads two matrices of arbitrary dimensions. It then forms a new matrix in which

the two are combined in a diagonal sense. Thus suppose that the two existing matrices are

named A and B. MATJOIND combines these matrices into a single matrix C of the form

=

B0

0A
C (15.11.1)

MATJOIND is run using the command

matjoind matfile1 matfile2 matoutfile

where

matfile1 is the name of a matrix file holding the first matrix,

matfile2 is the name of a matrix file holding the second matrix, and

matoutfile is the new matrix file.

The following should be noted.

1. MATJOIND will not join two existing matrices if any column name in the first

matrix is the same as a column name in the second matrix.

2. MATJOIND will not join two existing matrices if any row name in the first matrix

is the same as a row name in the second matrix.

3. Row and column names from the existing matrices are transferred to the new

matrix.

4. If the resulting, combined, matrix is a diagonal matrix (which can only occur if the

two existing matrices are themselves diagonal), MATJOIND writes the joined

matrix in diagonal matrix format (see section 2.4) for the sake of storage

efficiency.

15.12 MATJOINR

MATJOINR reads two matrices which have the same number of rows, and for which

corresponding row names are the same in each matrix. It forms a new matrix by joining these

two matrices in the row direction. Suppose that the two existing matrices are named A and B.

MATJOINR combines these matrices into a single matrix C of the form

Matrix Manipulation Programs 217

 BAC = (15.12.1)

MATJOINR is run using the command

matjoinr matfile1 matfile2 matoutfile

where

matfile1 is the name of a matrix file holding the first matrix,

matfile2 is the name of a matrix file holding the second matrix, and

matoutfile is the new matrix file.

The following should be noted.

1. MATJOINR will not join two existing matrices if any row name in the first matrix

differs from that of its corresponding row in the second matrix.

2. MATJOINR will not join two existing matrices if any column name in the first

matrix is the same as a column name in the second matrix (for then the resulting

matrix would have duplicate column names).

3. Row and column names from the existing matrices are transferred to the new

matrix.

4. If the resulting, combined, matrix is a diagonal matrix, MATJOINR writes the

joined matrix in diagonal matrix format (see section 2.4) for the sake of storage

efficiency.

15.13 MATORDER

The purpose of MATORDER is to re-order the rows and columns of a matrix. It is run using

the command

matorder matfile1 matfile2 matoutfile

where

matfile1 is the name of a matrix file holding the matrix to be re-ordered,

matfile2 is the name of a “reordering matrix”, and

matoutfile is the name of a new matrix file which will hold the reordered matrix.

MATORDER commences execution by reading the matrix contained in file matfile1. It then

reads file matfile2. If the number of rows and columns in the matfile2 matrix is not the same

as the number of rows and columns in the matfile1 matrix, MATORDER ceases execution

with an appropriate error message. MATORDER then verifies that there are no duplicate

column names in each of the matfile1 and matfile2 matrices, and that there are also no

duplicate row names.

Next MATORDER reorders the matfile1 matrix such that its rows have the same order as the

rows of the matfile2 matrix, and such that its columns have the same order as the columns of

the matfile2 matrix. (Ordering is by row and column name.) It then records the re-ordered

matfile1 matrix in file matoutfile.

It is important to note that the matrix in file matfile2 is not actually used by MATORDER;

only the row and column names are used. Thus any matrix can be employed. If the matrix has

a large number of rows and/or columns, and if file matfile2 is being prepared by hand, don’t

forget the shorthand manner in which matrix elements can be stored; see section 2.4. For

example each row of a 1000-column null matrix 0 can be represented using the string

Matrix Manipulation Programs 218

“1000*0.0”.

15.14 MATPROD

MATPROD calculates the product of two matrices. That is, it calculates C where C=AB.

Note that calculation of C is only possible if the number of columns of A is equal to the

number of rows of B. Ideally the names of the rows of A should be the same as the names of

the columns of B. MATPROD will not object if this is not the case; however it will issue a

warning.

MATPROD is run using the command

matprod matfile1 matfile2 matoutfile

where matfile1 and matfile2 contain the A and B matrices respectively; matoutfile will

contain the C matrix upon completion of MATPROD execution.

15.15 MATQUAD

MATQUAD evaluates the quadratic form ytMy where y is a vector and M is a square matrix.

It is run using the command

matquad vecfile matfile matoutfile

where

vecfile is the name of a matrix file holding the vector y,

matfile is the name of a matrix file holding the matrix M, and

matoutfile is the output matrix file.

The following should be noted.

1. MATQUAD requires an input vector y. However this vector is actually read as a n×1

matrix from a standard matrix file.

2. Even though ytMy is a scalar, MATQUAD writes this scalar as a 1×1 matrix to the

matrix file outfile. However it also writes it to the screen.

3. MATQUAD will issue a warning message if the names of the rows of the vector y are

not the same as those of the rows of M. It will also issue a warning message if the

rows of M are named differently from the columns of M.

15.16 MATROW

MATROW extracts a row of a matrix. It then re-writes that row as a “row matrix” to a matrix

file.

An interesting use of MATROW is the extraction of a row of a resolution matrix. The

MATTRANS utility can then be used to write row entries in the vertical direction rather than

in the horizontal direction. For those parameters which correspond to pilot points (or other

point-based geographical entities), geographical coordinates are easily pasted in adjacent

columns. Gridding and contouring of this data then allows graphical viewing of the averaging

process that attends the estimation of spatial model parameters where their estimation takes

place through an ill-posed inverse problem.

MATROW is run using the command

matrow matfile rowname matoutfile

Matrix Manipulation Programs 219

where

matfile is the name of a matrix file,

rowname is the name of a row of the matrix contained in matfile, and

matoutfile is the name of a new matrix file containing the nominated row of the first

matrix.

15.17 MATSMUL

MATSMUL multiplies a matrix by a scalar. It is run using the command

matsmul matfile number matoutfile

where

matinfile is a file containing a matrix,

number is the scalar multiplier, and

matoutfile is the file to which the new matrix is written.

15.18 MATSPEC

MATSPEC lists some useful matrix specifications to a nominated text file, namely:

1. the number of rows and columns in the matrix;

2. the row/column numbers/names of highest and lowest matrix elements;

3. the row/column numbers/names of highest and lowest absolute matrix elements;

4. the row/column numbers/names of highest and lowest diagonal elements;

5. the row/column numbers/names of highest and lowest absolute diagonal elements.

MATSPEC is run using the command

matspec matfile outfile

where

matfile is the name of a file holding a matrix, and

outfile is the name of the text file to which matrix properties are written.

15.19 MATSVD

MATSVD undertakes singular value decomposition of an arbitrary m × n matrix. Suppose

that this matrix is named Z. Then singular value decomposition of Z leads to computation of

the matrices U, S and V where

 Z = USVt (15.19.1)

In the above equation U is an m × m orthonormal matrix, V is an n × n orthonormal matrix

and S is a “rectangular diagonal” matrix of dimension m × n containing the singular values of

Z. These are real and non-negative, and are returned in descending order by MATSVD. The

first min(m,n) columns of U and V are the normalised left and right singular vectors of Z.

MATSVD is run using the command

matsvd matfile umatfile smatfile vtmatfile

where

matfile is a user-supplied matrix file containing an arbitrary rectangular matrix Z,

umatfile contains the SVD-generated U matrix,

Matrix Manipulation Programs 220

smatfile contains a square j×j S (singular value) matrix where j is the smaller of m

and n, and

vtmatfile contains the SVD-generated n×n Vt matrix.

Note that while S as represented in the above equation is an m×n matrix, it is only recorded

as a j×j matrix by MATSVD (singular values beyond this are zero). The fact that it is square

allows it to be written with an ICODE value of -1 (i.e. as a list of numbers – see section 2.4 of

this manual). This allows the user to much more easily inspect the singular values of Z than if

they were recorded in a large rectangular matrix of predominantly zero elements.

15.20 MATSYM

MATSYM reads a square matrix A. It forms a symmetric matrix as (A + At)/2, writing this

matrix to a user-nominated file. MATSYM is run using the command

matsym matfile matoutfile

where

matfile is the name of a matrix file containing a square matrix, and

matoutfile is the name of a new matrix file to which MATSYM writes the symmetric

matrix, calculated as above.

15.21 MATTRANS

MATTRANS reads a matrix file. It writes another matrix file containing the transpose of the

matrix contained in the first file. It is run using the command

mattrans matfile matoutfile

where

matfile is the name of a matrix file, and

matoutfile is the name of a new matrix file containing the transpose of the first

matrix.

15.22 MATXTXI

MATXTXI calculates (XtX)-1 where X is a user-supplied matrix for which the number of

columns does not exceed the number of rows. It is run using the command

matxtxi matfile matoutfile

where matfile contains the X matrix. After completion of MATXTXI execution matoutfile

contains the matrix (XtX)-1.

15.23 MATXTXIX

MATXTXIX calculates (XtX)-1Xt where X is a user-supplied matrix for which the number of

columns does not exceed the number of rows. It is run using the command

matxtxi matfile matoutfile

where matfile contains the X matrix. After completion of MATXTXIX execution matoutfile

contains the matrix (XtX)-1Xt.

Matrix Manipulation Programs 221

15.24 PEST2VEC

PEST2VEC reads a PEST control file. A template file of a single column matrix file is then

written based on adjustable parameters cited within this control file; so too is the matrix file

itself, using initial parameter values recorded in the PEST control file. A complementary

transformation vector file (the second matrix file required by the VECLOG utility) is also

written. PEST2VEC also writes a new PEST control file in which the template file and

associated matrix file are added to its “model input/output” section.

PEST2VEC expedites the process of allowing parameter value matrix manipulation to be

implemented as part of a model run by PEST during a parameter estimation or predictive

analysis process. The model, as run by PEST, will probably need to be upgraded (normally

by adding lines to the model batch file) such that one or more of the matrix manipulation

utilities documented in the present chapter are run; if any parameters are log-transformed the

command to run VECLOG will need to precede all other matrix operations undertaken

through this batch file. The result of such parameter manipulation is likely to be a matrix

itself. VEC2PEST can be used to alter a PEST control file to accommodate the inclusion of

these results in the parameter estimation and/or predictive analysis processes; VEC2PEST

will also write an instruction file through which the outcomes of such matrix manipulation

can be read by PEST.

PEST2VEC is run using the command

pest2vec pestfile1 pestfile2 tplfile matfile logfile

where

pestfile1 is an existing PEST control file,

pestfile2 is a new PEST control file written by PEST2VEC in which the template

file and new matrix file are cited in the “model input/output” section,

tplfile is a template file of a matrix file,

matfile is a matrix file citing the initial values of adjustable parameters as

recorded in the PEST control file, and

logfile is the name of a transformation vector file for the use of the VECLOG

utility.

15.25 VEC2PEST

VEC2PEST facilitates the use of matrix manipulation outcomes by PEST. This can be useful

where parameters, or parameter projections, must be subjected to constraints imposed by a

covariance matrix when maximizing or minimizing a key model prediction as part of a

predictive analysis process (see the REGPRED utility documented elsewhere in this manual).

Thus, as part of this process, PEST parameters can be written to a matrix file, logarithmically

transformed as appropriate, and then possibly projected onto a subspace of parameter space

using matrix multiplication utilities described herein. The outcome of such a parameter

manipulation process will be a single column matrix (i.e. a vector) residing in a matrix file.

VEC2PEST generates an instruction file with which the components of this vector can be

read by PEST, and alters an existing PEST control file to include these vector elements as

observations.

In undertaking these activities, VEC2PEST observes the following protocols. These may not

be suitable for all occasions. Hence it is essential that a VEC2PEST-modified PEST input

dataset be checked with the comprehensive error checking utility PESTCHEK.

Matrix Manipulation Programs 222

1. Observation names are denoted as the names of the rows of the single column matrix

to which they correspond.

2. An observation group name is formulated as a text string that is common to all of the

new observation names; if such a string cannot be found, the name of the new

observation group is provided as “mat_data”.

If these protocols result in conflicts with existing names, the situation must be remedied by

direct editing of the PEST control and instruction files generated by VEC2PEST.

VEC2PEST is run using the command

vec2pest vecfile pestfile1 pestfile2 insfile2 [covfile]

where

vecfile is the name of a matrix file containing a single-column matrix,

pestfile1 is the name of an existing PEST control file to be modified by

VEC2PEST,

pestfile2 is the name of a new PEST control file to be written by VEC2PEST

containing the new observations,

insfile2 is the name of an instruction file through which the nominated matrix file

will be read by PEST, and

covfile is the name of an optional covariance matrix file for the new observation

group.

The covariance matrix file covfile may have been prepared by utility software such as

PARAMERR or PREDUNC7. Note that VEC2PEST does not check for the existence of the

optionally nominated covariance matrix file. It simply places its name at the appropriate

location within the PEST control file which it generates, opposite the name of the new

observation group in the “observation groups” section of this file.

15.26 VECLOG

VECLOG reads two matrix files, each of which must contain a single column matrix (i.e. a

vector). The second of these vectors must contain elements which are either 0, 1 or -1. For

each element of the second vector which is 1, the corresponding element of the first vector is

log (to base 10) transformed by VECLOG in forming the corresponding element of a new

vector. For each element of the second vector which is -1, the corresponding element of the

first vector becomes a power of 10 in computing the corresponding element of the new

vector; that is, the corresponding element of the new vector is computed as 10x where x is the

pertinent element of the first vector. For each element of the second vector which is 0, the

corresponding element of the first vector remains unchanged, and is thus directly transferred

to the new vector. After transformation in this manner, VECLOG writes the new vector to a

new matrix file.

VECLOG is run using the command

veclog matfile1 matfile2 matoutfile

where

matfile1 contains the first vector,

matfile2 contains the second vector, and

matoutfile is the name of a new matrix file to which the transformed vector is

written.

Matrix Manipulation Programs 223

Note that if any element of the first vector for which log transformation is sought is zero or

negative, VECLOG will cease execution with an appropriate error message. Note also that if

any element of the new vector is computed to exceed 1036, it is recorded as 1036 to avoid

numerical overflow.

 RRF and PAROBS Files 224

16. RRF and PAROBS Files

16.1 Introduction

An “RRF file” is a “run results file”. This file type is produced by PEST_HP. It contains the

parameter values used in a suite of PEST runs, together with model-calculated observation

values. Specifications for this file type are provided in section 2.6.

A “PAROBS file” is similar to a parameter value file. However, in addition to the values of

parameters, it also contains the values of model outputs calculated using the parameters. In

contrast to an RRF file, it contains only one set of parameter values and only one set of model

output values. Specifications for a PAROBS fare provided in section 2.7.

16.2 RRFCAT

RRFCAT concatenates two run results files. Before it does so, it checks for compatibility

between the files. In particular, it checks that the number of parameters and observations, and

the names of the parameters and observations, are the same in each file. RRFCAT can

accommodate a different ordering of parameter and observations in the two files; in this case

the ordering in the first file is transferred to the final file.

RRFCAT is run using the following command.

rrfcat rrfinfile1 rrfinfile2 rrfoutfile

where:

rrfinfile1 is an existing run results file,

rrfinfile2 is another existing run results file, and

rrfoutfile is a new run results file formed by concatenation of the existing run

results files.

In concatenating the two files, parameter set indices are renumbered, starting at 1. Also if any

model output pertaining to a particular parameter set includes a “null result” (this being

marked by any model output value that is less than -1.0e35 for a particular model run), the

parameter/model-output set is not transferred to the new run results file.

16.3 RRFCULL

Each parameter and model output set featured in a run results file is characterized by a

parameter set index. This integer index is listed directly after the “* parameter set index”

header that accompanies each parameter set. Parameter set indices should be sequential and

start at 1.

RRFCULL reads a run results file, together with a “culling file”. The latter file should

contain a list of parameter set indices, one to a line. Optionally, a line in the culling file can

commence with a “#” character; the line is then ignored. RRFCULL writes a new run results

file. Parameter sets characterized by parameter set indices listed in the culling file are

ommitted from the latter file. Parameter sets in this new file are provided with new indices. In

accordance with the protocol for a run results file, these indices are sequential, and start at 1.

RRFCULL is run using the following command.

rrfcull rrfinfile cullfile rrfoutfile

 RRF and PAROBS Files 225

where:

rrfinfile is an existing run results file,

cullfile is a culling file, and

rrfoutfile is the culled run results file.

16.4 RRFCLEAN

RRFCLEAN reads an existing run results file and writes a new one. In writing the new run

results file, it performs the following actions on data that is resident in the existing run results

file.

• It removes parameter sets for which model output values indicate a failed or

abandoned model run. (If any model output value is less than -1.0e35 for a particular

parameter set, this is taken as a sign of model run failure or abandonment; this

protocol is employed by PEST_HP when it writes a run results file.)

• If data pertaining to the final parameter set is missing from the existing run results

file, then no data pertaining to the final parameter set is written to the new run results

file.

• If required, parameter set indices are re-numbered, starting at 1 and increasing by 1

for each new parameter set.

RRFCLEAN is run using the command

rrfclean rrffile1 rrffile2

where:

rrffile1 is the name of an existing run results file, and

rrffile2 is the name of the new run results file written by RRFCLEAN.

16.5 RRF2PAR

RRF2PAR writes a series of parameter value files, based on the contents of a run results file.

Parameter value files can be used by programs such as PARREP for conducting a series of

model runs, perhaps for the purpose of exploring predictive uncertainty. (If this is the case,

the run results file will have been written by a program that has not only calculated sets of

parameter values, but has also calculated model output values - probably under calibraton

conditions - associated with each of these sets.)

RRF2PAR is run using the command

rrf2par rrffile parfilebase index1 index2

where:

rrffile is the name of an existing run results file,

parfilebase is the filename base of the set of parameter value files which

RRF2PAR must write,

index1 is the initial parameter value index, and

index2 is the final parameter value index.

Parameter value indices in a run results file should be arranged in increasing order, starting at

1. Suppose that RRF2PAR is run using the following command.

 RRF and PAROBS Files 226

 rrf2par file.rrf parfile 10 20

Then RRF2PAR reads file file.rrf to obtain parameter values. (It ignores model output

values). It gathers parameter values associated with parameter set indices 10 to 20 (inclusive),

recording these in parameter value files parfile10.par, parfile11,par…parfile20.par.

16.6 PAROBS2RRF

PAROBS2RRF reads a sequence of PAROBS files. It builds a single run results file in which

the contents of all of the PAROBS files are recorded.

PAROBS2RRF is run using the following command.

parobs2rrf filebase i1 i2 rrffile

where:

filebase is the filename base of a set of PAROBS files (an extension of

“.parobs” is assumed),

i1 is the PAROBS file starting index,

i2 is the PAROBS file ending index, and

rrffile is the run results file which PAROBS2RRF writes.

Suppose, for example, that PAROBS2RRF is run using the command:

 parobs2rrf case 1 200 outfile.rrf

PAROBS2RRF will attempt to read files case1.parobs, case2.parobs…case200.parobs. It

will record parameter values and corresponding model output values that it reads from these

files in the run results file outfile.rrf. If any of case*.parobs files are missing, then

PAROBS2RRF will report this to the screen, but will continue its processing of the sequence

of PAROBS files. In accordance with the run results file protocol, parameter set indices in the

run results file will continue to be sequential, regardless of the missing PAROBS file; hence

parameter set indices will not coincide with PAROBS file indices where a PAROBS file is

missing. However each set of parameter and model output values can still be linked to a

PAROBS file through the “parameter value source” descriptor associated with each

parameter set recorded in the run results file.

16.7 RRF2PAROBS

RRF2PAROBS extracts a single set of parameter values and corresponding model output

values from a run results file. It writes these to a PAROBS file.

RRF2PAROBS is run using the command

rrf2parobs rrffile psetindex parobsfile

where:

rrffile is the name of a run results file,

parsetindex is a parameter set index cited in this file, and

parobsfile is the name of the PAROBS file which RRF2PAROBS must write.

 RRF and PAROBS Files 227

16.8 RRFAPPEND

RRFAPPEND appends parameter and model output values read from a PAROBS file to the

end of a run results file. However, it only does this if the names and ordering of parameters

and model outputs in the PAROBS file are the same as those in the run results file. The

parameter set index provided to the new dataset is obtained by incrementing the last

parameter set index found in the run results file.

RRFAPPEND is run using the command

rrfappend parrobsfile rrffile

where:

parrobsfile is the name of an existing PAROBS file, and

rrffile is the name of an existing run results file.

If RRFAPPEND detects any inconsistencies between parameter names and ordering in the

PAROBS and run results files, it ceases execution with an error message. It does the same if

it encounters an error in either file. If it encounters an unexpected end to the run results file, it

will still append the contents of the PAROBS file to the end of this file. However it will leave

two empty lines between the current end of the run results file and the beginning of the

appended data.

If the run results file to which RRFAPPEND must append parameter and model output data

does not exist, then RRFAPPEND creates this file and writes a header to it.

16.9 MULPAROBSTAB

MULPAROBSTAB performs a very similar role to that of the MULPARTAB utility.

However it operates on a suite of PAROBS files rather than on a suite of parameter value

files. Because of this, it writes two output files, one in which the values of parameters are

tabulated and one in which the values of model outputs are tabulated.

MULPAROBSTAB is run using the command

mulparobstab parobsfile listfile outfile1 outfile2

where

parobsfile is a generic PAROBS filename,

listfile contains a list of integer indices,

outfile1 is the name of a tabular output file in which parameter values are

recorded, and

outfile2 is the name of a tabular output file in which model output values are

recorded.

16.10 RRF2TAB

RRF2TAB performs a simular role to MULPAROBSTAB, in that it produces two tabular

data files. However it reads parameter and model output values from a run results file rather

than from a series of PAROBS files. It is run using the command

rrf2tab rrffile outfile1 outfile2

where

rrffile is a run results file,

 RRF and PAROBS Files 228

outfile1 is the name of a tabular output file in which parameter values are

recorded, and

outfile2 is the name of a tabular output file in which model output values are

recorded.

16.11 PARREP_RRF

PARREP_RRF performs a similar function to PARREP in that it writes a new PEST control

file which is identical to an existing PEST control file, except for the fact that parameters in

the new PEST control file have new values. For PARREP, those values are read from a

parameter value file. For PARREP_RRF, new parameter values are read from a run results

file.

PARREP_RRF is run using the command

parrep_rrf rrffile parsetindex pestfile1 pestfile2

where

rrffile is the name of a run results file,

parsetindex (an integer) is a parameter set index cited in this file,

pestfile1 is the name of an existing PEST control file, and

pestfile2 is the name for the new PEST control file.

16.12 RRFCALCPSI

16.12.1 General

RRFCALCPSI reads a run results file. As well as reading a run results file, RRFCALCPSI

reads a PEST control file. This file may be the same as that which PEST_HP used for the run

on which it actually wrote the RRF file. Alternatively, it may be different. If it is different, it

must employ the same parameters and the same observations as those featured in the run

results file. However any or all of the following can be different between the PEST control

file whose name is supplied to RRFCALCPSI and that on which production of the run results

file was based:

• the ordering of parameters and observations;

• the weights and/or covariance matrices associated with observations;

• the measured values assigned to observations;

• the groups to which observations are assigned;

• whether or not prior information is employed, and the nature of that prior information;

• the mode in which PEST_HP was run (for example “estimation” or “regularisation”).

For each parameter and model output set that it finds in the run results file, RRFCALCPSI

calculates the objective function pertaining to each observation group, as well as the total

objective function. Included in these objective functions are contributions made by prior

information. It is important to note, however, that in calculating these objective function

components, RRFCALCPSI employs weights, covariance matrices, and prior information

equations featured in the PEST control file whose name is provided to it, and not those in the

original PEST control file used by PEST_HP (or any other software) to write the run results

file. Objective functions calculated by RRFCALCPSI are tabulated in a columnar data file

 RRF and PAROBS Files 229

that is easily imported into a spreadsheet package such as EXCEL. Also recorded is the

parameter set index from the run results file, as well as the reason for each model run; the

latter is written in the “parameter values source” component of each run record in the run

results file.

16.12.2 Using RRFCALCPSI

RRFCALCPSI is run using the following command. (Type its name at the command-line

prompt if you forget, and RRFCALCPSI will remind you.)

rrfcalcpsi rrffile pestfile psifile

 where

rrffile is the name of a run results file,

pestfile is the name of a PEST control file, and

psifile is a file in which objective functions will be recorded.

Note the following:

• The run results file is assumed to have an extension of “.rrf”. If this is omitted,

RRFCALCPSI will add this extension to the name which you provide.

• The PEST control file must have an extension of “.pst”. If this is omitted,

RRFCALCPSI will add this extension to the name which you provide.

• The file written by RRFCALCPSI can have any extension. Its extension should be

included with its name when issuing the above command.

As is described in specifications for a run results file (see section 2.6 of this document),

model output values of -1.11E35 in the run results file indicate a failed model run, while

model output values of -1.22E35 indicate an abandoned model run. RRFCALCPSI calculates

objective function values of -1.11E35 and -1.22E35 for these occasions.

If any prior information is present in the PEST control file whose name is supplied to

RRFCALCPSI, objective functions corresponding to this prior information are calculated,

together with those pertaining to model outputs. Prior information outcomes do not depend

on model outputs. They only depend on parameter values; these are read from the run results

file.

If the PEST control file whose name is supplied to RRFCALCPSI instructs PEST to run in

“regularisation” mode, then the regularisation weight factor used in calculation of the

objective functions associated with regularisation groups is equal to the initial weight factor

(i.e. WFINIT) supplied in the “regularisation” section of the PEST control file.

If the PEST control file whose name is supplied to RRFCALCPSI instructs PEST to run in

“pareto” mode, then no weight factors are employed. Weights and covariances matrices

recorded in the PEST control file are used directly.

16.13 RRF2JCO

16.13.1 General

RRF2JCO reads a run results file. It calculates a binary Jacobian matrix file (i.e. a JCO file)

based on parameters and model outputs that are recorded in this file.

 RRF and PAROBS Files 230

16.13.2 Theory and Concepts

Let the vector h represent model outputs under calibration conditions. Thus, for a linearized

model:

 h = Zk (16.13.1)

The previous equation can be expanded as follows.

 k
I

Z

k

h

=

 (16.13.2)

Suppose now that random realizations of parameters k are generated using the variance-

covariance matrix C(k). The covariance matrix Chk relating model outputs to random

parameters can be calculated as follows.

 () () ()
() ()

=

=

=

kZk

kZZkZ
IZk

I

Z

k

h

CC

CC
C

CC

CC
C

t

t

t

kkkh

hkhh
 (16.13.3)

so that

 Chk = ZC(k) (16.13.4)

Chk can be calculated empirically based on the outputs of many model runs that employ

samples of C(k). Based on these model outputs, an approximation to the sensitivity matrix

(i.e. the Jacobian matrix) Z can be calculated from equation 16.13.4 as

 Z = ChkC
-1(k) (16.13.5)

RRF2JCO calculates C-1(k) using the equation

 C-1(k) = US-1Ut (16.13.6)

where U and S are obtained through singular value decomposition of C(k). Prior to its

inversion, C(k) can optionally be calculated empirically from the values of parameters

featured in the run results file. If it is singular, this does not affect its inversion through

16.13.6; zero-valued singular values are simply ignored.

RRF2JCO calculates the value of element (i,j) of Chk from the outcomes of n model runs

based on n random parameter sets using the equation:

 ()
()()

1
,C 1

hk
−

−−

=

=

n

kkhh

ji
jjm

n

m

iim

 (16.13.7)

where ih is calculated as:

n

h

h

n

m

im

i

== 1 (16.13.8)

and
jk is calculated as:

n

k

k

n

m

jm

j

== 1 (16.13.9)

 RRF and PAROBS Files 231

If Ckk is calculated empirically, a similar equation is employed. Optionally the user can

supply values for ih and
jk for use in equation 16.13.7 (and in a similar equation pertaining

to Ckk) him/herself.

16.13.3 Using RRF2JCO

RRF2JCO is run using the following command. (Type its name at the command-line prompt

if you forget; and RRF2JCO will remind you.)

rrf2jco pestfile mfile/nul/pst ufile/nul rrffile jcofile [sthresh]

 where

pestfile is the name of a PEST conrol file,

mfile/nul/pst is the name of an optional mean value file (in PAROBS format),

ufile/nul is the name of an optional parameter uncertainty file,

rrffile is the name of a run results file,

jcofile is the name of the Jacobian matrix file which RRF2JCO writes, and

sthresh is an optional singular value truncation ratio.

Immediately on commencement of execution, RRF2JCO reads a PEST control file. While

RRF2JCO does not use parameter or observation values from this file, it must nevertheless

read a PEST control file in order to obtain the transformation status of each parameter. As is

described elsewhere in PEST documentation, if a parameter is log-transformed then

sensitivities recorded in the JCO file must pertain to the log (to base 10) of the parameter.

If the PEST conrol file which RRF2JCO reads contains prior information, this is represented

in the JCO file which RRF2JCO writes.

RRF2JCO obtains the variance-covariance matrix C(k) in either of two ways. If random

parameter values on which model runs were based were generated using parameter

uncertainties specified in a parameter uncertainty file (see section 2.5 of this manual), C(k)

can be calculated from the contents of this uncertainty file. Alternatively, RRF2JCO

calculates an empirical C(k) matrix from the parameter values which appear in the run results

file. Specifiy the name of a parameter uncertainty file as RRF2JCO’s third command line

argument if you wish that C(k) be obtained in the former way; specify “nul” for the name of

the parameter uncertainty file to choose the latter option.

Where a covariance matrix is calculated empirically, it may not be invertible. In fact it

certainly will not be invertible if the number of random parameters sets on which calculation

of an empirical C(k) is based is less than the number of elements of k. In this case singular

values featured in the S matrix of equation 16.13.6 must be truncated before being inverted.

RRF2JCO will automatically truncate at (n-1) singular values, where n is the number of

random parameter sets featured in the run results file. However, through appropriate choice

of the sthresh command-line parameter, RRF2JCO can be asked to truncate at that point

where the ratio of a particular singular value to the first singular value is equal sthresh.

RRF2JCO employs a default sthresh value of 5.0e-7.

Optionally, RRR2JCO can read mean parameter and model output values used in calculation

of the Chk empirical covariance matrix (see equation 16.13.7), and the optional empirical Ckk

covariance matrix, from a PAROBS file. Provide the name of the PAROBS file as the second

RRF2JCO command line argument; alternatively supply a name of “nul” for the PAROBS

 RRF and PAROBS Files 232

file for mean model output and parameter values to be calculated using equations 16.13.8 and

16.13.9.

RRF2JCO provides one further alternative for calculation of mean values. This is activated

by providing the string “pst” instead of the name of a PAROBS file or “nul” for the second

RRF2JCO command line argument. With this argument, RRF2JCO uses parameter values

listed in the PEST control file cited as RRF2JCO’s first command line argument as mean

parameter values. It searches for corresponding model output values in the run results file

which is cited as its fourth command line argument. If the run results file does not include the

parameter set cited in the PEST conrol file, RRF2JCO automatically sets the second

command line argument to “nul”; hence parameter and observation means are computing by

averaging values in the run results file.

References 233

17. References
Belsley, D.A, Kuh, E. and Welsch, R.E., 1980. Regression Diagnostics: Identifying

Influential Data and Source of Collinearity. John Wiley, New York.

Cook, R.D. and Weisberg, S., 1982. Residuals and Influence in Regression. Monogr. Stat.

Appl. Probability, vol 18, Chapman and Hall, New York, 1982.

Doherty, J., 2015. Calibration and uncertainty analysis for complex environmental models.

Watermark Numerical Computing, Brisbane, Australia. 227pp. ISBN: 978-0-9943786-0-6

Downloadable from www.pesthomepage.org.

Doherty, J. and Hunt, R.J., 2009. Two statistics for evaluating parameter identifiability and

error reduction. Journal of Hydrology. 366, 119-127.

Hadi, A.S., 1992. A new measure of overall potential influence in linear regression.

Computational Statistics and Data Analysis, 14, 1-27.

Hill, M.C., and Tiedeman, C.R., 2007. Effective Groundwater Model Calibration and

Analysis of Data, Sensitivities, Predictions, and Uncertainty. John Wiley and Sons, New

York.

White, J.T., Doherty, J.E. and Hughes, J.D., 2014. Quantifying the predictive consequences

of model error with linear subspace analysis. Water Resour. Res, 50(2): 1152-1173. DOI:

10.1002/2013WR014767

Yager, R.M., 1998. Detecting influential observations in nonlinear regression modelling.

Water Resourc. Res., 34:7, 1623-1633.

http://www.pesthomepage.org/

